04.05.2013 Views

Isometries and spectra of multiplication operators on the Bloch space

Isometries and spectra of multiplication operators on the Bloch space

Isometries and spectra of multiplication operators on the Bloch space

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ISOMETRIES AND SPECTRA OF MULTIPLICATION<br />

OPERATORS ON THE BLOCH SPACE<br />

ROBERT F. ALLEN AND FLAVIA COLONNA<br />

Abstract. In this paper, we establish bounds <strong>on</strong> <strong>the</strong> norm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> unit disk via weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g>.<br />

In doing so, we characterize <strong>the</strong> isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g><br />

to be precisely those induced by c<strong>on</strong>stant functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1. We <strong>the</strong>n<br />

describe <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> symbol. Lastly, we identify <strong>the</strong> isometries <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>spectra</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>.<br />

1. Introducti<strong>on</strong><br />

Let D denote <strong>the</strong> open unit disk in <strong>the</strong> complex plane. An analytic functi<strong>on</strong> f<br />

<strong>on</strong> D is said to be <strong>Bloch</strong> if<br />

βf = sup (1 − |z|<br />

z∈D<br />

2 ) |f ′ (z)| < ∞.<br />

The mapping f ↦→ βf is a semi-norm <strong>on</strong> <strong>the</strong> <strong>space</strong> B <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Bloch</strong> functi<strong>on</strong>s, called <strong>the</strong><br />

<strong>Bloch</strong> <strong>space</strong>. Under <strong>the</strong> norm<br />

||f|| B = |f(0)| + βf ,<br />

<strong>the</strong> <strong>Bloch</strong> <strong>space</strong> is a Banach <strong>space</strong>. The little <strong>Bloch</strong> <strong>space</strong> B0 is <strong>the</strong> closed sub<strong>space</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> B c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s f ∈ B satisfying<br />

lim<br />

|z|→1 (1 − |z|2 ) |f ′ (z)| = 0.<br />

For fur<strong>the</strong>r treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Bloch</strong> functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> see [17], [?], <str<strong>on</strong>g>and</str<strong>on</strong>g> [3].<br />

Suppose ψ is a fixed analytic functi<strong>on</strong> <strong>on</strong> D. The <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator <strong>on</strong> <strong>the</strong><br />

<strong>Bloch</strong> <strong>space</strong> is defined as<br />

Mψ(f) = ψf.<br />

In [2], Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> Shields proved that Mψ is a bounded operator <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong><br />

if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if ψ ∈ H∞ (D) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<br />

<br />

This implies that<br />

as |z| → 1. Thus ψ ∈ B0.<br />

|ψ ′ (z)| = O<br />

(1 − |z| 2 ) |ψ ′ (z)| = O<br />

1<br />

(1 − |z|) log 1<br />

1−|z|<br />

<br />

1<br />

log 1<br />

1−|z|<br />

<br />

.<br />

→ 0<br />

2000 Ma<strong>the</strong>matics Subject Classificati<strong>on</strong>. primary: 47B38, sec<strong>on</strong>dary: 30D45.<br />

1


2 ROBERT F. ALLEN AND FLAVIA COLONNA<br />

Suppose fur<strong>the</strong>r that ϕ is a fixed analytic self-map <str<strong>on</strong>g>of</str<strong>on</strong>g> D. The weighted compositi<strong>on</strong><br />

operator <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> is defined as<br />

Wψ,ϕ(f) = ψ(f ◦ ϕ).<br />

There is a reas<strong>on</strong> for introducing <strong>the</strong> weighted compositi<strong>on</strong> operator at this point.<br />

The <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator is a “degenerate” weighted compositi<strong>on</strong> operator; if ϕ<br />

is <strong>the</strong> identity map, <strong>the</strong>n Wψ,ϕ = Mψ. Likewise, <strong>the</strong> compositi<strong>on</strong> operator <strong>on</strong> <strong>the</strong><br />

<strong>Bloch</strong> <strong>space</strong>, defined as<br />

Cϕ(f) = f ◦ ϕ,<br />

is a “degenerate” weighted compositi<strong>on</strong> operator when ψ is taken to be <strong>the</strong> c<strong>on</strong>stant<br />

functi<strong>on</strong> 1.<br />

In [16], Ohno <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhao proved that Wψ,ϕ is a bounded operator <strong>on</strong> <strong>the</strong> <strong>Bloch</strong><br />

<strong>space</strong> if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if <strong>the</strong> following two properties are satisfied:<br />

(1) sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| log<br />

(2) sup<br />

z∈D<br />

1 − |z| 2<br />

2<br />

2 < ∞,<br />

1 − |ϕ(z)|<br />

1 − |ϕ(z)| 2 |ψ(z)| |ϕ′ (z)| < ∞.<br />

It can easily be verified that if Wψ,ϕ is bounded <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>, <strong>the</strong>n ψ is a<br />

<strong>Bloch</strong> functi<strong>on</strong>.<br />

The characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometries is an open problem for most Banach <strong>space</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> analytic functi<strong>on</strong>s; <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isometries, in most cases, is too large to study all<br />

at <strong>on</strong>ce. Even so, <strong>the</strong>re are <strong>space</strong>s for which <strong>the</strong> isometries are known. In [11],<br />

Forelli proved <strong>the</strong> isometries <strong>on</strong> <strong>the</strong> Hardy <strong>space</strong> H p , for p = 2 are certain weighted<br />

compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g>. Also, El-Gebeily <str<strong>on</strong>g>and</str<strong>on</strong>g> Wolfe completely characterized <strong>the</strong><br />

isometries <strong>on</strong> <strong>the</strong> disk algebra A0 = H ∞ (D) ∩ C(∂D) [10]. For most o<strong>the</strong>r <strong>space</strong>s,<br />

a complete picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometries is not known. The surjective isometries for<br />

<strong>the</strong> Bergman <strong>space</strong> A p (see [18]) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> weighted Bergman <strong>space</strong> A p ω (see [14]) are<br />

known.<br />

The first attempt at studying <strong>the</strong> isometries <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> was made by<br />

Cima <str<strong>on</strong>g>and</str<strong>on</strong>g> Wogen in [4]. They studied <strong>the</strong> isometries <strong>on</strong> <strong>the</strong> sub<strong>space</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Bloch</strong><br />

<strong>space</strong> whose elements fix <strong>the</strong> origin. On this <strong>space</strong>, <strong>the</strong>y showed that <strong>the</strong> surjective<br />

isometries are normalized compressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> induced by disk<br />

automorphisms. However, <strong>on</strong> <strong>the</strong> entire set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Bloch</strong> functi<strong>on</strong>s, a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

isometries is still unknown. The current trend in <strong>the</strong> literature is to attack this<br />

problem <strong>on</strong>e operator at a time.<br />

To date, <strong>the</strong> <strong>on</strong>ly complete characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> isometries <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> are<br />

those am<strong>on</strong>g <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g>. Independently, two different descripti<strong>on</strong>s<br />

have been developed. In [6], <strong>the</strong> sec<strong>on</strong>d author identified <strong>the</strong> isometric compositi<strong>on</strong><br />

<str<strong>on</strong>g>operators</str<strong>on</strong>g> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> can<strong>on</strong>ical factorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symbol. Martín <str<strong>on</strong>g>and</str<strong>on</strong>g> Vukotić<br />

in [15], identified <strong>the</strong> isometric compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hyperbolic<br />

derivative <str<strong>on</strong>g>and</str<strong>on</strong>g> cluster set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symbol. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to fur<strong>the</strong>r<br />

develop <strong>the</strong> underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometries <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> by characterizing <strong>the</strong><br />

isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g>. The authors are unaware <str<strong>on</strong>g>of</str<strong>on</strong>g> any such descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> in <strong>the</strong> literature.


ISOMETRIC MULTIPLICATION OPERATORS 3<br />

1.1. Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> paper. In Secti<strong>on</strong> 2, we determine estimates <strong>on</strong> <strong>the</strong><br />

norm <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> weighted compositi<strong>on</strong> operator Wψ,ϕ <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>. As a corollary,<br />

we deduce estimates <strong>on</strong> <strong>the</strong> norm <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator Mψ. In <strong>the</strong> case<br />

where ψ ≡ 1, <strong>the</strong> norm estimates agree with those derived by Xi<strong>on</strong>g in [19] for <strong>the</strong><br />

compositi<strong>on</strong> operator Cϕ.<br />

In Secti<strong>on</strong> 3, we prove that <strong>the</strong> symbols <str<strong>on</strong>g>of</str<strong>on</strong>g> isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g> are<br />

precisely <strong>the</strong> c<strong>on</strong>stant functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1.<br />

In Secti<strong>on</strong> 4, we show that <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator is <strong>the</strong><br />

closure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symbol. From this, we deduce <strong>the</strong> <str<strong>on</strong>g>spectra</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometric<br />

<str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g> to be single-element subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> unit circle.<br />

In Secti<strong>on</strong> 5, we discuss <strong>the</strong> weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> whose symbols induce<br />

isometries individually <str<strong>on</strong>g>and</str<strong>on</strong>g> describe <strong>the</strong>ir spectrum.<br />

2. Norm Estimates <strong>on</strong> Weighted Compositi<strong>on</strong> Operators<br />

In this secti<strong>on</strong> we establish estimates <strong>on</strong> ||Wψ,ϕ||. In order to write <strong>the</strong>se estimates<br />

in a succinct way, we introduce <strong>the</strong> following notati<strong>on</strong>. Let ψ ∈ B <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ϕ : D → D analytic functi<strong>on</strong>s satisfying c<strong>on</strong>diti<strong>on</strong>s (1) <str<strong>on</strong>g>and</str<strong>on</strong>g> (2). Let<br />

τ ∞ ψ,ϕ<br />

σ ∞ ψ,ϕ<br />

def<br />

= sup<br />

z∈D<br />

def<br />

= sup<br />

z∈D<br />

1 − |z| 2<br />

1 − |ϕ(z)| 2 |ψ(z)| |ϕ′ (z)| , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

1<br />

2 (1 − |z|2 ) |ψ ′ (z)| log<br />

which are both finite. In [19], Xi<strong>on</strong>g defined<br />

τ ∞ 1 − |z|<br />

ϕ = sup<br />

z∈D<br />

2<br />

1 − |ϕ(z)| 2 |ϕ′ (z)|<br />

1 + |ϕ(z)|<br />

1 − |ϕ(z)| ,<br />

to obtain an upper estimate <strong>on</strong> <strong>the</strong> norm <str<strong>on</strong>g>of</str<strong>on</strong>g> a compositi<strong>on</strong> operator <strong>on</strong> B. Note, if<br />

ψ ≡ 1, <strong>the</strong>n τ ∞ ψ,ϕ = τ ∞ ϕ . Also, if ϕ is <strong>the</strong> identity map, <strong>the</strong>n<br />

σ ∞ ψ,ϕ = σ ∞ ψ<br />

def<br />

= sup<br />

z∈D<br />

1<br />

2 (1 − |z|2 ) |ψ ′ 1 + |z|<br />

(z)| log<br />

1 − |z| .<br />

To determine an upper bound <strong>on</strong> ||Wψ,ϕ|| we use <strong>the</strong> following lemma, a pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which can be found in [5] or [19].<br />

Lemma 2.1. If f ∈ B, <strong>the</strong>n<br />

for all z ∈ D.<br />

|f(z)| ≤ |f(0)| + 1<br />

2 βf<br />

1 + |z|<br />

log<br />

1 − |z| ,<br />

With this lemma <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> notati<strong>on</strong> defined above, we are now prepared to establish<br />

an upper bound <strong>on</strong> ||Wψ,ϕ||.<br />

Theorem 2.1. Suppose ψ is an analytic functi<strong>on</strong> <strong>on</strong> D <str<strong>on</strong>g>and</str<strong>on</strong>g> ϕ is an analytic selfmap<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> D that induce a bounded weighted compositi<strong>on</strong> operator Wψ,ϕ <strong>on</strong> B. Then<br />

<br />

||Wψ,ϕ|| ≤ max ||ψ|| B , 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ <br />

ψ,ϕ .


4 ROBERT F. ALLEN AND FLAVIA COLONNA<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let f ∈ B such that ||f|| B = 1. Then<br />

||Wψ,ϕf|| B ≤ |ψ(0)| |f(ϕ(0))| + sup (1 − |z|<br />

z∈D<br />

2 ) |ψ(z)| |f ′ (ϕ(z))| |ϕ ′ (z)|<br />

+ sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| |f(ϕ(z))|<br />

= |ψ(0)| |f(ϕ(0))| + sup<br />

z∈D<br />

1 − |z| 2<br />

+ sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| |f(ϕ(z))|<br />

1 − |ϕ(z)| 2 |ψ(z)| |ϕ′ (z)| (1 − |ϕ(z)| 2 ) |f ′ (ϕ(z))|<br />

≤ |ψ(0)| |f(ϕ(0))| + τ ∞ ψ,ϕβf + sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| |f(ϕ(z))| .<br />

By Lemma 2.1, we have |f(ϕ(z))| ≤ |f(0)| + 1<br />

2 βf log<br />

1 + |ϕ(z)|<br />

. Thus<br />

1 − |ϕ(z)|<br />

||Wψ,ϕf|| B ≤ |ψ(0)| |f(ϕ(0))| + τ ∞ ψ,ϕβf + βψ |f(0)| + σ ∞ ψ,ϕβf .<br />

Since |f(ϕ(0))| ≤ |f(0)| + 1<br />

2βf 1 + |ϕ(0)|<br />

log<br />

1 − |ϕ(0)| , <str<strong>on</strong>g>and</str<strong>on</strong>g> recalling that |f(0)| = 1 − βf we<br />

deduce<br />

<br />

1 1 + |ϕ(0)|<br />

||Wψ,ϕf|| B ≤ ||ψ|| B |f(0)| + |ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ <br />

ψ,ϕ βf<br />

<br />

1 1 + |ϕ(0)|<br />

= ||ψ|| B + |ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ <br />

ψ,ϕ − ||ψ|| B<br />

If 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ ≤ ||ψ|| B , <strong>the</strong>n<br />

||Wψ,ϕf|| B ≤ ||ψ|| B .<br />

If 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ ≥ ||ψ|| B , <strong>the</strong>n<br />

Therefore,<br />

||Wψ,ϕf|| B ≤ ||ψ|| B + 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ − ||ψ|| B<br />

= 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ ψ,ϕ.<br />

||Wψ,ϕ|| ≤ max<br />

<br />

||ψ|| B , 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| + τ ∞ ψ,ϕ + σ ∞ <br />

ψ,ϕ ,<br />

as desired. <br />

To determine a lower bound <strong>on</strong> ||Wψ,ϕ||, we apply <strong>the</strong> appropriate test functi<strong>on</strong>s.<br />

Theorem 2.2. Suppose ψ is an analytic functi<strong>on</strong> <strong>on</strong> D <str<strong>on</strong>g>and</str<strong>on</strong>g> ϕ is an analytic selfmap<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> D inducing a bounded weighted compositi<strong>on</strong> operator Wψ,ϕ <strong>on</strong> B. Then<br />

<br />

(3) ||Wψ,ϕ|| ≥ max ||ψ|| B , 1<br />

<br />

1 + |ϕ(0)|<br />

|ψ(0)| log .<br />

2 1 − |ϕ(0)|<br />

βf .


ISOMETRIC MULTIPLICATION OPERATORS 5<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. If we take <strong>the</strong> test functi<strong>on</strong> f(z) = 1, <strong>the</strong>n<br />

||Wψ,ϕ|| ≥ ||Wψ,ϕf|| B = ||ψ|| B .<br />

If ϕ(0) = 0, <strong>the</strong>n (3) holds trivially. If ϕ(0) = 0, <strong>the</strong>n write ϕ(0) = |ϕ(0)| eiθ ,<br />

for some θ ∈ [0, 2π). Let f(z) = 1<br />

2 Log 1 + e−iθz 1 − e−iθ , where Log denotes <strong>the</strong> principal<br />

z<br />

branch <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> logarithm. Then f is a <strong>Bloch</strong> functi<strong>on</strong> with <strong>Bloch</strong> norm 1. Thus<br />

||Wψ,ϕ|| ≥ ||Wψ,ϕf|| B ≥ |ψ(0)f(ϕ(0))| = 1 1 + |ϕ(0)|<br />

|ψ(0)| log<br />

2 1 − |ϕ(0)| .<br />

Therefore,<br />

<br />

||Wψ,ϕ|| ≥ max ||ψ|| B , 1<br />

<br />

1 + |ϕ(0)|<br />

|ψ(0)| log ,<br />

2 1 − |ϕ(0)|<br />

as desired. <br />

Remark 1. By taking ψ ≡ 1, we deduce <strong>the</strong> estimates <strong>on</strong> <strong>the</strong> norm <str<strong>on</strong>g>of</str<strong>on</strong>g> Cϕ established<br />

in [19]:<br />

<br />

max 1, 1<br />

<br />

<br />

1 + |ϕ(0)|<br />

log ≤ ||Cϕ|| ≤ max 1,<br />

2 1 − |ϕ(0)|<br />

1 1 + |ϕ(0)|<br />

log<br />

2 1 − |ϕ(0)| + τ ∞ <br />

ϕ .<br />

We now deduce estimates <strong>on</strong> <strong>the</strong> norm <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator Mψ <strong>on</strong> B.<br />

Corollary 2.1. Suppose ψ is an analytic functi<strong>on</strong> <strong>on</strong> D inducing a bounded <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g><br />

operator Mψ <strong>on</strong> B. Then<br />

max {||ψ|| B , ||ψ|| ∞ } ≤ ||Mψ|| ≤ max ||ψ|| B , ||ψ|| ∞ + σ ∞ ψ .<br />

In particular, if ψ(0) = 0, <strong>the</strong>n<br />

||ψ|| ∞ ≤ ||Mψ|| ≤ ||ψ|| ∞ + σ ∞ ψ .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By taking ϕ to be <strong>the</strong> identity map, τ ∞ ψ,ϕ = ||ψ|| ∞ <str<strong>on</strong>g>and</str<strong>on</strong>g> σ∞ ψ,ϕ = σ∞ ψ . Thus,<br />

||ψ|| B ≤ ||Mψ|| ≤ max ||ψ|| B , ||ψ|| ∞ + σ ∞ ψ .<br />

Fur<strong>the</strong>rmore, we have ||ψ|| ∞ ≤ ||Mψ||. Indeed, this is true for a bounded <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g><br />

operator <strong>on</strong> any functi<strong>on</strong>al Banach <strong>space</strong>, see [9] Lemma 11. Therefore,<br />

max {||ψ|| B , ||ψ|| ∞ } ≤ ||Mψ|| ≤ max ||ψ|| B , ||ψ|| ∞ + σ ∞ ψ ,<br />

as desired. The c<strong>on</strong>clusi<strong>on</strong> for <strong>the</strong> case ψ(0) = 0 follows from <strong>the</strong> fact that by <strong>the</strong><br />

Schwarz-Pick lemma, for a bounded functi<strong>on</strong> ψ <strong>on</strong> D,<br />

(1 − |z| 2 ) |ψ′ (z)|<br />

||ψ|| ∞<br />

≤ 1 − |ψ(z)|2<br />

||ψ|| 2<br />

∞<br />

for all z in D, so that ||ψ|| B = βψ ≤ ||ψ|| ∞ . <br />

Open Questi<strong>on</strong>. If Mψ is bounded <strong>on</strong> B, is ||ψ|| B ≤ ||ψ|| ∞ + σ∞ ψ ? As menti<strong>on</strong>ed<br />

above, this is true if ψ fixes <strong>the</strong> origin. The inequality also holds in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ<br />

being an automorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> D. Indeed, suppose ψ ∈ Aut(D) with ψ(0) = 0. Then<br />

a − z<br />

ψ(z) = η<br />

1 − az ,


6 ROBERT F. ALLEN AND FLAVIA COLONNA<br />

where 0 = a ∈ D <str<strong>on</strong>g>and</str<strong>on</strong>g> |η| = 1. Thus, ||ψ|| ∞ = 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> βψ = (1 − |a| 2 ) |ψ ′ (a)| = 1, so<br />

||ψ|| B = |a| + 1. Fur<strong>the</strong>rmore<br />

since, for |a| < 1,<br />

Therefore ||ψ|| B ≤ ||ψ|| ∞ + σ ∞ ψ .<br />

σ ∞ ψ = sup (1 − |z|<br />

z∈D<br />

2 ) |ψ ′ (z)| 1 1 + |z|<br />

log<br />

2 1 − |z|<br />

≥ (1 − |a| 2 ) |ψ ′ (a)| 1 1 + |a|<br />

log<br />

2 1 − |a|<br />

= 1 1 + |a|<br />

log > |a|<br />

2 1 − |a|<br />

1 1 + |a|<br />

log<br />

2 1 − |a| =<br />

∞<br />

n=0<br />

|a| 2n+1<br />

2n + 1 .<br />

3. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Isometric Multiplicati<strong>on</strong> Operators<br />

This secti<strong>on</strong> is devoted to <strong>the</strong> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symbols <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometric<br />

<str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>. We first establish necessary c<strong>on</strong>diti<strong>on</strong>s<br />

for ψ to induce an isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator <strong>on</strong> B.<br />

Lemma 3.1. Let ψ be <strong>the</strong> symbol <str<strong>on</strong>g>of</str<strong>on</strong>g> an isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator <strong>on</strong> B.<br />

Then ||ψ|| ∞ ≤ 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> ||ψ n || B = 1 for all n ∈ N.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By <strong>the</strong> lower estimate in Corollary 2.1 we obtain ||ψ|| ∞ ≤ ||Mψ|| = 1. By<br />

choosing <strong>the</strong> test functi<strong>on</strong> g ≡ 1, we have<br />

Thus<br />

1 = ||g|| B = ||Mψg|| B = ||ψ|| B .<br />

<br />

ψ 2 B = ||Mψ(ψ)|| B = ||ψ|| B = 1.<br />

The c<strong>on</strong>clusi<strong>on</strong> follows by inducti<strong>on</strong>. <br />

The next result is more general, <str<strong>on</strong>g>and</str<strong>on</strong>g> with it, we can prove <strong>the</strong> main <strong>the</strong>orem.<br />

Lemma 3.2. If ψ ∈ H ∞ (D) such that ||ψ|| ∞ ≤ 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> ψ(0) = 0, <strong>the</strong>n ||ψ n || B < 1<br />

for all n ≥ 2.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By <strong>the</strong> Schwarz-Pick lemma, for all n ∈ N, n ≥ 2, we have<br />

βψn = sup (1 − |z|<br />

z∈D<br />

2 )n |ψ(z)| n−1 |ψ ′ (z)|<br />

≤ sup n(1 − |ψ(z)|<br />

z∈D<br />

2 ) |ψ(z)| n−1<br />

≤ n max<br />

x∈[0,1] (xn−1 − x n+1 )<br />

= 2n<br />

n + 1<br />

n − 1<br />

n + 1<br />

n−1<br />

2<br />

= 2n<br />

n − 1<br />

n+1<br />

2 n − 1<br />

.<br />

n + 1<br />

For x <str<strong>on</strong>g>and</str<strong>on</strong>g> a positive real numbers <str<strong>on</strong>g>and</str<strong>on</strong>g> m a real number greater than 1, we have<br />

(x + a) m > xm + amxm−1 . By this, we have for n ≥ 2,<br />

<br />

n + 1<br />

(n + 1) n+1<br />

2 > (n − 1) n+1<br />

2 + 2<br />

2<br />

<br />

(n − 1) n−1<br />

2 = 2n(n − 1) n−1<br />

2 .


So<br />

ISOMETRIC MULTIPLICATION OPERATORS 7<br />

2n<br />

n + 1<br />

n−1<br />

2 n − 1<br />

=<br />

n + 1<br />

2n(n − 1) n−1<br />

2<br />

(n + 1) n+1<br />

2<br />

< 1.<br />

Hence ||ψn || B = βψn < 1 for n ≥ 2. <br />

Corollary 3.1. If ψ is <strong>the</strong> symbol <str<strong>on</strong>g>of</str<strong>on</strong>g> an isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator <strong>on</strong> B,<br />

<strong>the</strong>n ψ does not fix <strong>the</strong> origin.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Arguing by c<strong>on</strong>tradicti<strong>on</strong>, assume ψ(0) = 0. By Lemma 3.1, ||ψ|| ∞ ≤ 1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<br />

ψ 2 B = 1. However, ψ 2 B < 1 by Lemma 3.2. <br />

Lemma 3.3. Suppose ψ ∈ H ∞ (D) such that ||ψ|| ∞ ≤ 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> map g(z) = zψ(z)<br />

has <strong>Bloch</strong> norm 1. Then ei<strong>the</strong>r ψ is a c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1, or ψ has infinitely<br />

many zeros {an} in D such that<br />

βψ = lim sup<br />

n→∞<br />

In <strong>the</strong> latter case, if ||ψ|| B = 1, <strong>the</strong>n ψ(0) = 0.<br />

(1 − |an| 2 ) |ψ ′ (an)| = 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Assume ψ is not a c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1. Note that <strong>the</strong> functi<strong>on</strong> g maps D<br />

into itself, fixes <strong>the</strong> origin, <str<strong>on</strong>g>and</str<strong>on</strong>g> has <strong>Bloch</strong> norm 1. Then by Theorem 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> [6], <strong>the</strong>re<br />

exists an infinite sequence {an} in D such that ψ(an) = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

lim sup<br />

n→∞<br />

(1 − |an| 2 ) |g ′ (an)| = 1.<br />

Since g ′ (an) = ψ(an) + anψ ′ (an) = anψ ′ (an), we deduce<br />

lim sup<br />

n→∞<br />

(1 − |an| 2 ) |an| |ψ ′ (an)| = 1.<br />

By assumpti<strong>on</strong> ψ is not a c<strong>on</strong>stant functi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> so |an| → 1 as n → ∞. Thus<br />

βψ = lim sup<br />

n→∞<br />

(1 − |an| 2 ) |ψ ′ (an)| = 1.<br />

The c<strong>on</strong>clusi<strong>on</strong> for <strong>the</strong> case ||ψ|| B = 1 follows at <strong>on</strong>ce. <br />

We now prove <strong>the</strong> main <strong>the</strong>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>.<br />

Theorem 3.1. The <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator Mψ is an isometry <strong>on</strong> B if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if<br />

ψ is a c<strong>on</strong>stant functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Clearly, if ψ is a c<strong>on</strong>stant functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1 <strong>the</strong>n Mψ is an isometry <strong>on</strong><br />

B. C<strong>on</strong>versely, suppose Mψ is an isometry <strong>on</strong> B <str<strong>on</strong>g>and</str<strong>on</strong>g> assume ψ is not a c<strong>on</strong>stant<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1. Then by Lemma 3.1, ||ψ|| ∞ ≤ 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> ||ψ|| B = 1. Also, for<br />

g(z) = zψ(z), ||g|| B = ||Mψ(id)|| B = ||id|| B = 1, where id is <strong>the</strong> identity map <strong>on</strong> D.<br />

Then by Lemma 3.3, ψ(0) = 0, c<strong>on</strong>tradicting Corollary 3.1. Therefore, if Mψ is an<br />

isometry <strong>on</strong> B, <strong>the</strong>n ψ must be a c<strong>on</strong>stant functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1. <br />

4. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Multiplicati<strong>on</strong> Operators<br />

We now turn our attenti<strong>on</strong> to <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator. Recall<br />

that <strong>the</strong> resolvent <str<strong>on</strong>g>of</str<strong>on</strong>g> a bounded linear operator T <strong>on</strong> a complex Banach <strong>space</strong> E is<br />

defined as<br />

ρ(T ) = {λ ∈ C : T − λI is invertible},


8 ROBERT F. ALLEN AND FLAVIA COLONNA<br />

where I is <strong>the</strong> identity operator. The spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> T is defined as σ(T ) = C \ ρ(T ).<br />

The approximate point spectrum, a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spectrum, is defined as<br />

σap(T ) = {λ ∈ C : T − λI is not bounded below},<br />

i.e. for every M > 0, <strong>the</strong>re exists x ∈ E such that ||T x|| < M ||x||.<br />

The spectrum is a n<strong>on</strong>-empty compact subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> closed disk centered at<br />

<strong>the</strong> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> radius ||T ||. In particular, <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> an isometry is c<strong>on</strong>tained<br />

in D. Fur<strong>the</strong>rmore <strong>the</strong> boundary ∂σ(T ) <str<strong>on</strong>g>of</str<strong>on</strong>g> σ(T ) is a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> σap(T ) (see [7],<br />

Propositi<strong>on</strong> 6.7).<br />

Theorem 4.1. Let ψ be <strong>the</strong> symbol <str<strong>on</strong>g>of</str<strong>on</strong>g> a bounded <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator Mψ <strong>on</strong> B.<br />

Then σ(Mψ) = ψ(D).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For λ ∈ C, <strong>the</strong> operator Mψ−λI can be rewritten as Mψ−λ. Thus λ ∈ σ(Mψ)<br />

if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if Mψ−λ is not invertible. Clearly, if M −1<br />

exists, it is <strong>the</strong> <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g><br />

ψ−λ<br />

operator M (ψ−λ) −1.<br />

Let λ ∈ ψ(D). Then <strong>the</strong>re exists z0 ∈ D such that ψ(z0) = λ. So (ψ − λ) −1 has<br />

a pole at z0, which means M (ψ−λ) −1 is not a well-defined operator. Thus Mψ−λ is<br />

not invertible. This implies that ψ(D) ⊆ σ(Mψ).<br />

Suppose λ ∈ ψ(D). Then |ψ − λ| is bounded away from 0 by some positive<br />

1<br />

c<strong>on</strong>stant c. Thus <strong>the</strong> modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> functi<strong>on</strong> g(z) = ψ(z)−λ is in H∞ (D). In<br />

additi<strong>on</strong>,<br />

|g ′ (z)| = |ψ′ (z)| 1<br />

2 ≤<br />

|ψ(z) − λ| c2 |ψ′ <br />

(z)| = O<br />

1<br />

(1 − |z|) log 1<br />

1−|z|<br />

So Mg = M (ψ−λ) −1 is a bounded operator <strong>on</strong> B. Thus λ ∈ σ(Mψ). Therefore<br />

σ(Mψ) = ψ(D). <br />

This result is not surprising since it also holds for <strong>the</strong> <strong>space</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous, realvalued<br />

functi<strong>on</strong>s <strong>on</strong> a closed interval. A similar result holds for L 2 (µ), µ a probability<br />

measure. Specifically, for ψ ∈ L ∞ (µ), <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Mψ <strong>on</strong> L 2 (µ) is <strong>the</strong><br />

essential range <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ, that is <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> λ ∈ C such that <strong>the</strong> preimage under ψ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

every neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> λ has positive measure [8]. As an immediate c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theorems 3.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.1, we obtain <strong>the</strong> following result.<br />

Corollary 4.1. Let Mψ be an isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>.<br />

Then σ(Mψ) = {η}, where η is <strong>the</strong> unimodular c<strong>on</strong>stant value <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ.<br />

5. A Fur<strong>the</strong>r Glimpse at Weighted Compositi<strong>on</strong> Operators<br />

Our focus returns to weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> isometries am<strong>on</strong>gst<br />

<strong>the</strong>m. Let IW be <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> Wψ,ϕ such that ψ<br />

induces an isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator <str<strong>on</strong>g>and</str<strong>on</strong>g> ϕ induces an isometric compositi<strong>on</strong><br />

operator. Clearly <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isometric weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> c<strong>on</strong>tains IW .<br />

Observati<strong>on</strong> 5.1. In Theorem 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> [6], it was shown that ϕ induces an isometric<br />

compositi<strong>on</strong> operator <strong>on</strong> B if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if ϕ(0) = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> βϕ = 1. In particular,<br />

Corollary 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> [6] proved that ϕ is ei<strong>the</strong>r a rotati<strong>on</strong> or <strong>the</strong> zero set <str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ forms an<br />

infinite sequence {an} in D such that<br />

lim sup<br />

n→∞<br />

(1 − |an| 2 ) |ϕ ′ (an)| = 1.<br />

<br />

.


ISOMETRIC MULTIPLICATION OPERATORS 9<br />

Notice that <strong>the</strong> class I <str<strong>on</strong>g>of</str<strong>on</strong>g> such functi<strong>on</strong>s ϕ is very large. Indeed, ϕ ∈ I if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly<br />

if ϕ = gB where g is a n<strong>on</strong>-vanishing analytic functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D into D, <str<strong>on</strong>g>and</str<strong>on</strong>g> B is a<br />

Blaschke product whose zeros form an infinite sequence {an} c<strong>on</strong>taining 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> an<br />

infinite subsequence {anj } such that g(anj ) → 1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<br />

<br />

anj<br />

(4) lim <br />

− ak<br />

j→∞ 1<br />

− anj ak<br />

<br />

<br />

<br />

= 1.<br />

k=nj<br />

The Blaschke products whose zeros satisfy (4) include <strong>the</strong> thin Blaschke products.<br />

For more <strong>on</strong> this topic, see [13] <str<strong>on</strong>g>and</str<strong>on</strong>g> [12].<br />

Open Questi<strong>on</strong>. Are <strong>the</strong>re any isometric weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> whose<br />

symbols do not induce isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> individually?<br />

If <strong>the</strong> answer to <strong>the</strong> above questi<strong>on</strong> is negative, <strong>the</strong>n IW is exactly <strong>the</strong> set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> isometric weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> we have a<br />

complete characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir symbols.<br />

At this time, we describe <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> isometric compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g>, which<br />

with Corollary 4.1 will be used to describe <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> IW . To<br />

do so, we need an important result about <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> an isometry <strong>on</strong> a general<br />

Banach <strong>space</strong>. The following propositi<strong>on</strong> is found (in a slightly different form) as<br />

an exercise in [7], <str<strong>on</strong>g>and</str<strong>on</strong>g> we provide a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> for completeness.<br />

Propositi<strong>on</strong> 5.1. Let E be a complex Banach <strong>space</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> suppose T : E → E is an<br />

isometry. If T is invertible, <strong>the</strong>n σ(T ) ⊆ ∂D. If T is not invertible, <strong>the</strong>n σ(T ) = D.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Suppose T is an invertible isometry <strong>on</strong> E. Then 0 ∈ σ(T ), <str<strong>on</strong>g>and</str<strong>on</strong>g> so <strong>the</strong><br />

functi<strong>on</strong> z ↦→ z −1 is analytic in some neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> σ(T ). By <strong>the</strong> Spectral<br />

Mapping Theorem (see [7], p. 204), we have σ(f ◦ T ) = f(σ(T )), <str<strong>on</strong>g>and</str<strong>on</strong>g> so<br />

σ(T −1 ) = σ(T ) −1 = {λ −1 : λ ∈ σ(T )}.<br />

Since T −1 exists <str<strong>on</strong>g>and</str<strong>on</strong>g> is an isometry, we have σ(T −1 ) ⊆ D. Therefore σ(T ) ⊆ ∂D.<br />

Next, suppose T is not invertible. In order to prove that σ(T ) = D, it suffices<br />

to show that D ⊆ σ(T ). For λ ∈ D, T − λI is bounded below by 1 − |λ|. Thus,<br />

λ ∈ σap(T ). We deduce that ∂σ(T ) ⊆ σap(T ) ⊆ ∂D.<br />

Assume λ ∈ D ∩ ρ(T ). Note that λ ∈ ∂σ(T ) since ∂σ(T ) = σ(T ) ∩ ρ(T ).<br />

C<strong>on</strong>sider Γ = {tλ : t ∈ [0, ∞)}, <strong>the</strong> radial line through λ. Since σ(T ) is closed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

0 ∈ σ(T ), <strong>the</strong>re exists t ∈ [0, 1) such that tλ ∈ ∂σ(T ). This c<strong>on</strong>tradicts <strong>the</strong> fact<br />

that ∂σ(T ) ⊆ ∂D. C<strong>on</strong>sequently, D ⊆ σ(T ). <br />

For a complex number ζ <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1, define <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> ζ, denoted by ord(ζ),<br />

to be <strong>the</strong> smallest n ∈ N such that ζ n = 1. If no such n exists, we say ζ has infinite<br />

order, <str<strong>on</strong>g>and</str<strong>on</strong>g> write ord(ζ) = ∞.<br />

Theorem 5.1. Suppose ϕ induces an isometric compositi<strong>on</strong> operator <strong>on</strong> B. If ϕ<br />

is not a rotati<strong>on</strong>, <strong>the</strong>n σ(Cϕ) = D. If ϕ(z) = ζz with |ζ| = 1, <strong>the</strong>n<br />

<br />

∂D if ord(ζ) = ∞,<br />

σ(Cϕ) =<br />

〈ζ〉 if ord(ζ) < ∞,<br />

where 〈ζ〉 is <strong>the</strong> cyclic group generated by ζ.


10 ROBERT F. ALLEN AND FLAVIA COLONNA<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Assume ϕ is not a rotati<strong>on</strong>. Then by Propositi<strong>on</strong> 5.1 it suffices to show that<br />

Cϕ is not invertible. Since Cϕ is an isometry it is necessarily injective. Thus, we<br />

will show Cϕ is not surjective. Arguing by c<strong>on</strong>tradicti<strong>on</strong>, assume Cϕ is surjective.<br />

Since ϕ is not a rotati<strong>on</strong>, by Observati<strong>on</strong> 5.1 ϕ has infinitely many zeros. Let a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a ′ be distinct zeros <str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ.<br />

Define h(z) = z − a, <str<strong>on</strong>g>and</str<strong>on</strong>g> note that h is a n<strong>on</strong>-zero <strong>Bloch</strong> functi<strong>on</strong>. Since Cϕ is<br />

assumed to be surjective, <strong>the</strong>re exists a <strong>Bloch</strong> functi<strong>on</strong> f such that h = f ◦ ϕ. On<br />

<strong>the</strong> <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g>, f(0) = f(ϕ(a ′ )) = h(a ′ ) = 0. On <strong>the</strong> o<strong>the</strong>r h<str<strong>on</strong>g>and</str<strong>on</strong>g>, f(0) = f(ϕ(a)) =<br />

h(a) = 0, a c<strong>on</strong>tradicti<strong>on</strong>. Thus, Cϕ is not surjective. Therefore σ(Cϕ) = D.<br />

Now suppose ϕ(z) = ζz with |ζ| = 1. Then ϕ −1 (z) = 1<br />

ζ<br />

z <str<strong>on</strong>g>and</str<strong>on</strong>g> C−1<br />

ϕ = C ϕ −1. So<br />

by Propositi<strong>on</strong> 5.1, σ(Cϕ) ⊆ ∂D.<br />

Let G = 〈ζ〉 = ζ k : k ∈ N ∪ {0} . Note that G ⊆ ∂D. C<strong>on</strong>sider <strong>the</strong> <strong>Bloch</strong><br />

functi<strong>on</strong> f(z) = z k for k ∈ N ∪ {0}. Then<br />

(Cϕf)(z) = ζ k z k = ζ k f(z).<br />

Thus ζk is an eigenvalue <str<strong>on</strong>g>of</str<strong>on</strong>g> Cϕ with corresp<strong>on</strong>ding eigenfuncti<strong>on</strong> f. So G ⊆ σ(Cϕ).<br />

If <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> ζ is infinite, <strong>the</strong>n G is dense in ∂D. Since <strong>the</strong> spectrum is closed,<br />

we have ∂D = G ⊆ σ(Cϕ). Thus σ(Cϕ) = ∂D.<br />

Now suppose ord(ζ) = n < ∞. Then G = {ζk : k = 1, . . . , n}. We wish to show<br />

that σ(Cϕ) ⊆ G. Let µ ∈ ∂D\G. We will show that Cϕ−µI is invertible by proving<br />

that for every g ∈ B, <strong>the</strong>re exists a unique f ∈ B such that f ◦ ϕ − µf = g. Since<br />

ord(ζ) = n, <strong>the</strong>n ϕ (n) (z) def<br />

= (ϕ ◦ · · · ◦ ϕ)(z)<br />

= ζ<br />

<br />

nz = z. By repeated applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n-times<br />

ϕ, we can form <strong>the</strong> following system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s:<br />

(5)<br />

f(ϕ(z)) − µf(z) = g(z)<br />

f(ϕ (2) (z)) − µf(ϕ(z)) = g(ϕ(z))<br />

.<br />

f(z) − µf(ϕ (n−1) (z)) = g(ϕ (n−1) (z)).<br />

Equivalently, (5) can be posed as <strong>the</strong> matrix equati<strong>on</strong> Ax = b where<br />

⎡<br />

−µ<br />

⎢<br />

0<br />

⎢ .<br />

A = ⎢ .<br />

⎢<br />

⎣ 0<br />

1<br />

1<br />

−µ<br />

0<br />

0<br />

0<br />

1<br />

. ..<br />

. ..<br />

· · ·<br />

0<br />

0<br />

. ..<br />

. ..<br />

. ..<br />

· · ·<br />

· · ·<br />

· · ·<br />

. ..<br />

. ..<br />

0<br />

⎤<br />

0<br />

⎡<br />

f(z)<br />

0 ⎥ ⎢<br />

⎥ ⎢<br />

f(ϕ(z))<br />

. ⎥ ⎢<br />

⎥ ⎢<br />

⎥ , x = ⎢<br />

.<br />

. ⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢ .<br />

1 ⎦ ⎣f(ϕ<br />

−µ<br />

(n−2) (z))<br />

f(ϕ (n−1) ⎤ ⎡<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ , b = ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎦ ⎣<br />

(z))<br />

.<br />

g(z)<br />

g(ϕ(z))<br />

.<br />

.<br />

g(ϕ (n−2) (z))<br />

g(ϕ (n−1) (z))<br />

Direct calculati<strong>on</strong> shows that det(A) = (−1) n (µ n − 1) = 0, since µ /∈ G. Thus,<br />

Cϕ − µI is invertible. For µ /∈ G, <strong>the</strong> unique soluti<strong>on</strong> f <str<strong>on</strong>g>of</str<strong>on</strong>g> (5) is a (finite) linear<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> functi<strong>on</strong>s g ◦ ϕ (j−1) , for j = 1, . . . , n, each <str<strong>on</strong>g>of</str<strong>on</strong>g> which is <strong>Bloch</strong>.<br />

Thus f is <strong>Bloch</strong>. Therefore σ(Cϕ) = G. <br />

Theorem 5.2. Let ψ induce an isometric <str<strong>on</strong>g>multiplicati<strong>on</strong></str<strong>on</strong>g> operator (so that ψ is a<br />

c<strong>on</strong>stant η <str<strong>on</strong>g>of</str<strong>on</strong>g> modulus 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> ϕ induce an isometric compositi<strong>on</strong> operator. If ϕ is<br />

⎤<br />

⎥ .<br />

⎥<br />


ISOMETRIC MULTIPLICATION OPERATORS 11<br />

not a rotati<strong>on</strong>, <strong>the</strong>n σ(Wψ,ϕ) = D. If ϕ = ζz for |ζ| = 1, <strong>the</strong>n<br />

<br />

σ(Wψ,ϕ) =<br />

∂D<br />

η〈ζ〉<br />

if ord(ζ) = ∞,<br />

if ord(ζ) < ∞,<br />

where η〈ζ〉 = {ηζ k : k = 1, . . . , n}.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Observe that Wψ,ϕ = ηCϕ <str<strong>on</strong>g>and</str<strong>on</strong>g>, for λ ∈ C, Wψ,ϕ − λI = η(Cϕ − ληI).<br />

Thus, Wψ,ϕ − λI is not invertible if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if Cϕ − ληI is not invertible. Thus<br />

λ ∈ σ(Wψ,ϕ) if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if λη ∈ σ(Cϕ). The result follows immediately from<br />

Theorem 5.1. <br />

References<br />

[1] J. M. Anders<strong>on</strong>, J. Clunie, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ch. Pommerenke, On <strong>Bloch</strong> functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> normal functi<strong>on</strong>s,<br />

J. Reine Angew. Math. 279 (1974), 12–37.<br />

[2] L. Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> A. L. Shields, Multipliers <str<strong>on</strong>g>and</str<strong>on</strong>g> cyclic vectors in <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>, Michigan Math.<br />

J. 38 (1991), 141–146.<br />

[3] J. Cima, The basic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Bloch</strong> functi<strong>on</strong>s, Internat. J. Math. Math. Sci. 3 (1979),<br />

369–413.<br />

[4] J. Cima <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Wogen, On isometries <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>, Illinois J. Math. 24 (1980), 313–<br />

316.<br />

[5] F. Col<strong>on</strong>na, Extreme points <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>vex set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Bloch</strong> functi<strong>on</strong>s, Seminars in Complex Analysis<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Geometry, Sem. C<strong>on</strong>f. 4 (1988), 23–59.<br />

[6] F. Col<strong>on</strong>na, Characterisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> isometric compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>, Bull.<br />

Austral. Math. Soc. 72 (2005), 283–290.<br />

[7] J. B. C<strong>on</strong>way, A Course in Functi<strong>on</strong>al Analysis, sec<strong>on</strong>d ed., Springer-Verlag, New York, 1990.<br />

[8] R. G. Douglas, Banach Algebra Techniques in Operator Theory, sec<strong>on</strong>d ed., Springer-Verlag,<br />

New York, 1998.<br />

[9] P. L. Duren, B. W. Romberg, <str<strong>on</strong>g>and</str<strong>on</strong>g> A. L. Shields, Linear functi<strong>on</strong>als <strong>on</strong> H p <strong>space</strong>s with<br />

0 < p < 1, J. Reine Angew. Math. 238 (1969), 32–60.<br />

[10] M. El-Gebeily <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Wolfe, <str<strong>on</strong>g>Isometries</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> disk algebra, Proc. Amer. Math. Soc. 93 (1985),<br />

697–702.<br />

[11] F. Forelli, The isometries <strong>on</strong> H p , Canadian J. Math 16 (1964), 721–728.<br />

[12] P. Gorkin <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Mortini, Universal Blaschke products, Proc. Cambridge Philos. Soc. 136<br />

(2004), 175–184.<br />

[13] H. Hedenmalm, Thin interpolating sequences <str<strong>on</strong>g>and</str<strong>on</strong>g> three algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded functi<strong>on</strong>s, Proc.<br />

Amer. Math. Soc. 99 (1987), 489–495.<br />

[14] C. J. Kolaski, <str<strong>on</strong>g>Isometries</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted Bergman <strong>space</strong>s, Canad. J. Math 34 (1982), 910–915.<br />

[15] M. J. Martín <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Vukotić, <str<strong>on</strong>g>Isometries</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Bloch</strong> Space Am<strong>on</strong>g <strong>the</strong> Compositi<strong>on</strong> Operators,<br />

Bull. L<strong>on</strong>d. Math. Soc. 39 (2007), 151–155.<br />

[16] S. Ohno <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Zhao, Weighted compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>, Bull. Austral.<br />

Math. Soc. 63 (2001), 177–185.<br />

[17] Ch. Pommerenke, On <strong>Bloch</strong> functi<strong>on</strong>s, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. 2 (1970), 689–695.<br />

[18] W. Rudin, L p -isometries <str<strong>on</strong>g>and</str<strong>on</strong>g> equimeasurability, Indiana Univ. Math. J. 25 (1976), 215–228.<br />

[19] C. Xi<strong>on</strong>g, Norm <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>operators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Bloch</strong> <strong>space</strong>, Bull. Austral. Math. Soc. 70<br />

(2004), 293–299.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<strong>the</strong>matical Sciences, George Mas<strong>on</strong> University, 4400 University<br />

Drive, Fairfax, VA 22030, USA<br />

E-mail address: rallen2@gmu.edu<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<strong>the</strong>matical Sciences, George Mas<strong>on</strong> University, 4400 University<br />

Drive, Fairfax, VA 22030, USA<br />

E-mail address: fcol<strong>on</strong>na@gmu.edu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!