07.04.2013 Views

Tutorial on Fast Marching Method - Robotics Algorithms & Motion ...

Tutorial on Fast Marching Method - Robotics Algorithms & Motion ...

Tutorial on Fast Marching Method - Robotics Algorithms & Motion ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Tutorial</str<strong>on</strong>g> <strong>on</strong> <strong>Fast</strong> <strong>Marching</strong> <strong>Method</strong><br />

Applicati<strong>on</strong> to Trajectory Planning for<br />

Aut<strong>on</strong>omous Underwater Vehicles<br />

Clement Petres<br />

Email: clementpetres@yahoo.fr<br />

This work has been supported by the Ocean Systems Laboratory<br />

http://www.eece.hw.ac.uk/research/oceans/<br />

LIST – DTSI – Service Robotique Interactive<br />

22/09/08<br />

1


Presentati<strong>on</strong> overview<br />

I. Introducti<strong>on</strong> to FM based trajectory planning<br />

II. Trajectory planning under directi<strong>on</strong>al c<strong>on</strong>straints<br />

III. Trajectory planning under curvature c<strong>on</strong>straints<br />

IV. Multiresoluti<strong>on</strong> FM based trajectory planning<br />

V. FM based trajectory planning in dynamic<br />

envir<strong>on</strong>ments<br />

VI. Trajectory planning under visibility c<strong>on</strong>straints<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

2


Costs<br />

Introducti<strong>on</strong>: a short story<br />

• Obstacles: 11<br />

• Rocky ground: 2<br />

• Free space: 1<br />

• Wind: 0.5<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

3


Grid-search algorithms<br />

4-c<strong>on</strong>nexity Breadth-First algorithm without obstacle<br />

(cost functi<strong>on</strong> = c<strong>on</strong>stant = 1)<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

4


Some demos (priority queue) …<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

5


Towards <strong>Fast</strong> <strong>Marching</strong> algorithm…<br />

4-c<strong>on</strong>nexity Breadth-First<br />

8-c<strong>on</strong>nexity Breadth-First<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

4-c<strong>on</strong>nexity <strong>Fast</strong> <strong>Marching</strong> (Sethian, 1996)<br />

05/02/008<br />

6


A* versus FM*<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10 20 30 40 50 60 70 80 90 100<br />

A* = Breadth-First + heuristic<br />

FM* = <strong>Fast</strong> <strong>Marching</strong> + heuristic<br />

4-c<strong>on</strong>nexity A* (Nilss<strong>on</strong>, 1968) 4-c<strong>on</strong>nexity FM*<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10 20 30 40 50 60 70 80 90 100<br />

On a grid with N points: FM complexity = A* complexity = O(N.log(N)):<br />

• Maximum cost of sorting the queue: log(N)<br />

• Maximum number of iterati<strong>on</strong>s: N<br />

05/02/008<br />

7


N<strong>on</strong>-c<strong>on</strong>vex obstacles: <strong>Fast</strong> <strong>Marching</strong> method<br />

Cost = 0<br />

Cost map<br />

Cost = 10<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

Distance map (<strong>Fast</strong> <strong>Marching</strong>) and optimal<br />

trajectory (gradient descent)<br />

05/02/008<br />

8


N<strong>on</strong>-c<strong>on</strong>vex obstacles: dilatati<strong>on</strong> + <strong>Fast</strong> <strong>Marching</strong><br />

Trajectory avoiding obstacle Safer trajectory avoiding dilated obstacle<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

9


Applicati<strong>on</strong>: harbour obstructed by a net<br />

Harbour 2D simulati<strong>on</strong><br />

Distance map computati<strong>on</strong> Gradient descent computati<strong>on</strong><br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

10


Applicati<strong>on</strong>: 3D trajectory planning<br />

3D optimal trajectory using 3D <strong>Fast</strong> <strong>Marching</strong> algorithm<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

11


Presentati<strong>on</strong> overview<br />

I. Introducti<strong>on</strong> to FM based trajectory planning<br />

II. Trajectory planning under directi<strong>on</strong>al c<strong>on</strong>straints<br />

III. Trajectory planning under curvature c<strong>on</strong>straints<br />

IV. Multiresoluti<strong>on</strong> FM based trajectory planning<br />

V. FM based trajectory planning in dynamic<br />

envir<strong>on</strong>ments<br />

VI. Trajectory planning under visibility c<strong>on</strong>straints<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

12


j<br />

Anisotropic <strong>Fast</strong> <strong>Marching</strong>: theory<br />

Eik<strong>on</strong>al equati<strong>on</strong><br />

u(x)<br />

<br />

Upwind scheme<br />

<br />

u<br />

<br />

<br />

<br />

i<br />

<br />

<br />

u uA<br />

<br />

u u<br />

B<br />

τ(x)<br />

Quadratic equati<strong>on</strong> for u<br />

2<br />

2 2<br />

u u u u τ<br />

A<br />

<br />

B<br />

(x,<br />

τ F<br />

Hamilt<strong>on</strong>-Jacobi equati<strong>on</strong><br />

u(x)<br />

τ~ (x, u)<br />

Anisotropic cost functi<strong>on</strong><br />

τ~ (x, u)<br />

τ<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

τ F<br />

τ<br />

F<br />

O<br />

Quadratic equati<strong>on</strong> for u<br />

(x) τ<br />

F<br />

(x, u)<br />

u(x).F(x)<br />

<br />

u)<br />

α 1<br />

<br />

Q(x) <br />

u(x).F(x)<br />

τ(x) 2αsup<br />

F so that<br />

x<br />

Ω,<br />

1<br />

Q(x)<br />

Q(x) Ω<br />

linear for u :<br />

u u F (x) u u <br />

A i <br />

(x, u)<br />

α <br />

1<br />

<br />

Q(x)<br />

2<br />

2 2 2<br />

u uA<br />

u uB<br />

τO<br />

τF<br />

2τOτ<br />

F<br />

B<br />

Fj(x)<br />

<br />

<br />

<br />

<br />

05/02/008<br />

13


Anisotropic <strong>Fast</strong> <strong>Marching</strong>: simulati<strong>on</strong><br />

Isotropic <strong>Fast</strong> <strong>Marching</strong><br />

Distance map computati<strong>on</strong> Gradient descent computati<strong>on</strong><br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

14


Anisotropic <strong>Fast</strong> <strong>Marching</strong>: simulati<strong>on</strong><br />

Anisotropic <strong>Fast</strong> <strong>Marching</strong><br />

Distance map computati<strong>on</strong> Gradient descent computati<strong>on</strong><br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

15


Anisotropic <strong>Fast</strong> <strong>Marching</strong>: results<br />

Isotropic <strong>Fast</strong> <strong>Marching</strong><br />

Gain = 10 %<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

Anisotropic <strong>Fast</strong> <strong>Marching</strong><br />

05/02/008<br />

16


Presentati<strong>on</strong> overview<br />

I. Introducti<strong>on</strong> to FM based trajectory planning<br />

II. Trajectory planning under directi<strong>on</strong>al c<strong>on</strong>straints<br />

III. Trajectory planning under curvature c<strong>on</strong>straints<br />

IV. Multiresoluti<strong>on</strong> FM based trajectory planning<br />

V. FM based trajectory planning in dynamic<br />

envir<strong>on</strong>ments<br />

VI. Trajectory planning under visibility c<strong>on</strong>straints<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

17


Trajectory planning under curvature c<strong>on</strong>straints<br />

R : trajectory curvature radius<br />

r : turning radius of the vehicle<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

18


Trajectory planning under curvature c<strong>on</strong>straints<br />

Trajectory<br />

C:<br />

0,1 s<br />

<br />

<br />

Metric (cost functi<strong>on</strong> t)<br />

<br />

Ω<br />

C(s)<br />

0, <br />

C (s) <br />

ρ(x1, x 2)<br />

τ x , x<br />

1 1 2<br />

Euler-Lagrange equati<strong>on</strong><br />

τ<br />

τ.N<br />

0<br />

R<br />

R<br />

inf<br />

<br />

sup<br />

C(0) x start C(1) x end<br />

τ<br />

τ<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

Ω<br />

Ω <br />

ds<br />

Functi<strong>on</strong>al minimizati<strong>on</strong> problem<br />

u(x1, x2<br />

) inf c ρ(x1,<br />

x2<br />

)<br />

x1<br />

, x2<br />

Smoothing t to decrease<br />

r<br />

(Cohen and Kimmel, 1997)<br />

supΩ τ<br />

05/02/008<br />

N<br />

19


Trajectory planning under curvature c<strong>on</strong>straints<br />

FM<br />

KO<br />

Smoothing<br />

OK ?<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

FM<br />

KO<br />

Smoothing<br />

OK ?<br />

FM<br />

05/02/008<br />

OK ?<br />

20


Lower bounds <strong>on</strong> the curvature radius<br />

τ τ<br />

α F F<br />

F<br />

y <br />

i<br />

τO.N<br />

<br />

R<br />

Q <br />

<br />

y x <br />

<br />

<br />

R<br />

O <br />

<br />

sup<br />

Ω<br />

Cost functi<strong>on</strong><br />

τ~ (x,<br />

(x,<br />

τ F<br />

τ<br />

u)<br />

τ<br />

Euler-Lagrange equati<strong>on</strong><br />

inf<br />

O<br />

Ω<br />

<br />

O<br />

(x) τ<br />

τO<br />

2α<br />

inf Q<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

Ω<br />

F<br />

(x, u)<br />

u(x).F(x)<br />

u)<br />

α 1<br />

Q(x)<br />

J<br />

0<br />

F<br />

<br />

<br />

• Smoothing t O to decrease<br />

<br />

<br />

<br />

(Petres and Pailhas, 2005)<br />

r<br />

sup τ<br />

Isotropic case<br />

• Smoothing the field of force F to decrease J F <br />

Ω<br />

O<br />

τ<br />

R<br />

R<br />

τ.N<br />

0<br />

inf τ<br />

<br />

sup τ<br />

Ω<br />

Ω <br />

r<br />

05/02/008<br />

21


Presentati<strong>on</strong> overview<br />

I. Introducti<strong>on</strong> to FM based trajectory planning<br />

II. Trajectory planning under directi<strong>on</strong>al c<strong>on</strong>straints<br />

III. Trajectory planning under curvature c<strong>on</strong>straints<br />

IV. Multiresoluti<strong>on</strong> FM based trajectory planning<br />

V. FM based trajectory planning in dynamic<br />

envir<strong>on</strong>ments<br />

VI. Trajectory planning under visibility c<strong>on</strong>straints<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

22


Operati<strong>on</strong>s:<br />

Multiresoluti<strong>on</strong> FM based trajectory planning<br />

1) 1000x1000 grid of pixels<br />

2) FM <strong>on</strong> the grid<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

23


Operati<strong>on</strong>s:<br />

Multiresoluti<strong>on</strong> FM based trajectory planning<br />

1) 1000x1000 grid of pixels<br />

2) Quadtree decompositi<strong>on</strong><br />

3) Mesh of 1400 vertices<br />

4) FM <strong>on</strong> the mesh<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

24


T<br />

a<br />

i<br />

i<br />

Multiresoluti<strong>on</strong> FM based trajectory planning: upwind scheme<br />

Notati<strong>on</strong>s:<br />

<br />

<br />

x xi<br />

x x<br />

1<br />

x x<br />

i<br />

i<br />

Cartesian grid<br />

2<br />

2 2<br />

u u u u τ<br />

A<br />

Unstructured mesh<br />

T 2 T<br />

T 2<br />

a Qau<br />

2a Qbu<br />

b Qb τ<br />

T , T , , T <br />

1 T <br />

Q T T<br />

T <br />

1<br />

1 <br />

<br />

2 <br />

<br />

a<br />

n <br />

...<br />

a<br />

a<br />

a<br />

2<br />

b<br />

i<br />

n<br />

<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

B<br />

(Sethian and Vladimirsky, 2000)<br />

ui<br />

x x<br />

i<br />

1 <br />

<br />

2 <br />

<br />

b<br />

n <br />

...<br />

b<br />

b<br />

x A<br />

x 5<br />

b u minu<br />

, u , u <br />

x 4<br />

x<br />

x B<br />

x<br />

x 1<br />

1<br />

x 2<br />

2<br />

j<br />

j<br />

x 3<br />

3<br />

i<br />

i<br />

05/02/008<br />

25


Recapitulative<br />

Quadtree decompositi<strong>on</strong><br />

Original 1000x1000 image<br />

100 sec<strong>on</strong>ds<br />

Mesh with 1400 vertices<br />

Trajectory using FM <strong>on</strong> the grid<br />

Trajectory using FM <strong>on</strong> the mesh<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

26


Presentati<strong>on</strong> overview<br />

I. Introducti<strong>on</strong> to FM based trajectory planning<br />

II. Trajectory planning under directi<strong>on</strong>al c<strong>on</strong>straints<br />

III. Trajectory planning under curvature c<strong>on</strong>straints<br />

IV. Multiresoluti<strong>on</strong> FM based trajectory planning<br />

V. FM based trajectory planning in dynamic envir<strong>on</strong>ments<br />

VI. Trajectory planning under visibility c<strong>on</strong>straints<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

27


FM based trajectory planning in dynamic envir<strong>on</strong>ments<br />

E* algorithm<br />

Cost map<br />

(Philippsen and Siegwart, 2005)<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

Updated grid points<br />

05/02/008<br />

28


Dynamic replanning: video of trials in Scotland<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

29


Presentati<strong>on</strong> overview<br />

I. Introducti<strong>on</strong> to FM based trajectory planning<br />

II. Trajectory planning under directi<strong>on</strong>al c<strong>on</strong>straints<br />

III. Trajectory planning under curvature c<strong>on</strong>straints<br />

IV. Multiresoluti<strong>on</strong> FM based trajectory planning<br />

V. FM based trajectory planning in dynamic<br />

envir<strong>on</strong>ments<br />

VI. Trajectory planning under visibility c<strong>on</strong>straints<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

30


Trajectory planning under visibility c<strong>on</strong>straints<br />

Visibility map: homogeneous media<br />

Cost map<br />

Cost map<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

Shadow<br />

05/02/008<br />

31


Trajectory planning under visibility c<strong>on</strong>straints<br />

Without obstacle With obstacle<br />

Cost = 5<br />

Cost = 1<br />

Cost = 5<br />

Cost = 1<br />

Cost = 5<br />

Cost = 1<br />

Visibility map: hetrogeneous media<br />

Cost = 5<br />

Cost = 1<br />

Cost = 5<br />

Cost = 1<br />

Cost = 5<br />

Cost = 1<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

Shadow<br />

05/02/008<br />

32


Trajectory planning under visibility c<strong>on</strong>straints<br />

1 sentry in the 4 corners<br />

Cost of covered areas : 1<br />

Cost of exposed areas : 10<br />

Cost of obstacles : 100<br />

Applicati<strong>on</strong> in covert robotics<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

33


C<strong>on</strong>clusi<strong>on</strong><br />

Recap of the talk<br />

• FM* algorithm: FM + heuristic<br />

• Directi<strong>on</strong>al c<strong>on</strong>strained TP: anisotropic FM<br />

• Curvature c<strong>on</strong>strained TP: isotropic and anisotropic media<br />

• Multiresoluti<strong>on</strong> TP: FM + adaptive mesh generati<strong>on</strong><br />

• Dynamic replanning: E* algorithm, comparative study, in-water trials<br />

• Visibility-based TP: E* based visibility map, heterogeneous envir<strong>on</strong>ments<br />

Main advantages of <strong>Fast</strong> <strong>Marching</strong> methods applied to trajectory planning<br />

• Accuracy, robustness reliability<br />

• Curvature c<strong>on</strong>straints underactuated AUV<br />

• Fields of force new domains of applicability<br />

• Simplicity easy integrati<strong>on</strong> <strong>on</strong> real systems<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

34


References <strong>on</strong> chapter 1<br />

• E. W. Dijkstra, « A Note <strong>on</strong> Two Problems in C<strong>on</strong>nexi<strong>on</strong> with Graphs »,<br />

Numerische Mathematik, vol. 1, pp. 269–271, 1959.<br />

• P. E. Hart, N. J. Nilss<strong>on</strong>, B. Raphael, « A Formal Basis for the Heuristic<br />

Determinati<strong>on</strong> of Minimum Cost Paths », IEEE Transacti<strong>on</strong>s <strong>on</strong> Systems<br />

Science and Cybernetics, vol. 4(2), pp. 100–107, 1968.<br />

• J. A. Sethian, « Level Set <strong>Method</strong>s and <strong>Fast</strong> <strong>Marching</strong> <strong>Method</strong>s »,<br />

Cambridge University Press, 1999.<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

35


References <strong>on</strong> chapter 2<br />

• A. Vladimirsky, Ordered Upwind <strong>Method</strong>s for Static Hamilt<strong>on</strong>-Jacobi<br />

Equati<strong>on</strong>s: Theory and <strong>Algorithms</strong>, SIAM Journal <strong>on</strong> Numerical Analyzis,<br />

vol. 41(1), pp. 325-363, 2003.<br />

• M. Soulignac, P. Taillibert, M. Rueher, « Adapting the Wavefr<strong>on</strong>t<br />

Expansi<strong>on</strong> in Presence of Str<strong>on</strong>g Currents », IEEE Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> <strong>Robotics</strong> and Automati<strong>on</strong>, pp. 1352-1358, 2008.<br />

• B. Garau, A. Alvarez, G. Oliver, « Path Planning of AUV in Current<br />

Fields with Complex Spatial Variability: an A* approach », IEEE<br />

Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> <strong>Robotics</strong> and Automati<strong>on</strong>, pp. 194-198,<br />

2005.<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

36


References <strong>on</strong> chapter 3<br />

• L. D. Cohen, R<strong>on</strong> Kimmel, « Global Minimum for Active C<strong>on</strong>tour<br />

Models: A Minimal Path Approach », Internati<strong>on</strong>al Journal <strong>on</strong> Computer<br />

Visi<strong>on</strong>, vol. 24(1), pp. 57-78, 1997.<br />

• S. M. Lavalle, « Planning <strong>Algorithms</strong> », Cambridge University Press,<br />

2006.<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

37


References <strong>on</strong> chapter 4<br />

• J. A. Sethian, A. Vladimirsky, « <strong>Fast</strong> <strong>Method</strong>s for the Eik<strong>on</strong>al and<br />

Related Hamilt<strong>on</strong>-Jacobi Equati<strong>on</strong>s <strong>on</strong> Unstructured Meshes », Applied<br />

Mathematics, vol. 97(11), pp. 5699-5703, 2000.<br />

• D. Fergus<strong>on</strong>, A. Stentz, « Multi-Resoluti<strong>on</strong> Field D* », Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Intelligent Aut<strong>on</strong>omous Systems, 2006.<br />

• A. Yahja, A. Stentz, S. Singh, B. Brumitt, « Framed-Quadtree Path<br />

Planning for Mobile Robots Operating in Sparse Envir<strong>on</strong>ments », IEEE<br />

Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> <strong>Robotics</strong> and Automati<strong>on</strong>, vol. 1, pp. 650-<br />

655, 1998.<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

38


References <strong>on</strong> chapter 5<br />

• R. Philippsen, R. Siegwart, « An Interpolated Dynamic Navigati<strong>on</strong><br />

Functi<strong>on</strong> », IEEE Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> <strong>Robotics</strong> and Automati<strong>on</strong>,<br />

pp. 3782-3789, 2005.<br />

• D. Fergus<strong>on</strong>, A. Stentz, « Using Interpolati<strong>on</strong> to Improve Path<br />

Planning: The Field D* Algorithm », Journal of Field <strong>Robotics</strong>, vol. 23(2),<br />

pp. 79-101, 2006.<br />

• A. Stentz, « Optimal and Efficient Path Planning for Partially-Known<br />

Envir<strong>on</strong>ment », IEEE Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> <strong>Robotics</strong> and<br />

Automati<strong>on</strong>, pp. 3310-3317, 1994.<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

39


References <strong>on</strong> chapter 6<br />

• J. A. Sethian, « Level Set <strong>Method</strong>s and <strong>Fast</strong> <strong>Marching</strong> <strong>Method</strong>s »,<br />

Cambridge University Press, 1999.<br />

• Y.-H. Tsai, L.-T. Cheng, S. Osher, P. Burchard, G. Sapiro, « Visibility and<br />

Its Dynamics in a PDE Based Implicit Framework », Journal of<br />

Computati<strong>on</strong>al Physics, vol. 199(1), pp. 260-290, 2004.<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

40


Main sources<br />

• C. Pêtrès, Y. Pailhas, P. Patr<strong>on</strong>, Y.Petillot, J. Evans, D. Lane, « Path<br />

Planning for Aut<strong>on</strong>omous Underwater Vehicles », IEEE Transacti<strong>on</strong>s <strong>on</strong><br />

<strong>Robotics</strong>, vol. 23(2), pp. 331-341, 2007.<br />

• C. Pêtrès, « Trajectory Planning for Aut<strong>on</strong>omous Underwater<br />

Vehicles », Ph.D. Thesis, Heriot-Watt University, Ocean Systems<br />

Laboratory, Edinburgh, Scotland, 2007.<br />

Webpage: http://clement.petres.googlepages.com/<br />

DTSI LIST – DTSI – Service Robotique Interactive<br />

05/02/008<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!