08.04.2013 Views

Effects of high pH on a natural marine planktonic community

Effects of high pH on a natural marine planktonic community

Effects of high pH on a natural marine planktonic community

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MARINE ECOLOGY PROGRESS SERIES<br />

Vol. 260: 19–31, 2003 Published September 30<br />

Mar Ecol Prog Ser<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a <strong>natural</strong> <strong>marine</strong> plankt<strong>on</strong>ic<br />

<strong>community</strong><br />

INTRODUCTION<br />

Marine waters have traditi<strong>on</strong>ally been c<strong>on</strong>sidered a<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>-stable envir<strong>on</strong>ment with a <str<strong>on</strong>g>pH</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 ± 0.5, due<br />

to the <str<strong>on</strong>g>high</str<strong>on</strong>g> buffer capacity found here (e.g. Hinga<br />

1992, 2002). This point <str<strong>on</strong>g>of</str<strong>on</strong>g> view is exemplified by a<br />

quote from Barker (1935b) who wrote: ‘Din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

are by no means as sensitive to small changes in <str<strong>on</strong>g>pH</str<strong>on</strong>g> as<br />

expected for organisms accustomed to such c<strong>on</strong>stant<br />

an envir<strong>on</strong>ment as the ocean’. C<strong>on</strong>sequently, effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> <strong>marine</strong> plankt<strong>on</strong>ic protists are not well documented;<br />

especially studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong><br />

heterotrophic protists are sparse. This is in c<strong>on</strong>trast<br />

to freshwater ecology where the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> as a<br />

*Corresp<strong>on</strong>ding author. Email: pjhansen@zi.ku.dk<br />

Maria Fenger Pedersen, Per Juel Hansen*<br />

Marine Biological Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark<br />

ABSTRACT: A <strong>natural</strong> plankt<strong>on</strong>ic <strong>community</strong> was incubated for 2 wk to study its resp<strong>on</strong>se to different<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>, ranging from 8 to 9.5. A general increase in phytoplankt<strong>on</strong> biomass was observed<br />

over time in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the phytoplankt<strong>on</strong> biomass<br />

decreased close to detecti<strong>on</strong> limit during the first week; however, at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment,<br />

the initial biomass level was regained. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s, the diatoms Cerataulina<br />

pelagica, Cylindrotheca closterium and Leptocylindrus minimus became numerous, whereas in the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s, C. closterium solely made up the diatom biomass at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

experiment. Photosynthetic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates <str<strong>on</strong>g>of</str<strong>on</strong>g> the genus Ceratium, which were initially abundant, did<br />

not grow well in any <str<strong>on</strong>g>of</str<strong>on</strong>g> the incubati<strong>on</strong>s, probably due to the low nutrient c<strong>on</strong>centrati<strong>on</strong>s. The protozooplankt<strong>on</strong><br />

biomass increased over time in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the<br />

protozooplankt<strong>on</strong> biomass decreased close to detecti<strong>on</strong> limit during the first 3 d <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment<br />

and stayed at that level until the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. The biomass increase found in the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s was due to an increase in the number <str<strong>on</strong>g>of</str<strong>on</strong>g> ciliates, because the heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate number remained almost c<strong>on</strong>stant. Most protozooplankt<strong>on</strong> species incubated at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

died; however, the ciliate Myri<strong>on</strong>ecta rubra survived at almost the same cell number as in the lower<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s. Overall a species successi<strong>on</strong> occurred am<strong>on</strong>g both phototrophic and heterotrophic<br />

protists when <str<strong>on</strong>g>pH</str<strong>on</strong>g> approached 9. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> different protist taxa was<br />

reduced from 34 at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment to 10 at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. In c<strong>on</strong>clusi<strong>on</strong>,<br />

our study indicates that elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> (>9) in nature will affect the entire plankt<strong>on</strong> <strong>community</strong><br />

mainly by reducing the species richness and by favouring algal blooms due to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing.<br />

KEY WORDS: High <str<strong>on</strong>g>pH</str<strong>on</strong>g> · Plankt<strong>on</strong>ic protists · Ciliates · Diatoms · Din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates · Cylindrotheca<br />

closterium · Copepods<br />

Resale or republicati<strong>on</strong> not permitted without written c<strong>on</strong>sent <str<strong>on</strong>g>of</str<strong>on</strong>g> the publisher<br />

forcing factor has been c<strong>on</strong>sidered for decades. Models<br />

for estimating lake <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>pH</str<strong>on</strong>g> optima <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the diatom species present in the lake even have been<br />

made (ter Braak & van Dam 1989).<br />

The view <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>marine</strong> envir<strong>on</strong>ment as c<strong>on</strong>stant with<br />

respect to <str<strong>on</strong>g>pH</str<strong>on</strong>g> fluctuati<strong>on</strong>s has changed recently. This is<br />

mainly due to the anthropogenic nutrient enrichment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many coastal areas, causing phytoplankt<strong>on</strong> blooms,<br />

and thereby <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> values in places like bays,<br />

lago<strong>on</strong>s, salt p<strong>on</strong>ds and tidal pools (e.g. Droop 1959,<br />

Santhanam 1994, Macedo et al. 2001). The bestinvestigated<br />

locati<strong>on</strong> in Denmark where <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> is<br />

found is Mariager Fjord. During the last 10 yr, the average<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> value during summers has been 8.8, but during<br />

© Inter-Research 2003 · www.int-res.com


20<br />

calm sunny periods, <str<strong>on</strong>g>pH</str<strong>on</strong>g> values up to 9.75 have been<br />

measured (Hansen 2002). However, equivalent values<br />

have been recorded in <strong>marine</strong> pools and smaller increases<br />

in <str<strong>on</strong>g>pH</str<strong>on</strong>g> have been measured in the surface<br />

waters <str<strong>on</strong>g>of</str<strong>on</strong>g> the North Sea, where during a Phaeocystis<br />

bloom <str<strong>on</strong>g>pH</str<strong>on</strong>g> increased from 7.9 to 8.7 (Brussaard et al.<br />

1996). The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> is quite variable; in<br />

a Portuguese coastal lago<strong>on</strong>, <str<strong>on</strong>g>pH</str<strong>on</strong>g> values above 8.5 are<br />

found all year round, whereas in rock pools and sediments,<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> can increase to 10, but <strong>on</strong>ly lasts for days<br />

or hours (Gnaiger et al. 1978, Macedo et al. 2001).<br />

An increase in <str<strong>on</strong>g>pH</str<strong>on</strong>g> in the <strong>marine</strong> envir<strong>on</strong>ment, as in<br />

freshwater, is expected to cause a change in the plankt<strong>on</strong>ic<br />

protist compositi<strong>on</strong>. The most comm<strong>on</strong> <strong>marine</strong><br />

phytoplankt<strong>on</strong> species found to co-occur with <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

in nature are the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates Heterocapsa triquetra,<br />

Prorocentrum minimum and P. micans, and the<br />

diatom Skelet<strong>on</strong>ema costatum (Macedo et al. 2001,<br />

Hansen 2002). However, many different taxa <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong><br />

phytoplankt<strong>on</strong> are found to grow at <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>. Growth<br />

experiments with m<strong>on</strong>ocultures in the laboratory have<br />

shown that some cryptophytes, diatoms, din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

and prymnesiophyte species can grow at <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

above 9, and a few species even above <str<strong>on</strong>g>pH</str<strong>on</strong>g> 10 (Goldman<br />

et al. 1982, Nimer et al. 1994, Elzenga et al. 2000,<br />

Schmidt & Hansen 2001, Hansen 2002).<br />

The knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> how heterotrophic organisms<br />

resp<strong>on</strong>d to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> is very sparse. While nothing is<br />

known about how copepods are affected by <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>,<br />

we have some knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> protozooplankt<strong>on</strong><br />

to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>. Droop (1959) found that the<br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Oxyrrhis marina is <str<strong>on</strong>g>high</str<strong>on</strong>g>ly<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant. (Pedersen & Hansen 2003, this issue)<br />

studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> 4 ciliates and 2 heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates in laboratory cultures, and<br />

found that while some species are <str<strong>on</strong>g>high</str<strong>on</strong>g>ly <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant,<br />

others are quite sensitive to elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> and cannot<br />

survive at <str<strong>on</strong>g>pH</str<strong>on</strong>g> exceeding 8.9.<br />

Due to this very limited knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the <strong>marine</strong> plankt<strong>on</strong> organisms, the aim <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this paper was to m<strong>on</strong>itor the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>natural</strong><br />

plankt<strong>on</strong>ic <strong>community</strong> (>15 µm) to different levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>, thereby evaluating the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the<br />

species successi<strong>on</strong> and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> both phototrophic<br />

and heterotrophic protists. Because nutrient limitati<strong>on</strong><br />

may affect the successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protists, this was also<br />

taken into account.<br />

MATERIALS AND METHODS<br />

Water samples were collected from the pycnocline<br />

(water depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 m) at a stati<strong>on</strong> located in the Øresund,<br />

Denmark, <strong>on</strong> August 25, 2000. The water (salinity<br />

22 psu) was collected using a Niskin water sampler, im-<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

mediately filtered through a 160 µm filter to remove<br />

large zooplankters and stored in a 25 l c<strong>on</strong>tainer. The<br />

c<strong>on</strong>tainer was brought back to the laboratory and the<br />

water was poured into 4 clear 2.8 l Nalgene ® bottles<br />

(#1 to 4). The <str<strong>on</strong>g>pH</str<strong>on</strong>g> was elevated from the original 7.95 to<br />

8.0 (#1), 8.5 (#2), 9.0 (#3) and 9.5 (#4) by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1<br />

and 1 M NaOH. For <str<strong>on</strong>g>pH</str<strong>on</strong>g> measurements, a Sentr<strong>on</strong> ®<br />

2001 <str<strong>on</strong>g>pH</str<strong>on</strong>g> meter with a Red Line electrode, sensitivity<br />

0.01, and a 2 point calibrati<strong>on</strong> was used. To minimise<br />

the shock effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>, the <str<strong>on</strong>g>pH</str<strong>on</strong>g> was raised by levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 units at 12 h intervals until the final value was<br />

reached. The bottles were mounted <strong>on</strong> a plankt<strong>on</strong><br />

wheel (1 rpm) and incubated for 14 d at 15 ± 1°C <strong>on</strong> a<br />

16:8 h light:dark cycle at an irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 µE m –2 s –1 .<br />

The first sampling was carried out after 24 h; subsequent<br />

samplings were d<strong>on</strong>e every sec<strong>on</strong>d or third day<br />

during the next 14 d.<br />

At each sampling occasi<strong>on</strong>, the temperature and <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

were m<strong>on</strong>itored and the <str<strong>on</strong>g>pH</str<strong>on</strong>g> adjusted. A total water<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 ml was removed; the water was used for<br />

nutrient (3 × 30 ml) and chlorophyll a analyses (chl a;<br />

65 to 95 ml) as well as enumerati<strong>on</strong> and identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protists and copepods (105 to 135 ml was fixed in<br />

acidic Lugol’s iodine [final c<strong>on</strong>centrati<strong>on</strong> 1%] and kept<br />

in the dark and cold until examinati<strong>on</strong>). After sampling,<br />

the bottles were refilled with GF/C-filtered<br />

seawater (taken at the same locati<strong>on</strong> and time as the<br />

experimental water) and adjusted to the given <str<strong>on</strong>g>pH</str<strong>on</strong>g>,<br />

within <str<strong>on</strong>g>pH</str<strong>on</strong>g> 0.01 <str<strong>on</strong>g>of</str<strong>on</strong>g> the given value, before they were<br />

remounted <strong>on</strong> the plankt<strong>on</strong> wheel.<br />

Inorganic nutrients (NO 3 – , NO2 – , NH4 + , PO4 2– , SiO4 – )<br />

were analysed at the Nati<strong>on</strong>al Envir<strong>on</strong>mental Research<br />

Institute, Roskilde, Denmark (Grassh<str<strong>on</strong>g>of</str<strong>on</strong>g>f 1976). Chl a<br />

was measured in triplicate by filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 to 30 ml<br />

samples <strong>on</strong>to GF/C filters immediately after sampling.<br />

Filters were then extracted in 96% ethanol in the<br />

freezer overnight, and the next day centrifuged at<br />

1000 × g for 5 min before the fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

supernatant was measured with a Turner‚ TD-700<br />

Laboratory Fluorometer.<br />

Lugol-fixed samples for enumerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protists<br />

were, depending <strong>on</strong> cell c<strong>on</strong>centrati<strong>on</strong>s, poured in<br />

triplicates into 10 or 25 ml sedimentati<strong>on</strong> chambers.<br />

The dominant taxa (species or groups <str<strong>on</strong>g>of</str<strong>on</strong>g> species)<br />

were identified and enumerated using an inverted<br />

Olympus ® microscope at a magnificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 to<br />

400×, thereby focussing <strong>on</strong> protists >15 µm. Diatoms,<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates and ciliates dominated the samples and<br />

were identified using Dodge (1985), Hansen & Larsen<br />

(1992), Tomas (1996) and S<strong>on</strong>g et al. (1999). Diatoms<br />

and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates that have chloroplasts <str<strong>on</strong>g>of</str<strong>on</strong>g> their own<br />

were grouped as ‘phytoplankt<strong>on</strong>’. Ciliates and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

that do not have their own chloroplasts<br />

were grouped as ‘protozooplankt<strong>on</strong>’, even though<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> them may c<strong>on</strong>tain functi<strong>on</strong>al chloroplasts.


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

The dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 cells <str<strong>on</strong>g>of</str<strong>on</strong>g> each taxa were measured<br />

and cell volumes were estimated from linear<br />

dimensi<strong>on</strong>s using simple volumetric formulae. Cellular<br />

carb<strong>on</strong> c<strong>on</strong>tent was then calculated using the following<br />

equati<strong>on</strong>s (Menden-Deuer & Lessard 2000) where V is<br />

the cell volume:<br />

Din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates: pgC cell –1 = 0.760 × V 0.819<br />

Diatoms >3000 µm 3 : pgC cell –1 = 0.288 × V 0.811<br />

Other protists: pgC cell –1 = 0.216 × V 0.939<br />

Although the water was pre-screened through a<br />

plankt<strong>on</strong> net (mesh size 160 µm), some developmental<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> small copepods passed the filter. To evaluate<br />

their grazing impact <strong>on</strong> the protist <strong>community</strong>, the<br />

copepods were identified to species and developmental<br />

stage to estimate the clearance rate <strong>on</strong> potential<br />

prey examined in this paper. Enumerati<strong>on</strong> and identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> copepods in some <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lugol-fixed samples<br />

was c<strong>on</strong>ducted using a dissecti<strong>on</strong> microscope. The<br />

prosome length <str<strong>on</strong>g>of</str<strong>on</strong>g> each species was used for identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the developmental stages. The maximum clearance<br />

was estimated for copepods using the equati<strong>on</strong>s<br />

given in Hansen et al. 1997 and taking size into c<strong>on</strong>siderati<strong>on</strong>.<br />

RESULTS<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> and inorganic nutrients<br />

The <str<strong>on</strong>g>pH</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>natural</strong> seawater samples was adjusted to<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 8, 8.5, 9 and 9.5 respectively, and kept stable by<br />

adjustments at each sampling occasi<strong>on</strong> (Fig. 1). The<br />

incubati<strong>on</strong>s with <str<strong>on</strong>g>pH</str<strong>on</strong>g> levels between 8 and 9 showed a<br />

maximum reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 <str<strong>on</strong>g>pH</str<strong>on</strong>g> units between sampling<br />

days. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 treatment, however, a reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 <str<strong>on</strong>g>pH</str<strong>on</strong>g> units occurred between samplings, with<br />

1 excepti<strong>on</strong> at Day 7, where the reducti<strong>on</strong> was 0.5 <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

units. The nutrient c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NH 4 + , NO3 – ,<br />

NO 2 – and PO4 2– (Fig. 2) remained at the initial level in<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s, with a slight decrease<br />

towards the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. However, while<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> experienced an increase in<br />

inorganic nutrients from the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment to<br />

the end, an excepti<strong>on</strong> was found for PO 4 2– , which<br />

decreased to the detecti<strong>on</strong> limit after Day 3. The c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SiO 4 – in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s<br />

remained at a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 to 6 µM throughout<br />

the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment (Fig. 2). In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

incubati<strong>on</strong>, the SiO 4 – c<strong>on</strong>centrati<strong>on</strong> increased to a<br />

maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.5 µM at Day 7, whereafter it<br />

decreased to reach 9 µM at Day 14. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

incubati<strong>on</strong>, the SiO 4 – kept increasing throughout the<br />

experiment to reach a maximum c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

31 µM at Day 14.<br />

Fig. 1. <str<strong>on</strong>g>pH</str<strong>on</strong>g> fluctuati<strong>on</strong>s in the experimental bottles during the<br />

2 wk incubati<strong>on</strong>s. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

9.5. <str<strong>on</strong>g>pH</str<strong>on</strong>g> was adjusted at each sampling date to keep the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> c<strong>on</strong>stant<br />

The plankt<strong>on</strong>ic <strong>community</strong><br />

Phytoplankt<strong>on</strong><br />

The phytoplankt<strong>on</strong> <strong>community</strong> was quantified in<br />

bulk using both chl a measurements and direct cell<br />

counts. The initial chl a c<strong>on</strong>centrati<strong>on</strong> was 2.4 µg l –1 in<br />

all treatments (Fig. 3A). In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s,<br />

the chl a c<strong>on</strong>centrati<strong>on</strong> increased 2- to 3-fold during<br />

the first 10 d. During the next 4 d, the chl a c<strong>on</strong>centrati<strong>on</strong><br />

stabilised in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s, whereas<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong> experienced a further 3-fold<br />

increase. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the chl a c<strong>on</strong>centrati<strong>on</strong><br />

declined more than 90% from Day 0 to 7. However,<br />

at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, the initial<br />

chl a c<strong>on</strong>centrati<strong>on</strong> was almost regained.<br />

The phytoplankt<strong>on</strong> biomass (estimated from direct<br />

counts) was initially 53 µg C l –1 (Fig. 3B). A general<br />

increase in biomass was observed in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and<br />

8.5 incubati<strong>on</strong>s, increasing 3- and 14-fold, respectively.<br />

In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>, no increase was observed<br />

during the first week; however, during the last<br />

week, the biomass increased to reach the same level as<br />

found in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5 incubati<strong>on</strong>. Unlike the other incubati<strong>on</strong>s,<br />

a significant decrease was observed in the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> during the first week. However, during<br />

the following week an increase to almost the initial<br />

biomass occurred.<br />

The focus <str<strong>on</strong>g>of</str<strong>on</strong>g> the phytoplankt<strong>on</strong> group was <strong>on</strong><br />

diatoms and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates because they were the<br />

most dominant classes in the present experiment<br />

(Fig. 3C,D). At the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the incubati<strong>on</strong>s, the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

dominated the phytoplankt<strong>on</strong> <strong>community</strong>.<br />

However, during the 2 wk incubati<strong>on</strong>, the relative<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> diatoms increased at all <str<strong>on</strong>g>pH</str<strong>on</strong>g> levels and<br />

they became dominant. At <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5, the diatoms<br />

21


22<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

Fig. 2. Fluctuati<strong>on</strong>s in nutrient<br />

c<strong>on</strong>centrati<strong>on</strong>s measured during<br />

the 2 wk experimental period.<br />

(A) NH 4 + , (B) SiO4 – , (C) NO3 – +<br />

NO 2 – , (D) PO4 2– . (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j)<str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5.<br />

Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates<br />

± SE<br />

Fig. 3. Phytoplankt<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s<br />

in the 4 incubati<strong>on</strong>s<br />

during the 2 wk experimental<br />

period. (A) Chlorophyll a,<br />

(B) phytoplankt<strong>on</strong> biomass<br />

(µg C l –1 ), (C) diatom biomass,<br />

(D) phototrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate<br />

biomass. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0;<br />

(j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

9.5. Symbols represent means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

grew throughout the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment,<br />

whereas the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates <strong>on</strong>ly grew for the first 3 d.<br />

At <str<strong>on</strong>g>high</str<strong>on</strong>g>er <str<strong>on</strong>g>pH</str<strong>on</strong>g>, the biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> both diatoms and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

either remained c<strong>on</strong>stant or declined during<br />

the first week <str<strong>on</strong>g>of</str<strong>on</strong>g> the incubati<strong>on</strong>, and <strong>on</strong>ly growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diatoms was observed during the sec<strong>on</strong>d week <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

incubati<strong>on</strong>s.<br />

The successi<strong>on</strong> am<strong>on</strong>g the species within the studied<br />

phytoplankt<strong>on</strong> groups varied according to the <str<strong>on</strong>g>pH</str<strong>on</strong>g> level<br />

(Figs. 4 & 5). The 2 lowest <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s, <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and<br />

8.5, experienced almost no successi<strong>on</strong> am<strong>on</strong>g species.<br />

Here, all the identified species were present throughout<br />

the experimental period.<br />

In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, a pr<strong>on</strong>ounced successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species occurred during the incubati<strong>on</strong> period. At the<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, Cylindrotheca closterium was<br />

the <strong>on</strong>ly species am<strong>on</strong>g the diatoms that thrived. Its<br />

growth rate at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 was similar to the growth rates<br />

obtained in the lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s (Fig. 4, Table 1).<br />

Am<strong>on</strong>g the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates, Prorocentrum micans, P.<br />

minimum and Heterocapsa triquetra all survived at<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5, whereas the initial dominant species, Ceratium<br />

furca, C. fusus and C. tripos, died out (Fig. 5).<br />

In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>, the successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species was<br />

less pr<strong>on</strong>ounced, and <strong>on</strong>ly a few species died out. It<br />

was interesting to note however that some species<br />

apparently grew faster in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong> compared<br />

to in the incubati<strong>on</strong>s at lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> (Figs. 4 & 5).<br />

Protozooplankt<strong>on</strong><br />

At the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, the protozooplankt<strong>on</strong><br />

biomass was 20 µg C l –1 in all incubati<strong>on</strong>s (Fig. 6A). In<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8, 8.5 and 9 incubati<strong>on</strong>s, a general increase in<br />

biomass was found over time. An 8-fold increase in<br />

biomass was observed at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment<br />

in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 9 incubati<strong>on</strong>s, whereas <strong>on</strong>ly a<br />

3-fold increase in biomass was found in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5<br />

incubati<strong>on</strong>. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, the biomass<br />

decreased about 5-fold during the first 3 d and stayed<br />

at that level until the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment.<br />

The increase in biomass in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8, 8.5 and 9 incubati<strong>on</strong>s<br />

was mainly caused by ciliates, because the<br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates were found to be relatively<br />

c<strong>on</strong>stant throughout the experiment. In the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, both ciliates and heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates declined in biomass throughout the<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment (Fig. 6B,C).<br />

The successi<strong>on</strong> am<strong>on</strong>g the species within the studied<br />

protozooplankt<strong>on</strong> groups varied according to the <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

level (Figs. 7 & 8). The 2 lowest <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s, <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8<br />

and 8.5, experienced almost no successi<strong>on</strong> am<strong>on</strong>g<br />

species. Here, all the identified species were present<br />

throughout the experimental period. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

Fig. 4. Cell c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some selected diatoms in the 4 incubati<strong>on</strong>s<br />

during the 2 wk experimental period. (A) Cylindrotheca<br />

closterium, (B) Cerataulina pelagica, (C) Leptocylindrus<br />

minimus. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5.<br />

Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE<br />

incubati<strong>on</strong>, some species died out, whereas the remaining<br />

species were alive at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

experiment. However, unlike in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the phytoplankt<strong>on</strong>,<br />

n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the protozooplankt<strong>on</strong> species took<br />

over.<br />

In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>, the successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species was<br />

less pr<strong>on</strong>ounced, and <strong>on</strong>ly a few species died out<br />

(Figs. 7 & 8). It was interesting to note however that<br />

some ciliate species apparently grew faster in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

incubati<strong>on</strong> compared to in the incubati<strong>on</strong>s at lower <str<strong>on</strong>g>pH</str<strong>on</strong>g>.<br />

23


24<br />

Copepods<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers, the copepod <strong>community</strong> in the<br />

incubati<strong>on</strong>s c<strong>on</strong>sisted mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> small Oith<strong>on</strong>a spp.<br />

and <strong>on</strong>ly a few much larger copepods <str<strong>on</strong>g>of</str<strong>on</strong>g> the genera<br />

Pseudo-/Paracalanus spp. were found in the sample<br />

volumes studied. At the initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, a<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 84 copepods per litre were found,<br />

including all developmental stages. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 incubati<strong>on</strong>,<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> copepods increased slightly<br />

during the experimental period, whereas a slight<br />

decrease was found at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5. No copepods were<br />

found in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s after Days 5<br />

and 0, respectively (data not shown). Thus, the aver-<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

Fig. 5. Cell c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> selected phototrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates in the 4 incubati<strong>on</strong>s during the 2 wk experimental period.<br />

(A) Prorocentrum micans, (B) P. minimum, (C) Heterocapsa triquetra, (D) Ceratium tripos, (E) Ceratium furca, (F) C. fusus.<br />

(y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0; (m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5. Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE<br />

Table 1. Cylindrotheca closterium. Growth rate (d –1 ) for the<br />

incubati<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0, 8.5, 9.0 and 9.5<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> Growth rate (d –1 )<br />

Days 0 to 7 Days 7 to 14 Days 0 to 14<br />

8.0 0.54 ± 0.07 0.53 ± 0.05 0.54 ± 0.05<br />

8.5 0.62 ± 0.09 0.56 ± 0.003 0.56 ± 0.04<br />

9.0 0.65 ± 0.07 0.97 ± 0.04 0.81 ± 0.02<br />

9.5 0.48 ± 0.06 0.93 ± 0.04 0.70 ± 0.05<br />

age length and total calculated biomass increased<br />

over time <strong>on</strong>ly in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s (Figs. 9<br />

& 10).<br />

The calculated maximum clearance for the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and<br />

8.5 incubati<strong>on</strong>s revealed that about 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> the water<br />

was cleared daily at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. C<strong>on</strong>siderable<br />

variati<strong>on</strong> in calculated clearance was found<br />

and no c<strong>on</strong>sistent increase was observed during the<br />

experiment, probably due to the small sample sizes<br />

used. However, taking all data <strong>on</strong> clearance from the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s into c<strong>on</strong>siderati<strong>on</strong>, the maximum<br />

and the average rate corresp<strong>on</strong>ded to a removal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 38 and 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> the prey populati<strong>on</strong>s per day,<br />

respectively (Table 2).<br />

DISCUSSION<br />

How did elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> affect the phytoplankt<strong>on</strong><br />

<strong>community</strong>?<br />

The phytoplankt<strong>on</strong> communities incubated at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

and 9.5 clearly developed differently from those<br />

incubated at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5, with the most pr<strong>on</strong>ounced<br />

differences found at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 (Fig. 3). In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incu-


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

bati<strong>on</strong>, a 75% decline in total phytoplankt<strong>on</strong> biomass<br />

occurred during the first week. However, the effect<br />

was <strong>on</strong>ly transient, because the phytoplankt<strong>on</strong> biomass<br />

increased again during the sec<strong>on</strong>d week <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong><br />

to 2 /3 <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial phytoplankt<strong>on</strong> biomass. The<br />

reas<strong>on</strong> for this reducti<strong>on</strong> in biomass was that some species<br />

declined in numbers or totally disappeared (Figs. 4<br />

& 5). This resulted in a decline in the total number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algal taxa from 21 at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment to a<br />

total <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 5 at the terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment,<br />

with <strong>on</strong>ly 1 species making up for 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> the algal<br />

biomass (Figs. 3, 4 & 11).<br />

How do these results compare with laboratory data<br />

<strong>on</strong> single species? In a recent review, Hansen (2002)<br />

found that in laboratory cultures, <strong>on</strong>ly 7 out <str<strong>on</strong>g>of</str<strong>on</strong>g> a total <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

35 phytoplankt<strong>on</strong> species were able to grow at <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

exceeding 9.5. Am<strong>on</strong>g species that had the capability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> growing at <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> were the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates Prorocentrum<br />

minimum and P. micans, which also were<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>es growing in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> in<br />

the present experiment. Likewise, some <str<strong>on</strong>g>of</str<strong>on</strong>g> the species<br />

which during the incubati<strong>on</strong> period disappeared or<br />

decreased in numbers in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s<br />

have been reported to be unable to grow at this <str<strong>on</strong>g>high</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g>. This is for instance the case for Ceratium tripos<br />

and C. lineatum, which are known for their sensitivity<br />

to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>, being unable to grow at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.4 and 8.7,<br />

respectively. The diatom Cylindrotheca closterium was<br />

the <strong>on</strong>ly species found to obtain a <str<strong>on</strong>g>high</str<strong>on</strong>g> growth rate in<br />

the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> (Fig. 4, Table 1). This diatom is<br />

known as a <str<strong>on</strong>g>high</str<strong>on</strong>g>ly <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant species, which is able to<br />

sustain maximum growth up to <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.2 in laboratory<br />

cultures (Barker 1935a, Grant et al. 1967, Humphrey &<br />

Subba Rao 1967). Thus, in c<strong>on</strong>clusi<strong>on</strong>, there is good<br />

accordance between the observati<strong>on</strong>s made in the present<br />

study and the literature found <strong>on</strong> laboratory experiments<br />

c<strong>on</strong>cerning <str<strong>on</strong>g>pH</str<strong>on</strong>g> tolerances <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>.<br />

How did elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> affect the heterotrophic<br />

<strong>community</strong>?<br />

Elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> had a marked effect <strong>on</strong> both the protozooplankt<strong>on</strong><br />

and the copepod <strong>community</strong>. In the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

and 9.5 incubati<strong>on</strong>s, the development in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

biomass and species compositi<strong>on</strong> differed from the<br />

lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s. Many protozooplankt<strong>on</strong> survived<br />

and even grew in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>, whereas <strong>on</strong>ly a<br />

few species survived the 2 wk exposure to <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

(Figs. 6 & 9). N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the copepod species was found to<br />

survive in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s for more than<br />

5 and 1 d, respectively, indicating that copepods are<br />

more sensitive to <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> than protozooplankt<strong>on</strong>.<br />

Our knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> how elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> affects the<br />

growth and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong> protozooplankt<strong>on</strong> and<br />

Fig. 6. C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> protozooplankt<strong>on</strong> in the 4 incubati<strong>on</strong>s<br />

during the 2 wk experimental period. (A) Total protozooplankt<strong>on</strong><br />

biomass, (B) ciliate biomass, (C) heterotrophic<br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates biomass. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0;<br />

(m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5. Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE<br />

copepods is limited to a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> laboratory studies <strong>on</strong><br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates and ciliates (Droop 1959,<br />

Pedersen & Hansen 2003). In these studies, it was<br />

found that the heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Oxyrrhis<br />

marina and the prostomatid ciliate Balani<strong>on</strong> comatum<br />

both were able to grow quite fast at a <str<strong>on</strong>g>pH</str<strong>on</strong>g> above 9.5,<br />

whereas the din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates Gyrodinium dominans and<br />

the ciliates Rimostrombidium caudatum, R. veniliae<br />

and Favella ehrenbergii had <str<strong>on</strong>g>pH</str<strong>on</strong>g> growth limits ranging<br />

25


26<br />

from 8.8 to 9.3. When these organisms were exposed to<br />

<str<strong>on</strong>g>high</str<strong>on</strong>g>er <str<strong>on</strong>g>pH</str<strong>on</strong>g>, they died out. Thus, the data we obtained<br />

from the incubati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> field samples are not in c<strong>on</strong>flict<br />

with the laboratory results and they point to the fact<br />

that elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> may cause species successi<strong>on</strong> am<strong>on</strong>g<br />

heterotrophic organisms. The fact that we did not find<br />

any protozooplankt<strong>on</strong> or copepod species that could<br />

resp<strong>on</strong>d to the increase in algal biomass in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

incubati<strong>on</strong> suggests that <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> may result in a<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total grazing pressure <strong>on</strong> the <strong>natural</strong><br />

phytoplankt<strong>on</strong> <strong>community</strong>.<br />

Nutrient limitati<strong>on</strong> and grazing effects<br />

The growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the large-celled phototrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

(e.g. Ceratium spp.) stopped after 3 d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incubati<strong>on</strong> in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 experiments, whereas<br />

small-celled phototrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates and diatoms<br />

were able to grow throughout the experiment (Fig. 5).<br />

Thus, these large din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates were either subjected<br />

to a heavy grazing pressure or became nutrientlimited.<br />

Substantial grazing by the dominating copepods<br />

(cyclopoids) and ciliates <strong>on</strong> Ceratium spp. seems<br />

unlikely, simply because they cannot handle them<br />

(Hansen et al. 1994, Nielsen & Kiørboe 1994). In the<br />

present study, the <strong>on</strong>ly potential grazers <strong>on</strong> the Ceratium<br />

spp. were the heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates,<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

especially the Protoperidinium spp. (Hansen 1991,<br />

Buskey 1997, Naustvoll 2000), but their growth also<br />

stopped in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 experiments after 3 d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incubati<strong>on</strong>, indicating a very limited grazing pressure<br />

(Fig. 8).<br />

The initial c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic nitrogen and<br />

phosphorus in the water in the present experiments<br />

were quite low, but close to Redfield’s ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> N:P 16:1.<br />

At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments, this ratio had changed<br />

towards a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 5:1 in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 to 9 incubati<strong>on</strong>s, suggesting<br />

an inorganic nitrogen limitati<strong>on</strong>. It is well<br />

known that smaller cells have lower half-saturati<strong>on</strong><br />

c<strong>on</strong>stants for nutrient uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic nitrogen<br />

than large cells (e.g. Hein et al. 1995). This indicates<br />

that the most likely explanati<strong>on</strong> for the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ceratium spp. was nutrient limitati<strong>on</strong>, and that<br />

this apparently also affected their predators (see Lynn<br />

et al. 2000).<br />

The <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> differed in respect to inorganic<br />

nutrient c<strong>on</strong>centrati<strong>on</strong> from the other incubati<strong>on</strong>s<br />

(Fig. 2). At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, the NH 4 + c<strong>on</strong>centrati<strong>on</strong><br />

had increased 2- to 3-fold, whereas the phosphate<br />

c<strong>on</strong>centrati<strong>on</strong> had decreased to almost detecti<strong>on</strong><br />

level. The reas<strong>on</strong> for the rapid increase in NH 4 + is<br />

undoubtedly due to a quick remineralisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dead<br />

organisms, whereas the decrease in inorganic phosphorus<br />

is due to the much lower solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic<br />

phosphorus at very <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> (Otsuki & Wetzel 1972,<br />

Fig. 7. Cell c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> selected<br />

ciliates in the 4 incubati<strong>on</strong>s during the<br />

2 wk experimental period. (A) Strombidium/Strobilidium<br />

spp. 50 µm, (C) Strombidium/Strobilidium<br />

spp. 25 to 50 µm, (D) Mesodinium<br />

pulex, (E) Myri<strong>on</strong>ecta rubra.<br />

(y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0;<br />

(m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5. Symbols represent means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

Kümmel 1981). This resulted in a potential phosphorus<br />

limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phototrophic organisms, which may<br />

have affected the species compositi<strong>on</strong>. However, it is<br />

noteworthy that the growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Cylindrotheca<br />

closterium was similar or even <str<strong>on</strong>g>high</str<strong>on</strong>g>er in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong><br />

compared to the rates found in lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s<br />

(Table 1). In fact, the <str<strong>on</strong>g>high</str<strong>on</strong>g>est growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

diatom was found in the sec<strong>on</strong>d week in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

Fig. 8. Cell c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> selected heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates<br />

in the 4 incubati<strong>on</strong>s during the 2 wk experimental<br />

period. (A) Protoperidinium divergens, (B) P. pellucidum,<br />

(C) Katodinium glaucum. (y) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0; (j) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5; (S) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0;<br />

(m) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5. Symbols represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> triplicates ± SE<br />

Fig. 9. Biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> copepods (Oith<strong>on</strong>a and Pseudo-/Paracalanus)<br />

in the 4 incubati<strong>on</strong>s during the 2 wk experimental<br />

period. (A) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0, (B) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5, (C) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.0, (D) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5<br />

27


28<br />

Fig. 10. Average size <str<strong>on</strong>g>of</str<strong>on</strong>g> the copepod Oith<strong>on</strong>a in the 4 incubati<strong>on</strong>s<br />

during the 2 wk experimental period. (A) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0,<br />

(B) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.5. Symbols represent means ± SE<br />

incubati<strong>on</strong>, where the phosphorus limitati<strong>on</strong> should<br />

also have been the str<strong>on</strong>gest (Fig. 2).<br />

The silicate c<strong>on</strong>centrati<strong>on</strong> was c<strong>on</strong>stant in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8<br />

and 8.5 incubati<strong>on</strong>s throughout the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment,<br />

and thus silicate does not seem to be limiting<br />

in these incubati<strong>on</strong>s (Fig. 2B). Dramatic increases in<br />

silicate c<strong>on</strong>centrati<strong>on</strong> were however observed in the<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s mainly during the first 3 d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the experiment. The largest increase in silicate c<strong>on</strong>centrati<strong>on</strong><br />

was found in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong>, which<br />

reached a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ~30 µM silicate at the terminati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the incubati<strong>on</strong>. This c<strong>on</strong>centrati<strong>on</strong> is ~3 times<br />

<str<strong>on</strong>g>high</str<strong>on</strong>g>er than the maximum c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silicate typ-<br />

Table 2. Estimated copepod clearance in percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total<br />

water volume per day for the incubati<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8.0, 8.5, 9.0<br />

and 9.5<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> Water volume cleared by the copepod <strong>community</strong><br />

Day 0 Day 5 Day 10 Day 12<br />

8.0 5.8 1.2 6.1 37.9<br />

8.5 5.8 9.6 13.0 2.3<br />

9.0 5.8 0.5 0.0 0.0<br />

9.5 5.8 0.0 0.0 0.0<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

ically found in the spring before the diatom bloom has<br />

started (Richards<strong>on</strong> & Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>fersen 1991). The largest<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> adjustments were d<strong>on</strong>e in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s,<br />

both at the initiati<strong>on</strong> and during the experiment.<br />

It is therefore likely that we have added silicate al<strong>on</strong>g<br />

with the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH, because the NaOH soluti<strong>on</strong><br />

was stored in glass bottles and it is well known that<br />

silicate is <str<strong>on</strong>g>high</str<strong>on</strong>g>ly soluble at <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g>. The silicate c<strong>on</strong>centrati<strong>on</strong><br />

in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9.5 incubati<strong>on</strong> was, however, still<br />

much lower than what typically is added to ordinary<br />

algal growth media, like the f/2 medium (final c<strong>on</strong>centrati<strong>on</strong><br />

100 to 200 µM; Guillard 1972). Thus, it does not<br />

seem likely that these <str<strong>on</strong>g>high</str<strong>on</strong>g> silicate c<strong>on</strong>centrati<strong>on</strong>s<br />

should have had any negative impact <strong>on</strong> the algal<br />

species compositi<strong>on</strong> in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 and 9.5 incubati<strong>on</strong>s.<br />

The <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant species (Prorocentrum micans, P.<br />

minimum, Heterocapsa triquetra and Cylindrotheca<br />

closterium) did better in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> growth in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

incubati<strong>on</strong> compared to the lower <str<strong>on</strong>g>pH</str<strong>on</strong>g> incubati<strong>on</strong>s<br />

(Figs. 4A & 5A,B,C). This is in c<strong>on</strong>trast to laboratory<br />

studies, which indicate that the growth rates <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

species are reduced at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 compared to at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8<br />

(Schmidt & Hansen 2001, Hansen 2002). Thus, the reas<strong>on</strong><br />

for the better growth <str<strong>on</strong>g>of</str<strong>on</strong>g> these species in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9<br />

could instead be reduced grazing.<br />

Am<strong>on</strong>g the potential grazers, <strong>on</strong>ly ciliates and copepods<br />

occur in such numbers that they potentially may<br />

play a role as grazers <strong>on</strong> the 4 <str<strong>on</strong>g>pH</str<strong>on</strong>g>-tolerant species. Significant<br />

predati<strong>on</strong> due to the ciliates can however be<br />

ruled out. First, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> them can ingest the l<strong>on</strong>g<br />

diatom Cylindrotheca closterium, and <strong>on</strong>ly the large<br />

(>50 µm) ciliates can ingest din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates as large<br />

as Heterocapsa triquetra and Prorocentrum minimum<br />

(e.g. Hansen et al. 1994). Sec<strong>on</strong>d, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Fig. 11. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> taxa (species or size groups) found at<br />

Day 14 in c<strong>on</strong>centrati<strong>on</strong>s >0.1 cells ml –1


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

large ciliates was actually <str<strong>on</strong>g>high</str<strong>on</strong>g>est in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong>,<br />

compared to the incubati<strong>on</strong>s at lower <str<strong>on</strong>g>pH</str<strong>on</strong>g>, and<br />

thus the grazing loss due to these ciliates should have<br />

been the largest in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong> (Fig. 7).<br />

The dominant copepods (cyclopids) found in the<br />

incubati<strong>on</strong>s have the potential to feed <strong>on</strong> all the <str<strong>on</strong>g>pH</str<strong>on</strong>g>tolerant<br />

phytoplankt<strong>on</strong> (Hansen et al. 1994, Nielsen &<br />

Kiørboe 1994). Therefore, a significant grazing impact<br />

by the copepods <strong>on</strong> these algal populati<strong>on</strong>s may have<br />

occurred in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s. Our estimates<br />

suggest that the copepods may have been able<br />

to remove about 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> the standing phytoplankt<strong>on</strong><br />

stock per day (Table 2). Thus, the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing by<br />

copepods in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 incubati<strong>on</strong> is a likely explanati<strong>on</strong><br />

for the observed better net growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>pH</str<strong>on</strong>g>-dominant<br />

phytoplankt<strong>on</strong>, but the remineralisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dying <str<strong>on</strong>g>pH</str<strong>on</strong>g>sensitive<br />

phytoplankt<strong>on</strong> has probably also c<strong>on</strong>tributed.<br />

Copepods including cyclopoids can also easily feed<br />

<strong>on</strong> ciliates (Stoecker & Capuzzo 1990, Nielsen &<br />

Sabatini 1996, Nakamura & Turner 1997), and thus it<br />

is <str<strong>on</strong>g>high</str<strong>on</strong>g>ly likely that the better net growth <str<strong>on</strong>g>of</str<strong>on</strong>g> ciliates<br />

at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 9 can be explained, at least partly, by copepod<br />

grazing <strong>on</strong> the ciliates in the <str<strong>on</strong>g>pH</str<strong>on</strong>g> 8 and 8.5 incubati<strong>on</strong>s<br />

(Table 2). However, we did not count the small-sized<br />

protists (


30<br />

mum, the diatom Skelet<strong>on</strong>ema costatum or the cleptoplastidic<br />

ciliate Myri<strong>on</strong>ecta rubra (Fenchel et al. 1995).<br />

During the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the year, the phytoplankt<strong>on</strong> <strong>community</strong><br />

is much more diverse.<br />

In c<strong>on</strong>clusi<strong>on</strong>, the present experiments with the<br />

exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> a plankt<strong>on</strong>ic <strong>community</strong> to a fixed <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

show that an increase in <str<strong>on</strong>g>pH</str<strong>on</strong>g> kills <str<strong>on</strong>g>pH</str<strong>on</strong>g>-sensitive organisms<br />

and causes a decrease in the species richness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both phototrophic and heterotrophic organisms. Our<br />

results indicate that the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem to an<br />

elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> very much depends up<strong>on</strong> the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the exposure. Our results also suggest that copepods<br />

are quite sensitive to elevated <str<strong>on</strong>g>pH</str<strong>on</strong>g> compared to protozooplankt<strong>on</strong>.<br />

In their absence, phytoplankt<strong>on</strong> is <strong>on</strong>ly<br />

subjected to grazing from the other protists. This will<br />

favour phytoplankt<strong>on</strong> species that have developed<br />

grazing-resistant mechanisms such as toxin producti<strong>on</strong>,<br />

poor food quality or shape.<br />

Acknowledgements. We are indebted to Christian Marc<br />

Andersen for analyzing the metazooplankt<strong>on</strong> samples and to<br />

Torkel Gissel Nielsen for valuable comments and suggesti<strong>on</strong>s<br />

to the paper. We also thank Benni Winding Hansen for the<br />

kind use <str<strong>on</strong>g>of</str<strong>on</strong>g> his fluorometer. The work was funded by both the<br />

Danish Natural Research Council (project #9801391 & #21-01-<br />

0539) and the European Commissi<strong>on</strong>’s Envir<strong>on</strong>ment & Sustainable<br />

Development (ESD) (FP-V, research into the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sustainable Marine Ecosystems, Key acti<strong>on</strong> 3)<br />

under c<strong>on</strong>tract EVK3-CT-1999-00015 BIOHAB (Biological<br />

C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Harmful Algal Blooms in European coastal waters).<br />

LITERATURE CITED<br />

Barker HA (1935a) Photosynthesis in diatoms. Arch Mikrobiol<br />

6:141–156<br />

Barker HA (1935b) The culture and physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>marine</strong><br />

din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates. Arch Mikrobiol 6:157–181<br />

Brussaard CPD, Gast GJ, van Duyl FC, Riegman R (1996)<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> bloom magnitude <strong>on</strong> a pelagic<br />

microbial food web. Mar Ecol Prog Ser 144:211–221<br />

Buskey EJ (1997) Behavioral comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding selectivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate Protoperidinium<br />

pellucidum. Mar Ecol Prog Ser 153:77–89<br />

Dodge JD (1985) Marine din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates <str<strong>on</strong>g>of</str<strong>on</strong>g> the British Isles.<br />

Her Majesty’s Stati<strong>on</strong>ary Office, L<strong>on</strong>d<strong>on</strong><br />

Droop MR (1959) A note <strong>on</strong> some physical c<strong>on</strong>diti<strong>on</strong>s for cultivating<br />

Oxyrrhis marina. J Mar Biol Assoc UK 38:599–604<br />

Elzenga JTM, Hidde BA Prins, Stefels J (2000) The role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extracellular carb<strong>on</strong>ic anhydrase activity in inorganic<br />

carb<strong>on</strong> utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Phaeocystis globosa (Prymnesiophyceae):<br />

a comparis<strong>on</strong> with other <strong>marine</strong> phytoplankt<strong>on</strong><br />

using the isotopic disequilibrium technique. Limnol<br />

Oceanogr 45:372–380<br />

Fenchel T (1987) Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> protozoa: the biology <str<strong>on</strong>g>of</str<strong>on</strong>g> freeliving<br />

phagotrophic protists. Springer-Verlag, Berlin<br />

Fenchel T, Bernard C, Esteban G, Finlay BJ, Hansen PJ,<br />

Iversen N (1995) Microbial diversity and activity in a<br />

Danish fjord with anoxic deep water. Ophelia 43:45–100<br />

Gnaiger E, Gluth G, Weiser W (1978) <str<strong>on</strong>g>pH</str<strong>on</strong>g> fluctuati<strong>on</strong>s in an<br />

intertidal beach in Bermuda. Limnol Oceanogr 23:<br />

851–857<br />

Mar Ecol Prog Ser 260: 19–31, 2003<br />

Goldman JC, Yossef A, Riley CB, Dennett MR (1982) The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> in intense microalgal cultures. II. Species<br />

competiti<strong>on</strong>. J Exp Mar Ecol 57:15–24<br />

Grant BR, Madgwick J, Dal P<strong>on</strong>t G (1967) Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Cylindrotheca<br />

closterium var. californica (Mereschk.) Reimann<br />

& Lewin <strong>on</strong> nitrate, amm<strong>on</strong>ia and urea. Aust J Mar Freshw<br />

Res 18:129–136<br />

Grassh<str<strong>on</strong>g>of</str<strong>on</strong>g>f K (1976) Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater analysis. Verlag<br />

Chemie, Weinheim<br />

Guillard RRL (1972) Culture <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> for feeding<br />

<strong>marine</strong> invertebrates. In: Smith WL, Chanley MH (eds)<br />

Culture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong> invertebrate animals. Plenum Press,<br />

New York, p 29–60<br />

Hansen B, Bjørnsen PK, Hansen PJ (1994) Prey size selecti<strong>on</strong><br />

in plankt<strong>on</strong>ic zooplankt<strong>on</strong>. Limnol Oceanogr 39:395–403<br />

Hansen G, Larsen J (1992) Din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellater i danske farvande.<br />

In: Thomsen HA (ed) Plankt<strong>on</strong> i de indre danske farvande.<br />

Havforskning fra Miljøstyrelsen Nr. 11. Miljøministeriet,<br />

København, p 45–155<br />

Hansen PJ (1991) Quantitative importance and trophic role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates in a coastal pelagical food<br />

web. Mar Ecol Prog Ser 73:253–261<br />

Hansen PJ (2002) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the growth and<br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong> phytoplankt<strong>on</strong>: implicati<strong>on</strong>s for species<br />

successi<strong>on</strong>. Aquat Microb Ecol 28:279–288<br />

Hansen PJ, Hansen B, Bjørnsen PK (1997) Zooplankt<strong>on</strong><br />

grazing and growth: scaling within the size range 2 to<br />

2000 µm. Limnol Oceanogr 42:687–704<br />

Hein M, Pedersen MF, Sand-Jensen K (1995) Size-dependent<br />

nitrogen uptake in micro- and macrophytoplankt<strong>on</strong>. Mar<br />

Ecol Prog Ser 118:247–253<br />

Hinga KR (1992) Co-occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate blooms and<br />

<str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> in <strong>marine</strong> enclosures. Mar Ecol Prog Ser 86:<br />

181–187<br />

Hinga KR (2002) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> coastal <strong>marine</strong> phytoplankt<strong>on</strong>.<br />

Mar Ecol Prog Ser 238:281–300<br />

Humphrey GF, Subba Rao DV (1967) Photosynthetic rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>marine</strong> diatom Cylindrotheca closterium. Aust J Mar<br />

Freshw Res 18:123–127<br />

J<strong>on</strong>ss<strong>on</strong> PR (1986) Particle size selecti<strong>on</strong>, feeding rates and<br />

growth dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>marine</strong> plankt<strong>on</strong>ic oligotrichous ciliates<br />

(Ciliophora: Oligotrichina). Mar Ecol Prog Ser 33:265–277<br />

Kalff J (2002) Inland water ecosystems. Prentice-Hall, Englewood<br />

Cliffs, NJ<br />

Kalff J, Wats<strong>on</strong> S (1986) Phytoplankt<strong>on</strong> and its dynamics<br />

in two tropical lakes: a tropical and temperate z<strong>on</strong>e<br />

comparis<strong>on</strong>. Hydrobiologia 138:161–176<br />

Kümmel R (1981) Zur Phosphateliminierung durch Fällung<br />

mit Calciumi<strong>on</strong>en. Acta Hydrochim Hydrobiol 9:585–588<br />

Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient availability <strong>on</strong> the biochemical and elemental<br />

stoichiometry in the freshwater diatom Stephanodiscus<br />

minutulus (Bacillariophyceae). J Phycol 36:510–522<br />

Macedo MF, Duarte P, Mendes P, Ferreira G (2001) Annual<br />

variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental variables, phytoplankt<strong>on</strong> species<br />

compositi<strong>on</strong> and photosynthetic parameters in a<br />

coastal lago<strong>on</strong>. J Plankt<strong>on</strong> Res 23:719–732<br />

Menden-Deuer S, Lessard EJ (2000) Carb<strong>on</strong> to volume relati<strong>on</strong>ships<br />

for din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates, diatoms, and other protist<br />

plankt<strong>on</strong>. Limnol Oceanogr 45:569–579<br />

Nakamura Y, Turner JT (1997) Predati<strong>on</strong> and respirati<strong>on</strong> by<br />

the small cyclopoid copepod Oith<strong>on</strong>a similis: how important<br />

is feeding <strong>on</strong> ciliates and heterotrophic flagellates?<br />

J Plankt<strong>on</strong> Res 19:1275–1288<br />

Naustvoll LJ (2000) Prey size spectra and food preferences<br />

in thecate heterotrophic din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates. Phycologia 39:<br />

187–198


Pedersen & Hansen: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> a plankt<strong>on</strong>ic <strong>community</strong><br />

Nielsen TG, Kiørboe T (1994) Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong><br />

biomass producti<strong>on</strong> in a temperate, coastal ecosystem.<br />

1. Copepods. Limnol Oceanogr 39:493–507<br />

Nielsen TG, Sabatini M (1996) Role <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclopoid copepods<br />

Oith<strong>on</strong>a spp. in North Sea plankt<strong>on</strong> communities. Mar<br />

Ecol Prog Ser 139:79–93<br />

Nimer NA, Brownlee C, Merret MJ (1994) Carb<strong>on</strong> dioxide<br />

availability, intracellular <str<strong>on</strong>g>pH</str<strong>on</strong>g> and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the coccolithophore<br />

Emiliania huxleyi. Mar Ecol Prog Ser 109:257–262<br />

Olesen M (2001) Sedimentati<strong>on</strong> in Mariager Fjord, Denmark:<br />

the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> sinking velocity <strong>on</strong> system productivity.<br />

Ophelia 55:11–26<br />

Otsuki A, Wetzel RG (1972) Coprecipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate<br />

with carb<strong>on</strong>ates in a marl lake. Limnol Oceanogr 17:<br />

763–767<br />

Packr<str<strong>on</strong>g>of</str<strong>on</strong>g>f G (2000) Protozooplankt<strong>on</strong> in acidic mining lakes<br />

with special respect to ciliates. Hydrobiologia 433:157–166<br />

Pedersen MF, Hansen PJ (2003) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>high</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the<br />

growth and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> six <strong>marine</strong> heterotrophic protists.<br />

Mar Ecol Prog Ser 260:33–41<br />

Pedrozo F, Kelly L, Diaz M, Temporetti P and 6 others (2001)<br />

First results <strong>on</strong> the water chemistry, phytoplankt<strong>on</strong> and<br />

trophic status <str<strong>on</strong>g>of</str<strong>on</strong>g> an Andean acidic lake system <str<strong>on</strong>g>of</str<strong>on</strong>g> volcanic<br />

origin in Patag<strong>on</strong>ia (Lake Caviahue). Hydrobiologia 452:<br />

129–137<br />

Richardsen K, Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>fersen A (1991) Seas<strong>on</strong>al distributi<strong>on</strong><br />

and producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> in the southern Kattegat.<br />

Mar Ecol Prog Ser 78:217–227<br />

Editorial resp<strong>on</strong>sibility: Otto Kinne (Editor),<br />

Oldendorf/Luhe, Germany<br />

Santhanam R, Srinivasan A, Ramadhas V, Devaraj M (1994)<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Trichodesmium bloom <strong>on</strong> the plankt<strong>on</strong> and productivity<br />

in the Tuticorin bay, southeast coast <str<strong>on</strong>g>of</str<strong>on</strong>g> India.<br />

Indian J Mar Sci 23:27–30<br />

Schmidt LE, Hansen PJ (2001) Allelopathy in the prymnesiophyte<br />

Chrysochromulina polylepis: effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cell c<strong>on</strong>centrati<strong>on</strong>,<br />

growth phase and <str<strong>on</strong>g>pH</str<strong>on</strong>g>. Mar Ecol Prog Ser 216:67–81<br />

S<strong>on</strong>g W, Mingzhuang Z, Chen Z (1999) Updating the systematics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plankt<strong>on</strong>ic oligotrichous ciliates (Ciliophora,<br />

Protozoa) with descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ciliature patterns at generic<br />

level. The Yellow Sea 5:77–85<br />

Stoecker DK, Capuzzo JM (1990) Predati<strong>on</strong> <strong>on</strong> protozoa: its<br />

importance to zooplankt<strong>on</strong>. J Plankt<strong>on</strong> Res 12:891–908<br />

Taylor FJR, Pollingher U (1987) Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates.<br />

In: Taylor FJR (ed) The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates. Botanical<br />

m<strong>on</strong>ographs. Blackwell Scientific Publicati<strong>on</strong>s, Oxford,<br />

p 399–529<br />

ter Braak CJF, van Dam H (1989) Inferring <str<strong>on</strong>g>pH</str<strong>on</strong>g> from diatoms:<br />

a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> old and new calibrati<strong>on</strong> methods. Hydrobiologia<br />

178:209–223<br />

Tomas CR (1996) Identifying <strong>marine</strong> diatoms and din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellates.<br />

Academic Press, San Diego, CA<br />

Williams WD, Boult<strong>on</strong> AJ, Taaffe RG (1990) Salinity as determinant<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> salt lake fauna: a questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scale. Hydrobiologia<br />

197:257–266<br />

Yoo KI (1991) Populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> din<str<strong>on</strong>g>of</str<strong>on</strong>g>lagellate <strong>community</strong><br />

in Masan Bay with a note <strong>on</strong> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental parameters. Mar Pollut Bull 23:185–188<br />

Submitted: July 9, 2002; Accepted: June 17, 2003<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s received from author(s): September 15, 2003<br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!