01.05.2013 Views

Role of YAP/TAZ in mechanotransduction

Role of YAP/TAZ in mechanotransduction

Role of YAP/TAZ in mechanotransduction

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

32. Padua, D. et al. TGFb primes breast tumors for lung metastasis seed<strong>in</strong>g through<br />

angiopoiet<strong>in</strong>-like 4. Cell 133, 66–77 (2008).<br />

33. Adorno, M. et al. A mutant-p53/Smad complex opposes p63 to empower TGFb<strong>in</strong>duced<br />

metastasis. Cell 137, 87–98 (2009).<br />

34. Bild, A. H. et al. Oncogenic pathway signatures <strong>in</strong> human cancers as a guide to<br />

targeted therapies. Nature 439, 353–357 (2006).<br />

35. Mackay, A. et al. cDNA microarray analysis <strong>of</strong> genes associated with ERBB2 (HER2/<br />

neu) overexpression <strong>in</strong> human mammary lum<strong>in</strong>al epithelial cells. Oncogene 22,<br />

2680–2688 (2003).<br />

36. Zhao, B. et al. TEAD mediates <strong>YAP</strong>-dependent gene <strong>in</strong>duction and growth control.<br />

Genes Dev. 22, 1962–1971 (2008).<br />

37. Dong, J. et al. Elucidation <strong>of</strong> a universal size-control mechanism <strong>in</strong> Drosophila and<br />

mammals. Cell 130, 1120–1133 (2007).<br />

38. Ota, M. & Sasaki, H. Mammalian Tead prote<strong>in</strong>s regulate cell proliferation and<br />

contact <strong>in</strong>hibition as transcriptional mediators <strong>of</strong> Hippo signal<strong>in</strong>g. Development<br />

135, 4059–4069 (2008).<br />

©2011<br />

Macmillan Publishers Limited. All rights reserved<br />

ARTICLE RESEARCH<br />

39. Zhang, H. et al. TEAD transcription factors mediate the function <strong>of</strong> <strong>TAZ</strong> <strong>in</strong> cell<br />

growth and epithelial-mesenchymal transition. J. Biol. Chem. 284, 13355–13362<br />

(2009).<br />

40. DiMeo, T. A. et al. A novel lung metastasis signature l<strong>in</strong>ks Wnt signal<strong>in</strong>g with cancer<br />

cell self-renewal and epithelial-mesenchymal transition <strong>in</strong> basal-like breast<br />

cancer. Cancer Res. 69, 5364–5373 (2009).<br />

41. Mazzone, M. et al. Dose-dependent <strong>in</strong>duction <strong>of</strong> dist<strong>in</strong>ct phenotypic responses to<br />

Notch pathway activation <strong>in</strong> mammary epithelial cells. Proc. Natl Acad. Sci. USA<br />

107, 5012–5017 (2010).<br />

42. Descot, A. et al. Negative regulation <strong>of</strong> the EGFR-MAPK cascade by act<strong>in</strong>-MALmediated<br />

Mig6/Errfi-1 <strong>in</strong>duction. Mol. Cell 35, 291–304 (2009).<br />

43. Selvaraj, A. & Prywes, R. Expression pr<strong>of</strong>il<strong>in</strong>g <strong>of</strong> serum <strong>in</strong>ducible genes identifies<br />

a subset <strong>of</strong> SRF target genes that are MKL dependent. BMC Mol. Biol. 5, 13<br />

(2004).<br />

44. Park, B. K. et al. NF-kB <strong>in</strong> breast cancer cells promotes osteolytic bone metastasis<br />

by <strong>in</strong>duc<strong>in</strong>g osteoclastogenesis via GM-CSF. Nature Med. 13, 62–69 (2006).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!