07.04.2013 Views

Getting a Handle on Advanced Cubic Equations of State

Getting a Handle on Advanced Cubic Equations of State

Getting a Handle on Advanced Cubic Equations of State

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

l<strong>on</strong>g as the same alpha functi<strong>on</strong> (for pure-comp<strong>on</strong>ent vapor<br />

pressure correlati<strong>on</strong>) and the same mixing rules (for mixtureproperty<br />

correlati<strong>on</strong>) are used (5). Since the ability <strong>of</strong> any<br />

CEOS to predict phase equilibria <strong>of</strong> mixtures depends <strong>on</strong> the<br />

alpha functi<strong>on</strong> and the mixing rule, these two elements will be<br />

the focus <strong>of</strong> the remainder <strong>of</strong> this article.<br />

Alpha functi<strong>on</strong>s for cubic equati<strong>on</strong>s <strong>of</strong> state<br />

The accurate predicti<strong>on</strong> <strong>of</strong> K-values from any CEOS requires<br />

an equally accurate predicti<strong>on</strong> <strong>of</strong> pure-comp<strong>on</strong>ent<br />

vapor pressures, which depends <strong>on</strong> the development <strong>of</strong> an appropriate<br />

alpha functi<strong>on</strong> α(T). The first CEOS to be successfully<br />

applied to the calculati<strong>on</strong> <strong>of</strong> thermodynamic properties<br />

for the vapor phase was the modified form <strong>of</strong> the van der<br />

Waals equati<strong>on</strong> by Redlich and Kw<strong>on</strong>g (6), who incorporated<br />

temperature dependence into the a term:<br />

P<br />

=<br />

RT<br />

v−b The success <strong>of</strong> the Redlich-Kw<strong>on</strong>g (RK) equati<strong>on</strong> stimulated<br />

numerous researchers to propose various correlati<strong>on</strong>s for improving<br />

the predicti<strong>on</strong> <strong>of</strong> vapor pressure. Wils<strong>on</strong> (7) first introduced<br />

a general form <strong>of</strong> temperature dependence <strong>of</strong> the a<br />

parameter in the RK equati<strong>on</strong> in 1964:<br />

a(T) = α(T)a c<br />

−<br />

05 .<br />

aT<br />

vv ( + b)<br />

where a c is the value <strong>of</strong> a at the critical point. In 1966, Wils<strong>on</strong><br />

(8) expressed α(T) as a functi<strong>on</strong> <strong>of</strong> the reduced temperature,<br />

T r = T/T c , and the acentric factor ω as follows:<br />

α(T) = T r + (1.57 + 1.62ω)(1 – T r ) (4)<br />

However, since the error <strong>of</strong> predicted vapor pressure from Eq.<br />

4 is quite large, Wils<strong>on</strong>’s functi<strong>on</strong> did not find widespread<br />

use. The α(T) functi<strong>on</strong> that did find its way into the mainstream<br />

was proposed by Soave in 1972. He developed a linear<br />

equati<strong>on</strong> for α as a functi<strong>on</strong> <strong>of</strong> temperature by plotting α 0.5<br />

against T r 0.5 at a c<strong>on</strong>stant ω:<br />

α(T) = (1 + m(1 – T r 0.5)) 2 (5)<br />

The m parameter is obtained by forcing the equati<strong>on</strong> to reproduce<br />

vapor pressures for light hydrocarb<strong>on</strong>s corresp<strong>on</strong>ding to<br />

C 1 through C 10 at T r = 0.7, and is correlated as a functi<strong>on</strong> <strong>of</strong> ω:<br />

m = 0.480 + 1.57ω – 0.176ω 2 (6)<br />

( 2)<br />

Soave’s development <strong>of</strong> Eqs. 5 and 6 represented a great step<br />

forward in the practical applicati<strong>on</strong> <strong>of</strong> CEOS. The Soave α(T),<br />

(or Eq. 5) defined as a functi<strong>on</strong> <strong>of</strong> both T r and ω, is good for<br />

predicting the vapor pressures <strong>of</strong> hydrocarb<strong>on</strong>s at temperatures<br />

above their normal boiling points, but not at c<strong>on</strong>diti<strong>on</strong>s above<br />

the critical point, since the functi<strong>on</strong> does not decrease m<strong>on</strong>o-<br />

(3)<br />

Nomenclature<br />

a, b = CEOS parameters<br />

a * , b * = reduced parameters <strong>of</strong> a and b<br />

A =Helmholtz energy<br />

c1 ,c2 ,c3 = c<strong>on</strong>stants in α(T) functi<strong>on</strong> (Eq. 14, 15)<br />

C1 = c<strong>on</strong>stant at infinite pressure<br />

Cr = c<strong>on</strong>stant at zero pressure<br />

Cv0 = functi<strong>on</strong> at zero pressure<br />

G = Gibbs energy<br />

k<br />

ij , k ij<br />

= binary interacti<strong>on</strong> parameter<br />

= binary interacti<strong>on</strong> parameter<br />

l ij<br />

m = parameter in Soave’s equati<strong>on</strong> for α(T), Eq. 5<br />

n = parameter in Soave’s expanded equati<strong>on</strong> for α(T), Eq. 7<br />

L, M, N = parameters in the Twu α functi<strong>on</strong><br />

P = pressure<br />

R = ideal gas c<strong>on</strong>stant<br />

r = c<strong>on</strong>stant reduced liquid volume at zero-pressure<br />

T = temperature<br />

u, w = CEOS c<strong>on</strong>stants<br />

v = molar volume<br />

v 0 * = reduced liquid volume at zero pressure<br />

V = total volume<br />

x = mole fracti<strong>on</strong> <strong>of</strong> comp<strong>on</strong>ent i in liquid phase<br />

i<br />

Z = compressibility facto<br />

Greek letters<br />

α = CEOS alpha functi<strong>on</strong><br />

δ = parameter used to define τ<br />

ω = acentric factor<br />

τ = parameter used in TST excess Gibbs energy model<br />

Subscripts<br />

0 = zero pressure<br />

∞ = infinite pressure<br />

c = critical property<br />

i, j ,k = property <strong>of</strong> comp<strong>on</strong>ent i, j, k<br />

ij, ji = interacti<strong>on</strong> property between comp<strong>on</strong>ents i and j<br />

ik, ki = interacti<strong>on</strong> property between comp<strong>on</strong>ents i and k<br />

r = reduced property<br />

vdw = van der Waals<br />

Superscripts<br />

* = reduced property<br />

E = excess property<br />

(0) and (1) = denotes value <strong>of</strong> α when ω = 0 and ω = 1<br />

† Any c<strong>on</strong>sistent set <strong>of</strong> units is acceptable.<br />

t<strong>on</strong>ically with increasing temperature.<br />

Another shortcoming <strong>of</strong> Soave’s α(T) functi<strong>on</strong> is that the<br />

calculated vapor pressures tend to diverge from the experimental<br />

<strong>on</strong>es at low temperatures. Therefore, Soave proposed a<br />

new α(T) functi<strong>on</strong> to improve vapor-pressure predicti<strong>on</strong> by<br />

expanding Eq. 5 as follows (9):<br />

α(T) = 1 + m(1 – T r )+n(1 – T r 0.5) 2 (7)<br />

where m and n are obtained by correlating vapor-pressure values<br />

generated by the Lee-Kesler EOS:<br />

m = 0.484 + 1.515ω – 0.44ω 2 (8)<br />

n = 2.756m – 0.700 (9)<br />

CEP November 2002 www.cepmagazine.org 59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!