08.04.2013 Views

Effects of high pH on a natural marine planktonic community

Effects of high pH on a natural marine planktonic community

Effects of high pH on a natural marine planktonic community

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

20<br />

calm sunny periods, <str<strong>on</strong>g>pH</str<strong>on</strong>g> values up to 9.75 have been<br />

measured (Hansen 2002). However, equivalent values<br />

have been recorded in <strong>marine</strong> pools and smaller increases<br />

in <str<strong>on</strong>g>pH</str<strong>on</strong>g> have been measured in the surface<br />

waters <str<strong>on</strong>g>of</str<strong>on</strong>g> the North Sea, where during a Phaeocystis<br />

bloom <str<strong>on</strong>g>pH</str<strong>on</strong>g> increased from 7.9 to 8.7 (Brussaard et al.<br />

1996). The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> is quite variable; in<br />

a Portuguese coastal lago<strong>on</strong>, <str<strong>on</strong>g>pH</str<strong>on</strong>g> values above 8.5 are<br />

found all year round, whereas in rock pools and sediments,<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> can increase to 10, but <strong>on</strong>ly lasts for days<br />

or hours (Gnaiger et al. 1978, Macedo et al. 2001).<br />

An increase in <str<strong>on</strong>g>pH</str<strong>on</strong>g> in the <strong>marine</strong> envir<strong>on</strong>ment, as in<br />

freshwater, is expected to cause a change in the plankt<strong>on</strong>ic<br />

protist compositi<strong>on</strong>. The most comm<strong>on</strong> <strong>marine</strong><br />

phytoplankt<strong>on</strong> species found to co-occur with <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

in nature are the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates Heterocapsa triquetra,<br />

Prorocentrum minimum and P. micans, and the<br />

diatom Skelet<strong>on</strong>ema costatum (Macedo et al. 2001,<br />

Hansen 2002). However, many different taxa <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong><br />

phytoplankt<strong>on</strong> are found to grow at <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>. Growth<br />

experiments with m<strong>on</strong>ocultures in the laboratory have<br />

shown that some cryptophytes, diatoms, din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

and prymnesiophyte species can grow at <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

above 9, and a few species even above <str<strong>on</strong>g>pH</str<strong>on</strong>g> 10 (Goldman<br />

et al. 1982, Nimer et al. 1994, Elzenga et al. 2000,<br />

Schmidt & Hansen 2001, Hansen 2002).<br />

The knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> how heterotrophic organisms<br />

resp<strong>on</strong>d to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> is very sparse. While nothing is<br />

known about how copepods are affected by <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>,<br />

we have some knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> protozooplankt<strong>on</strong><br />

to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>. Droop (1959) found that the<br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Oxyrrhis marina is <str<strong>on</strong>g>high</str<strong>on</strong>g>ly<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant. (Pedersen & Hansen 2003, this issue)<br />

studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> 4 ciliates and 2 heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates in laboratory cultures, and<br />

found that while some species are <str<strong>on</strong>g>high</str<strong>on</strong>g>ly <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant,<br />

others are quite sensitive to elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> and cannot<br />

survive at <str<strong>on</strong>g>pH</str<strong>on</strong>g> exceeding 8.9.<br />

Due to this very limited knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the <strong>marine</strong> plankt<strong>on</strong> organisms, the aim <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this paper was to m<strong>on</strong>itor the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>natural</strong><br />

plankt<strong>on</strong>ic <strong>community</strong> (>15 µm) to different levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>, thereby evaluating the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the<br />

species successi<strong>on</strong> and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> both phototrophic<br />

and heterotrophic protists. Because nutrient limitati<strong>on</strong><br />

may affect the successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protists, this was also<br />

taken into account.<br />

MATERIALS AND METHODS<br />

Water samples were collected from the pycnocline<br />

(water depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 m) at a stati<strong>on</strong> located in the Øresund,<br />

Denmark, <strong>on</strong> August 25, 2000. The water (salinity<br />

22 psu) was collected using a Niskin water sampler, im-<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

mediately filtered through a 160 µm filter to remove<br />

large zooplankters and stored in a 25 l c<strong>on</strong>tainer. The<br />

c<strong>on</strong>tainer was brought back to the laboratory and the<br />

water was poured into 4 clear 2.8 l Nalgene ® bottles<br />

(#1 to 4). The <str<strong>on</strong>g>pH</str<strong>on</strong>g> was elevated from the original 7.95 to<br />

8.0 (#1), 8.5 (#2), 9.0 (#3) and 9.5 (#4) by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1<br />

and 1 M NaOH. For <str<strong>on</strong>g>pH</str<strong>on</strong>g> measurements, a Sentr<strong>on</strong> ®<br />

2001 <str<strong>on</strong>g>pH</str<strong>on</strong>g> meter with a Red Line electrode, sensitivity<br />

0.01, and a 2 point calibrati<strong>on</strong> was used. To minimise<br />

the shock effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>, the <str<strong>on</strong>g>pH</str<strong>on</strong>g> was raised by levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 units at 12 h intervals until the final value was<br />

reached. The bottles were mounted <strong>on</strong> a plankt<strong>on</strong><br />

wheel (1 rpm) and incubated for 14 d at 15 ± 1°C <strong>on</strong> a<br />

16:8 h light:dark cycle at an irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 µE m –2 s –1 .<br />

The first sampling was carried out after 24 h; subsequent<br />

samplings were d<strong>on</strong>e every sec<strong>on</strong>d or third day<br />

during the next 14 d.<br />

At each sampling occasi<strong>on</strong>, the temperature and <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

were m<strong>on</strong>itored and the <str<strong>on</strong>g>pH</str<strong>on</strong>g> adjusted. A total water<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 ml was removed; the water was used for<br />

nutrient (3 × 30 ml) and chlorophyll a analyses (chl a;<br />

65 to 95 ml) as well as enumerati<strong>on</strong> and identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protists and copepods (105 to 135 ml was fixed in<br />

acidic Lugol’s iodine [final c<strong>on</strong>centrati<strong>on</strong> 1%] and kept<br />

in the dark and cold until examinati<strong>on</strong>). After sampling,<br />

the bottles were refilled with GF/C-filtered<br />

seawater (taken at the same locati<strong>on</strong> and time as the<br />

experimental water) and adjusted to the given <str<strong>on</strong>g>pH</str<strong>on</strong>g>,<br />

within <str<strong>on</strong>g>pH</str<strong>on</strong>g> 0.01 <str<strong>on</strong>g>of</str<strong>on</strong>g> the given value, before they were<br />

remounted <strong>on</strong> the plankt<strong>on</strong> wheel.<br />

Inorganic nutrients (NO 3 – , NO2 – , NH4 + , PO4 2– , SiO4 – )<br />

were analysed at the Nati<strong>on</strong>al Envir<strong>on</strong>mental Research<br />

Institute, Roskilde, Denmark (Grassh<str<strong>on</strong>g>of</str<strong>on</strong>g>f 1976). Chl a<br />

was measured in triplicate by filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 to 30 ml<br />

samples <strong>on</strong>to GF/C filters immediately after sampling.<br />

Filters were then extracted in 96% ethanol in the<br />

freezer overnight, and the next day centrifuged at<br />

1000 × g for 5 min before the fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

supernatant was measured with a Turner‚ TD-700<br />

Laboratory Fluorometer.<br />

Lugol-fixed samples for enumerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protists<br />

were, depending <strong>on</strong> cell c<strong>on</strong>centrati<strong>on</strong>s, poured in<br />

triplicates into 10 or 25 ml sedimentati<strong>on</strong> chambers.<br />

The dominant taxa (species or groups <str<strong>on</strong>g>of</str<strong>on</strong>g> species)<br />

were identified and enumerated using an inverted<br />

Olympus ® microscope at a magnificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 to<br />

400×, thereby focussing <strong>on</strong> protists >15 µm. Diatoms,<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates and ciliates dominated the samples and<br />

were identified using Dodge (1985), Hansen & Larsen<br />

(1992), Tomas (1996) and S<strong>on</strong>g et al. (1999). Diatoms<br />

and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates that have chloroplasts <str<strong>on</strong>g>of</str<strong>on</strong>g> their own<br />

were grouped as ‘phytoplankt<strong>on</strong>’. Ciliates and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

that do not have their own chloroplasts<br />

were grouped as ‘protozooplankt<strong>on</strong>’, even though<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> them may c<strong>on</strong>tain functi<strong>on</strong>al chloroplasts.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!