06.05.2013 Views

screening elite genotypes and ipm of defoliators in groundnut

screening elite genotypes and ipm of defoliators in groundnut

screening elite genotypes and ipm of defoliators in groundnut

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SCREENING ELITE GENOTYPES AND IPM OF<br />

DEFOLIATORS IN GROUNDNUT<br />

Thesis submitted to the<br />

University <strong>of</strong> Agricultural Sciences, Dharwad<br />

<strong>in</strong> partial fulfillment <strong>of</strong> the requirements for the<br />

Degree <strong>of</strong><br />

Master <strong>of</strong> Science (Agriculture)<br />

<strong>in</strong><br />

Agricultural Entomology<br />

By<br />

RASHMI S. YAMBHATNAL<br />

DEPARTMENT OF AGRICULTURAL ENTOMOLOGY<br />

COLLEGE OF AGRICULTURE, DHARWAD<br />

UNIVERSITY OF AGRICULTURAL SCIENCES,<br />

DHARWAD – 580 005<br />

JULY, 2010


ADVISORY COMMITTEE<br />

DHARWAD<br />

JULY, 2010 (R. K. PATIL)<br />

CHAIRMAN<br />

Approved by :<br />

Chairman :<br />

Members : 1.<br />

2.<br />

3.<br />

(R. K. PATIL)<br />

(R. A. BALIKAI)<br />

(P. V. KENCHANAGOUDAR)<br />

(B. T. NINGANUR)


CONTENTS<br />

Sl. No. Chapter Particulars<br />

CERTIFICATE<br />

ACKNOWLEDGEMENT<br />

LIST OF TABLES<br />

LIST OF FIGURES<br />

LIST OF PLATES<br />

LIST OF APPENDIX<br />

1. INTRODUCTION<br />

2. REVIEW OF LITERATURE<br />

2.1 Screen<strong>in</strong>g <strong>of</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

2.2 Different components <strong>of</strong> IPM for S.litura<br />

3. MATERIAL AND METHODS<br />

3.1 Field Screen<strong>in</strong>g<br />

3.2 IPM modules for Northern transitional zone <strong>of</strong> Karnataka<br />

4. EXPERIMENTAL RESULTS<br />

4.1 Field <strong>screen<strong>in</strong>g</strong> <strong>of</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

4.2 Evaluation <strong>of</strong> IPM modules <strong>in</strong> <strong>groundnut</strong><br />

5. DISCUSSION<br />

5.1 Field <strong>screen<strong>in</strong>g</strong><br />

5.2 Evaluation <strong>of</strong> IPM modules <strong>in</strong> <strong>groundnut</strong><br />

6. SUMMARY AND CONCLUSIONS<br />

REFERENCES


Table<br />

No.<br />

LIST OF TABLES<br />

Title<br />

1. Performance <strong>of</strong> <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong> aga<strong>in</strong>st Spodoptera litura<br />

damage under field condition dur<strong>in</strong>g Kharif 2009<br />

2. In vitro larval duration (<strong>in</strong> days) <strong>of</strong> Spodoptera litura on <strong>elite</strong><br />

<strong>groundnut</strong> <strong>genotypes</strong><br />

3. Ga<strong>in</strong> <strong>in</strong> larval weight <strong>and</strong> larval mortality <strong>of</strong> Spodoptera litura at<br />

different days after hatch<strong>in</strong>g on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong> under<br />

laboratory conditions<br />

4. Biological parameters <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>groundnut</strong><br />

<strong>genotypes</strong> under laboratory conditions<br />

5. In vitro biology <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

6. Thrips population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

7. Leaf hoppers population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

8. Thysanoplusia orichalcea population <strong>in</strong> different IPM modules <strong>of</strong><br />

<strong>groundnut</strong><br />

9. Spodoptera litura population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

10. Spilarctia obliqua population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

11. Aproraema modicella population <strong>in</strong> different IPM modules <strong>of</strong><br />

<strong>groundnut</strong><br />

12. 12: Per cent defoliation by <strong>defoliators</strong> at 35, 50 <strong>and</strong> 65 days after<br />

sow<strong>in</strong>g <strong>in</strong> different IPM modules<br />

13. The management <strong>of</strong> Spodoptera litura <strong>in</strong> IPM modules <strong>of</strong> <strong>groundnut</strong><br />

dur<strong>in</strong>g Kharif 2009<br />

14. Incidence <strong>of</strong> suck<strong>in</strong>g <strong>and</strong> defoliat<strong>in</strong>g <strong>in</strong>sect pests on sunflower (Trap<br />

crop)<br />

15. Incidence <strong>of</strong> <strong>defoliators</strong> on ma<strong>in</strong> <strong>and</strong> trap crop<br />

16. Natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

(Cocc<strong>in</strong>ellids)<br />

17. Natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

(Syrphids)<br />

18. Natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

(Campoletis chloridae)<br />

19. Economics <strong>of</strong> IPM modules dur<strong>in</strong>g Kharif 2009


Figure<br />

No.<br />

LIST OF FIGURES<br />

Title<br />

1. Performance <strong>of</strong> <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong> for Spodoptera litura<br />

damage dur<strong>in</strong>g kharif 2009<br />

2. In vitro biology <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

3. Ga<strong>in</strong> <strong>in</strong> larval weight <strong>and</strong> larval mortality <strong>of</strong> Spodoptera litura at<br />

different days after hatch<strong>in</strong>g on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

4. Incidence <strong>of</strong> <strong>defoliators</strong> on ma<strong>in</strong> <strong>and</strong> trap crop<br />

5. Pest <strong>and</strong> natural enemy population <strong>in</strong> different IPM modules <strong>of</strong><br />

<strong>groundnut</strong><br />

6. Economics <strong>of</strong> IPM modules dur<strong>in</strong>g kharif, 2009<br />

Plate<br />

No.<br />

LIST OF PLATES<br />

Title<br />

1. Resistant <strong>and</strong> susceptible <strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong><br />

2. IPM modules take up <strong>in</strong> <strong>groundnut</strong><br />

Appendix<br />

No.<br />

LIST OF APPENDIX<br />

Title<br />

I. Pheromone trap catches <strong>of</strong> Spodoptera litura


1. INTRODUCTION<br />

The cultivated <strong>groundnut</strong> (Arachis hypogaea L.) is an important oilseed crop <strong>of</strong><br />

tropical <strong>and</strong> subtropical areas <strong>of</strong> the world. In India, the crop occupies an area <strong>of</strong> 5.7 million<br />

hector with a production <strong>of</strong> 4.7 million metric tons with an average productivity <strong>of</strong> 0.8 metric<br />

tons per hectare dur<strong>in</strong>g ra<strong>in</strong>y season (Radhamani <strong>and</strong> S<strong>in</strong>gh, 2008). Among major <strong>groundnut</strong><br />

produc<strong>in</strong>g states <strong>of</strong> India, Karnataka ranks fourth <strong>in</strong> acreage (0.76 m ha) with total production<br />

<strong>of</strong> 0.38 million tons (Anon., 2009). More than 50 <strong>in</strong>sects have been reported to occur on<br />

<strong>groundnut</strong> <strong>in</strong> India <strong>and</strong> few are quite destructive <strong>and</strong> reduce the yield considerably.<br />

Aproaerema modicella Deventer, Amasacta albistriga Walker, Spodoptera litura Fabricus,<br />

Helicoverpa armigera Hubner, Aphis craccivora Koch, Frankl<strong>in</strong>iella schultzeri Trybom, Thrips<br />

palmi Karny <strong>and</strong> Scirtothrips dorsalis Hood are considered as important destructive pests on<br />

<strong>groundnut</strong> (Am<strong>in</strong> <strong>and</strong> Mohammad, 1980).<br />

The tobacco caterpillar, S. litura is widely distributed throughout the world. It is a<br />

polyphagous pest <strong>and</strong> reported on more than 120 host plants. It is next to H. armigera <strong>in</strong><br />

terms <strong>of</strong> economic importance at national level. The population <strong>of</strong> this defoliator <strong>in</strong> <strong>groundnut</strong><br />

ecosystem has been found to <strong>in</strong>crease <strong>in</strong> number <strong>and</strong> <strong>in</strong>tensity both <strong>in</strong> ra<strong>in</strong>y <strong>and</strong> post ra<strong>in</strong>y<br />

seasons, especially <strong>in</strong> fields where <strong>in</strong>secticides have been applied (Rao <strong>and</strong> Shanower, 1989;<br />

Stechmann <strong>and</strong> Semisi, 1984) due to destruction <strong>of</strong> natural control system. In recent years,<br />

these pests created a serious threat to agricultural <strong>in</strong>dustry due to development <strong>of</strong> resistance<br />

towards commonly used <strong>in</strong>secticides. Populations <strong>of</strong> many pests <strong>in</strong>clud<strong>in</strong>g S. litura have<br />

developed resistance to many commercially available pesticides (Ramakrishnan et al., 1984<br />

<strong>and</strong> Rame Gowda, 1999).<br />

Spanish bunch type cultivars are the most popular cultivars <strong>in</strong> the northern<br />

transitional zone <strong>of</strong> Karnataka as they mature early <strong>and</strong> facilitate double cropp<strong>in</strong>g. But, all<br />

presently cultivated varieties are susceptible to S. litura. Scientists have been successful <strong>in</strong><br />

develop<strong>in</strong>g some cultivars utiliz<strong>in</strong>g resistant sources. Hence systematic evaluation <strong>of</strong> these<br />

<strong>genotypes</strong> developed at the AICRP on oilseeds, UAS, Dharwad center was taken to f<strong>in</strong>d out<br />

nature <strong>of</strong> resistance <strong>in</strong> the present <strong>in</strong>vestigations.<br />

Mechanisms <strong>of</strong> resistance are under genetic <strong>and</strong> environmental control. The resistant<br />

cultivar helps <strong>in</strong> suppress<strong>in</strong>g the pest population <strong>and</strong> act as a pr<strong>in</strong>cipal control method. The<br />

<strong>genotypes</strong> with different mechanisms <strong>of</strong> resistance could be hybridized to pool the genes to<br />

enhance the level <strong>and</strong> effectiveness <strong>of</strong> resistance. Enhanced resistance is desirable <strong>in</strong><br />

manag<strong>in</strong>g the pest especially when there is heavy pest load or an early outbreak, due to<br />

cont<strong>in</strong>uous cropp<strong>in</strong>g system. The knowledge on mechanisms <strong>of</strong> resistance or avoidance is<br />

also helpful <strong>in</strong> design<strong>in</strong>g appropriate strategies <strong>in</strong> <strong>screen<strong>in</strong>g</strong> for resistance to the pest.<br />

Hence, entomologist <strong>and</strong> environmentalist felt to develop viable alternate strategies<br />

which could be <strong>in</strong>tegrated <strong>in</strong>to a workable system called <strong>in</strong>tegrated pest management that<br />

could reduce negative <strong>in</strong>fluence <strong>of</strong> chemical pesticides on the environment by utiliz<strong>in</strong>g<br />

ec<strong>of</strong>riendly components such as bio-pesticides, cultural practices, semiochemicals <strong>and</strong> many<br />

other harmonious practices. Therefore, a unilateral approach <strong>of</strong> controll<strong>in</strong>g crop pests by<br />

synthetic <strong>in</strong>secticides has dictated the necessity for need based, cost effective, eco-friendly<br />

<strong>and</strong> safe pest control strategies.<br />

In recent years the problem <strong>of</strong> resistance to chemical has worsened, result<strong>in</strong>g <strong>in</strong> 20-<br />

30 per cent crop loss due to pests <strong>in</strong> India (Bhargava et al., 2008) <strong>and</strong> caus<strong>in</strong>g widespread<br />

hardship especially amongst poor farmers. In addition to the development <strong>of</strong> resistance <strong>in</strong><br />

pests, <strong>in</strong>discrim<strong>in</strong>ate <strong>and</strong> <strong>in</strong>judicious use <strong>of</strong> pesticides has grossly poisoned almost each<br />

component <strong>of</strong> the biosphere, caused resurgence <strong>of</strong> pests <strong>and</strong> reduction <strong>of</strong> natural enemies <strong>in</strong><br />

agroecosystems allow<strong>in</strong>g rapid rebund <strong>of</strong> target <strong>and</strong> m<strong>in</strong>or pests. The development <strong>of</strong> a<br />

broad-spectrum resistance to <strong>in</strong>secticides has complicated its chemical control. It is therefore<br />

imperative that an <strong>in</strong>tegrated pest management strategy should be devised for manag<strong>in</strong>g this<br />

pest.


In some parts <strong>of</strong> the northern Karnataka, farmers are experienc<strong>in</strong>g difficulty <strong>in</strong><br />

manag<strong>in</strong>g the pests on <strong>groundnut</strong> <strong>and</strong> other crops. Groundnut is largely a smallholder crop<br />

grown under ra<strong>in</strong>fed with low <strong>in</strong>puts. The low yields <strong>in</strong> <strong>groundnut</strong> are primarily due to low<br />

<strong>in</strong>puts, ra<strong>in</strong>fed cultivation, non availability <strong>of</strong> seeds <strong>of</strong> suitable high yield<strong>in</strong>g variety <strong>and</strong> the<br />

occurrence <strong>of</strong> <strong>in</strong>sect pests <strong>and</strong> diseases at different stages <strong>of</strong> the crop <strong>and</strong> also due to<br />

extreme climatic conditions.<br />

Millets are cultivated as ra<strong>in</strong>-fed crops, which require less crop management<br />

practices, there is less preference shown by farmers for cultivat<strong>in</strong>g these crops. Whilst a<br />

number <strong>of</strong> traditional foods are made <strong>in</strong> the domestic household, the lack <strong>of</strong> large-scale<br />

<strong>in</strong>dustrial utilization discourages the farmers rais<strong>in</strong>g these crops.<br />

Integration <strong>of</strong> biological agents, mixed <strong>and</strong> <strong>in</strong>tercropp<strong>in</strong>g, pheromone traps <strong>and</strong><br />

resistant varieties appear to be ideal strategies aga<strong>in</strong>st S. litura on <strong>groundnut</strong> crop. With this<br />

background <strong>in</strong> m<strong>in</strong>d field <strong>and</strong> laboratory trials were undertaken dur<strong>in</strong>g the year 2009 kharif<br />

season at the Ma<strong>in</strong> Agricultural Research Station, University <strong>of</strong> Agricultural Sciences,<br />

Dharwad. Follow<strong>in</strong>g are objectives related to the above study.<br />

1. Screen<strong>in</strong>g <strong>of</strong> <strong>elite</strong> <strong>groundnut</strong> genotype under field condition <strong>and</strong> to study the biology<br />

<strong>of</strong> S. litura on <strong>elite</strong> <strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong> under laboratory condition.<br />

2. To evaluate IPM modules for northern transitional zone <strong>of</strong> Karnataka.


2. REVIEW OF LITERATURE<br />

The review <strong>of</strong> literature perta<strong>in</strong><strong>in</strong>g to biology <strong>and</strong> <strong>in</strong>tegrated pest management <strong>of</strong><br />

Spodoptera litura on <strong>groundnut</strong> are presented <strong>in</strong> the follow<strong>in</strong>g paragraphs.<br />

2.1 Screen<strong>in</strong>g <strong>of</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

Moss (1980) reiterated that research done on the utilization <strong>of</strong> wild species <strong>of</strong> Arachis<br />

<strong>in</strong> U.K. has been <strong>of</strong> immense help <strong>in</strong> the ICRISAT programme. Fifty cultivated <strong>genotypes</strong><br />

were screened for resistance to <strong>defoliators</strong> <strong>in</strong> the AICRP on <strong>groundnut</strong> at Dharwad dur<strong>in</strong>g<br />

kharif 1985.Among them 40 entries recorded <strong>in</strong>jury rat<strong>in</strong>g 3 while 7 entries were under rat<strong>in</strong>g<br />

2(Anon., 1985).<br />

Further, GBPRS-312 <strong>and</strong> ICG-5240 were found to be resistant to S.litura <strong>in</strong> the<br />

laboratory trails at ICRISAT, Hyderabad (Anon., 1995). The cultivated <strong>groundnut</strong> <strong>genotypes</strong><br />

such as ICG-7948, 8081, 8232, 8781, 8977, 9012, 9039, 9449 <strong>and</strong> 9961 were grouped as<br />

promis<strong>in</strong>g by Kulkarni, (1989). Dark green leaves <strong>and</strong> rough texture were associated with<br />

resistance, while light green <strong>and</strong> smooth texture with susceptibility.<br />

Dur<strong>in</strong>g kharif 1995-97 at Jalgaon, Maharashtra, India, S. litura larval damage to<br />

foliage was recorded <strong>in</strong> 32 <strong>genotypes</strong>. The lowest leaf damage (5%) was recorded <strong>in</strong> ICGV<br />

86156, ICGV 86400, ICGV 86528, ICGV 87128, ICGV 87141, ICGV 87290, ICGV 87411 <strong>and</strong><br />

ICGV 91214 (Dharne <strong>and</strong> Patel, 2000). Fifty <strong>groundnut</strong> <strong>genotypes</strong> were screened for<br />

resistance to S.litura <strong>in</strong> All India Co-ord<strong>in</strong>ated Research Project on Oil Seeds at Dharwad<br />

(Anon., 1985). Due to low level <strong>of</strong> <strong>in</strong>festation dur<strong>in</strong>g kharif 1985, majority <strong>of</strong> entries (40) fell<br />

under <strong>in</strong>jury rat<strong>in</strong>g <strong>of</strong> 3. However, 7 entries were under <strong>in</strong>jury rat<strong>in</strong>g <strong>of</strong> 2 <strong>and</strong> three entries<br />

susta<strong>in</strong>ed higher damage with a rat<strong>in</strong>g <strong>of</strong> 4. At Hissar, GC-79 <strong>and</strong> GC-333 were observed to<br />

be from S. litura damage (Anon., 1985). Of the 50 cultivated <strong>groundnut</strong> <strong>genotypes</strong> screened<br />

for resistance to defoliator, 22 entries fell below <strong>in</strong>jury rat<strong>in</strong>g scale <strong>of</strong> 2, thirteen below rat<strong>in</strong>g<br />

3, three below rat<strong>in</strong>g 4,six below rat<strong>in</strong>g 5 <strong>and</strong> one below rat<strong>in</strong>g 6 (Anon., 1986).<br />

Fifteen A. hypogaea <strong>genotypes</strong> were screened <strong>in</strong> laboratory us<strong>in</strong>g choice test for<br />

resistance to H. armigera (3 rd <strong>in</strong>star) <strong>and</strong> S. litura (1 st , 3rd <strong>and</strong> 5 th <strong>in</strong>star). Of them, only BG2 a<br />

Virg<strong>in</strong>ia bunch variety was resistant to both the pests (S<strong>in</strong>gh et al. 1993). Based on<br />

oviposition <strong>and</strong> feed<strong>in</strong>g performance test conducted with the seven cultivars, NC Ac 343 was<br />

least preferred, while the UPL Pn 2 was the most preferred <strong>and</strong> EG Pn 13 occupied an<br />

<strong>in</strong>termediate position (Xie Jia Li, 1987). The cultivar C-501 was most resistant <strong>and</strong> M-145 was<br />

the most susceptible among the n<strong>in</strong>e <strong>groundnut</strong> varieties tested <strong>in</strong> laboratory at Pantnagar on<br />

the basis <strong>of</strong> growth <strong>and</strong> development <strong>of</strong> S. litura (Tiwari et al. 1989).<br />

Prelim<strong>in</strong>ary <strong>screen<strong>in</strong>g</strong> to assess the resistance to S. litura was carried out <strong>in</strong> the field<br />

on six Virg<strong>in</strong>ia bunch <strong>and</strong> 18 Virg<strong>in</strong>ia runner accessions <strong>and</strong> higher resistance was recorded<br />

by Virg<strong>in</strong>ia runner varieties NC Ac 17840, NFG 79 <strong>and</strong> EC 21989 (Rajgopal et al. 1988). In<br />

<strong>screen<strong>in</strong>g</strong> study by Patil et al. (1991), entries ICGV 87264 <strong>and</strong> 86598 have recorded the least<br />

damage (< 17.5%) <strong>and</strong> entries ICGV 86598 <strong>and</strong> 86125 have also recorded less damage<br />

(


mutants were systematically screened for S. litura <strong>in</strong> 1996. Based on leaf area damage, three<br />

mutants (28-2, 45 <strong>and</strong> 110) were identified as resistant to S. litura (Prasad et al., 1998).<br />

Screen<strong>in</strong>g <strong>of</strong> <strong>groundnut</strong> germplasm <strong>and</strong> advanced breed<strong>in</strong>g l<strong>in</strong>es <strong>in</strong> the All India Co-<br />

ord<strong>in</strong>ate Project has resulted <strong>in</strong> new sources <strong>of</strong> resistance to S. litura with better agronomic<br />

background –ICGV 86364, 91172, 86400, 86402, 91112, M 335 (Anon., 1998). ICGVs 86364,<br />

86590, 91167, ICGS 44 <strong>and</strong> ICG 22719 (Anon., 1999). Several years <strong>of</strong> <strong>screen<strong>in</strong>g</strong> germplasm<br />

collections at National Research Center for Groundnut, Junagadh resulted <strong>in</strong> <strong>genotypes</strong> viz.,<br />

NRCG 5724, 2615, 9773, 8313 <strong>and</strong> 8673 possess<strong>in</strong>g resistance/ tolerance to S. litura (Basu,<br />

2003).<br />

2.1.1 Biology <strong>of</strong> Spodoptera litura<br />

2.1.1.1 Biology <strong>of</strong> Spodoptera litura on different hosts<br />

Balasubramanian et al. (1984) reported the effect <strong>of</strong> castor (Ric<strong>in</strong>us communis L.),<br />

tomato (Lycopersicon esculentum Mill.), sweet potato (Ipomoea batatas L.), okara<br />

(Abalmuschus esculentus L.), cotton (Gossypium sp.), sunflower (Helianthus annus L.),<br />

Lucerne (Medicago sativa L.) <strong>and</strong> egg plant (Solanum melongena L.) on the biological<br />

aspects <strong>of</strong> S. litura. The <strong>in</strong>cubation period was shortest on castor (3.5 days) <strong>and</strong> longest on<br />

okra (5.0 day). The duration <strong>of</strong> larval, pre-pupal <strong>and</strong> pupal periods were less <strong>and</strong> the larval<br />

length, pupal weight <strong>and</strong> length, percentage <strong>of</strong> pupation <strong>and</strong> adult emergence were high on<br />

castor. Moths reared on castor had shorter developmental period, high growth <strong>in</strong>dex, low preoviposition<br />

period, extended oviposition period <strong>and</strong> high fecundity. Similar trend was reported<br />

by Garad et al. (1984). Parasuraman <strong>and</strong> Jayaraj (1985) found castor as ideal host with<br />

shorter life cycle, maximum growth <strong>in</strong>dex <strong>and</strong> high fecundity, <strong>groundnut</strong> was <strong>in</strong>termediate.<br />

Maize <strong>and</strong> horsegram affected biology, growth <strong>in</strong>dex <strong>and</strong> fecundity.<br />

Bhalani (1989) studied growth <strong>and</strong> development <strong>of</strong> S. litura on seven natural food<br />

plants <strong>in</strong> the laboratory. On the basis <strong>of</strong> larval survival, growth <strong>in</strong>dex, pupal weight, size,<br />

duration, emergence <strong>and</strong> fecundity, castor was the most suitable food plant, while maize was<br />

least preferred, result<strong>in</strong>g <strong>in</strong> a prolonged larval period <strong>and</strong> lowest growth <strong>in</strong>dex. The suitability<br />

<strong>of</strong> the rema<strong>in</strong><strong>in</strong>g plants was as follows cotton> <strong>groundnut</strong> > cowpea> green gram >sorghum.<br />

Kulkarni (1989) reported the effect <strong>of</strong> castor, soybean, mulberry, two cultivated<br />

<strong>groundnut</strong> varieties <strong>and</strong> two wild <strong>groundnut</strong> varieties on the biological aspects <strong>of</strong> S. litura.<br />

Among the all hosts, castor proved to be most suitable as it favored optimum growth <strong>and</strong><br />

development <strong>of</strong> the <strong>in</strong>sect. The larval period was 16.5 days on castor as aga<strong>in</strong>st 20.0 days on<br />

cultivated <strong>groundnut</strong>. The larvae passed through six <strong>in</strong>stars on all the hosts except the wild<br />

peanut <strong>genotypes</strong>. S. litura reared on the castor had shorter life cycle (30.8 days) while<br />

<strong>groundnut</strong> had longer life cycle (37.8 days). The fecundity was maximum on castor (635),<br />

m<strong>in</strong>imum on mulberry (450) <strong>and</strong> <strong>in</strong>termediate on <strong>groundnut</strong> (585).<br />

The <strong>in</strong>fluence <strong>of</strong> three host plants viz., castor, sunflower <strong>and</strong> <strong>groundnut</strong> on the<br />

organic constituents <strong>and</strong> the fecundity <strong>of</strong> S. litura was studied <strong>in</strong> the laboratory. The organic<br />

constituents <strong>of</strong> the leaves significantly <strong>in</strong>fluence the larvae. Females result<strong>in</strong>g from larvae on<br />

castor laid 1038 ± 116 eggs while those from sunflower <strong>and</strong> <strong>groundnut</strong> 684 ± 53 <strong>and</strong> 878 ± 73<br />

eggs, respectively. The prote<strong>in</strong> <strong>and</strong> nitrogen contents <strong>of</strong> the leaves <strong>of</strong> castor were higher than<br />

those <strong>of</strong> the other two host plants <strong>and</strong> this was responsible for the higher fecundity on castor<br />

(Sankarperumal et al., 1989).<br />

Bae-SoonDo (1999) conducted study to determ<strong>in</strong>e the larval development <strong>of</strong> tobacco<br />

cutworm, S. litura on leaves <strong>of</strong> 11 different legum<strong>in</strong>ous plants, varieties <strong>and</strong> cultivars, <strong>and</strong> to<br />

measure the amount <strong>of</strong> leaves fed by the larvae. Larval duration ranged from 11.5 to 15.7<br />

days depend<strong>in</strong>g on the different food sources with the shortest on soybean cv.<br />

Geomjeongkong-1 <strong>and</strong> the longest on <strong>groundnut</strong> cv. Daekwangddangkong. Among the 6<br />

larval development stages, the 1 st <strong>in</strong>star was the longest (3.2-5.0 days) while the 4th <strong>in</strong>star<br />

was the shortest (1.0-1.5 days). In general the amount <strong>of</strong> leaves consumed was <strong>in</strong>creased<br />

with larval age. Consumption <strong>of</strong> the total food (55 to 74%) was only dur<strong>in</strong>g the last <strong>in</strong>star


stage, with the female consum<strong>in</strong>g more food than the male. Larval mortality <strong>and</strong> the sex ratio<br />

seem to have no relation with the amount <strong>of</strong> food consumed per species.<br />

Accord<strong>in</strong>g to Ghumare <strong>and</strong> Mukheijee (2003) the five host plants [castor (Ric<strong>in</strong>us<br />

communis L.), cotton (Gossypium hirsutm L.), tomato (Lycopersicum esculentum M.) m<strong>in</strong>t<br />

(Mentha arvensis L.) <strong>and</strong> cabbage (Brassica oleracea L.)] belong<strong>in</strong>g to different families were<br />

used to study the performance <strong>of</strong> the Asian armyworm, S. litura. Highest consumption <strong>of</strong> food<br />

<strong>and</strong> dry weight ga<strong>in</strong> was observed <strong>in</strong> larvae fed on castor. M<strong>in</strong>t did not support optimum larval<br />

growth because <strong>of</strong> low digestibility <strong>and</strong> low efficiency <strong>of</strong> conversion <strong>of</strong> digested food to body<br />

matter. Dry weight ga<strong>in</strong> ranged from 26.64 mg on m<strong>in</strong>t to 86.80 mg <strong>in</strong> castor.<br />

The biological parameters <strong>of</strong> S. litura were studied on cotton <strong>and</strong> different weed<br />

plants viz., itsit (Trianthema portulacastrum), t<strong>and</strong>la (Digera arvensis) <strong>and</strong> thakra (Tribulus<br />

terrestris) under laboratory conditions at Entomology Research Farm <strong>and</strong> Laboratories <strong>of</strong> the<br />

Department <strong>of</strong> Entomology at Punjab Agricultural University, Ludhiana dur<strong>in</strong>g 2006 Kharif<br />

season. The study suggests that S. litura showed faster larval development on all three<br />

weeds as compared to cotton, although the larval <strong>and</strong> pupal survival was lower on these<br />

weeds. These results suggest that the role <strong>of</strong> weeds <strong>in</strong> the development <strong>of</strong> S. litura cannot be<br />

overlooked (Inderjit et al., 2006).<br />

Dara <strong>and</strong> Prasad (2007) estimated the population parameters <strong>of</strong> S. litura on green<br />

gram (Vigna radiate L.), black gram (Vigna mungo L.), <strong>groundnut</strong> (A. hypogaea) <strong>and</strong> chilli<br />

(Capsicum annuum L.) along with castor bean as control <strong>in</strong> the laboratory. Field-collected egg<br />

masses <strong>of</strong> S. litura were used to start the <strong>in</strong>itial colonies. S. litura population showed a<br />

positive trend on all host plants. The population parameters net reproductive rate, <strong>in</strong>tr<strong>in</strong>sic<br />

<strong>and</strong> f<strong>in</strong>ite rates <strong>of</strong> <strong>in</strong>crease, weekly multiplication rate, <strong>and</strong> potential fecundity were highest on<br />

castor bean, followed by greengram, blackgram, <strong>groundnut</strong> <strong>and</strong> chilli. Accord<strong>in</strong>gly, the mean<br />

generation time <strong>and</strong> doubl<strong>in</strong>g time were shortest on castor bean, followed by greengram,<br />

blackgram, <strong>groundnut</strong> <strong>and</strong> chilli. Stable age-distribution showed that egg, larvae <strong>and</strong> pupae<br />

contributed to > 99 per cent <strong>of</strong> the population stable age.<br />

Maghodia <strong>and</strong> Koshiya (2008) studied that the life history <strong>of</strong> S. litura at 27.1 0 C <strong>in</strong> the<br />

laboratory on five different crops presumably observed as host plants <strong>of</strong> S. litura. The data<br />

were analyzed based on age-stages <strong>and</strong> variability <strong>of</strong> developmental rate among <strong>in</strong>dividuals<br />

<strong>of</strong> the pest. The highest <strong>in</strong>tr<strong>in</strong>sic rate <strong>of</strong> <strong>in</strong>crease (r), the f<strong>in</strong>ite rate <strong>of</strong> <strong>in</strong>crease <strong>and</strong> the net<br />

reproduction rate (Ro) <strong>of</strong> S. litura were 0.174, 1.192 females/day, 1370.74 <strong>of</strong>fspr<strong>in</strong>g/<strong>in</strong>dividual,<br />

respectively, observed on castor, while the highest mean generation time (T) 45.48 days was<br />

observed on cotton. The life expectancy <strong>of</strong> newly deposited eggs was 17.34, 17.44, 16.39,<br />

17.45 <strong>and</strong> 17.98 on castor, tobacco, <strong>groundnut</strong>, cotton <strong>and</strong> cabbage, respectively. The age<br />

specific fecundity <strong>of</strong> S. litura was 395.64, 179.32, 186.25, 292.64 <strong>and</strong> 25.14 progenies per<br />

day on the 42 nd , 44 th , 41 st , 46 th <strong>and</strong> 51 st days for castor, tobacco, <strong>groundnut</strong>, cotton <strong>and</strong><br />

cabbage, respectively. Studies on age-specific distribution <strong>of</strong> the pest on different hosts<br />

revealed that the eggs <strong>and</strong> larvae contributed the highest to the population, whereas the<br />

contribution <strong>of</strong> the pupae <strong>and</strong> adults was negligible.<br />

2.1.1.2 Biology <strong>of</strong> Spodoptera litura on different varieties <strong>of</strong> <strong>groundnut</strong><br />

Host plant resistance can be exploited as an effective <strong>and</strong> environment friendly<br />

component <strong>of</strong> pest management. At present, S. litura is a prom<strong>in</strong>ent defoliator associated with<br />

<strong>groundnut</strong> crop. So <strong>in</strong>corporation <strong>of</strong> resistance to this <strong>in</strong> suitable varieties has been high<br />

priority for <strong>groundnut</strong> breeders <strong>in</strong> association with entomologists.<br />

Tiwari et al. (1980) studied on the survival <strong>and</strong> weight ga<strong>in</strong> <strong>in</strong> larvae <strong>of</strong> S. litura reared<br />

on 9 varieties <strong>of</strong> <strong>groundnut</strong>. Four days after feed<strong>in</strong>g, larval survival was similar on all varieties<br />

except C-501, where high mortality rate was recorded. This trend was also observed 8 days<br />

after feed<strong>in</strong>g, but after 12 days the mortality rate did not change. Larvae feed<strong>in</strong>g on C-501<br />

weighed 1.26 mg after 4 days, while on Dwarf Mutant larval weight was 4.41 mg. Larval<br />

weight after 8 days' feed<strong>in</strong>g was significantly greater on Dwarf Mutant than on the other<br />

varieties, <strong>and</strong> was lowest on C-501. After 12 days <strong>of</strong> feed<strong>in</strong>g, the greatest weight ga<strong>in</strong> was


observed on Dwarf Mutant, the lowest ga<strong>in</strong>s were observed <strong>in</strong> larvae on AH-1192, OG-71-3,<br />

JH-62, M-13 <strong>and</strong> C-501, <strong>and</strong> moderate ga<strong>in</strong>s were observed on J-11, Pol-2 <strong>and</strong> M-145.<br />

Intr<strong>in</strong>sic rates <strong>of</strong> <strong>in</strong>crease <strong>of</strong> S. litura on 9 different varieties <strong>of</strong> <strong>groundnut</strong> were<br />

assessed <strong>in</strong> Andhra Pradesh, India. Life-tables were prepared from the results <strong>of</strong><br />

observations on the development <strong>of</strong> larvae <strong>and</strong> on the number <strong>and</strong> viability <strong>of</strong> eggs produced<br />

by the ensu<strong>in</strong>g adults, the <strong>in</strong>tr<strong>in</strong>sic daily, weekly <strong>and</strong> monthly rates <strong>of</strong> <strong>in</strong>crease be<strong>in</strong>g<br />

calculated. The duration <strong>of</strong> a generation was shorter <strong>and</strong> the <strong>in</strong>tr<strong>in</strong>sic rate <strong>of</strong> <strong>in</strong>crease was<br />

higher on the varieties, Dwarf Mutant <strong>and</strong> Pol 2 than on any <strong>of</strong> the others. S<strong>in</strong>ce this <strong>in</strong>dicates<br />

a very rapid buildup <strong>of</strong> populations <strong>of</strong> S. litura on these 2 varieties, it is recommended that<br />

they should not be cultivated <strong>in</strong> areas where this pest is a common problem on other field<br />

crops. Larval mortality was highest on ICGV 86031 (82.8%) followed by ICGV 86350<br />

(53.32%) <strong>and</strong> Dh-3-30 (43.02%). Development was shortest on Dh-3-30 (32.25 days), <strong>and</strong><br />

longest on ICGV 86031 (37.5 days) with adults surviv<strong>in</strong>g a maximum <strong>of</strong> 9.5 days. Of the n<strong>in</strong>e<br />

<strong>groundnut</strong> varieties tested <strong>in</strong> the laboratory for resistance to S. litura, C-501 was most<br />

resistant <strong>and</strong> M -145 was the most susceptible (Tiwari et al., 1989).<br />

The biology <strong>of</strong> S. litura was studied on different <strong>groundnut</strong> <strong>genotypes</strong> along with<br />

wild tetraploid, Arachis manticola (L.) (Kulkarni, 1989 <strong>and</strong> Patil et al., 1995). Survival was<br />

least on the wild species, while it was maximum on Dh-3-30. The Survivability on ICGV-<br />

86031, 87264 was comparatively low followed by ICGV-86165, 86350, 86699 <strong>and</strong> GBFDS-<br />

272. The larval duration was short while ga<strong>in</strong> <strong>in</strong> larval weight <strong>and</strong> survival percentage were<br />

high on susceptible <strong>genotypes</strong> <strong>in</strong>dicat<strong>in</strong>g higher rate <strong>of</strong> multiplication. On the other h<strong>and</strong>,<br />

these parameters were reversed <strong>in</strong> resistant <strong>genotypes</strong>. In laboratory feed<strong>in</strong>g bioassay by<br />

Todd et al. (1991), it was found that larval weight (75.7) mg was more <strong>in</strong> susceptible variety<br />

(Southern runner) as compared to resistant <strong>genotypes</strong> (26.5 mg). Larvae fed on florunner<br />

required an average <strong>of</strong> 3.7 more days to develop, compared to larvae fed on curly leaf.<br />

Similarly, S<strong>in</strong>gh <strong>and</strong> Sachan (1992) identified ICGV-86030, 86031 <strong>and</strong> NCAC 343 as resistant<br />

to S. litura based on survival, weight ga<strong>in</strong> <strong>and</strong> larval duration.<br />

Patil et al. (1991) reported that the performance <strong>of</strong> 27 <strong>and</strong> 15 entries <strong>in</strong> <strong>in</strong>itial <strong>and</strong><br />

advanced <strong>groundnut</strong> varietal trials, respectively, for defoliator damage at75 <strong>and</strong> 90 days after<br />

sow<strong>in</strong>g, <strong>and</strong> productivity dur<strong>in</strong>g the 1989 ra<strong>in</strong>y season at Dharwad. Entries ICGV-87264,<br />

ICGV-86598 (Advanced varietal trial), ICGV-86350 <strong>and</strong> ICGV-86276 (Initial varietal trial),<br />

which comb<strong>in</strong>ed low leaf damage (


Sreenivasa et al. (1997) studied on the development <strong>of</strong> S. litura as <strong>in</strong>fluenced by<br />

<strong>groundnut</strong> <strong>genotypes</strong>. In laboratory studies, larval mortality <strong>of</strong> S. litura was highest on the<br />

<strong>groundnut</strong> variety ICGV 86031 (82.8%) followed by ICGV 86350 (53.32%) <strong>and</strong> Dh-3-30<br />

(43.02%). Development was shortest (32.25 days) on Dh-3-30 with adults surviv<strong>in</strong>g for a<br />

maximum <strong>of</strong> 10.5 days <strong>and</strong> longest (37.5 days) development on ICGV 86031 with adults<br />

surviv<strong>in</strong>g a maximum <strong>of</strong> 9.50 days. ICGV 86350 was <strong>in</strong>termediate.<br />

S. litura reared on EMS treated Valencia mutants at Dharwad, Karnataka, showed<br />

that mutant 28-2 <strong>and</strong> 45 consistently showed less leaf damage, high mortality, low weight <strong>and</strong><br />

low ga<strong>in</strong> <strong>in</strong> weight <strong>of</strong> larvae compared to susceptible check (JL-24) <strong>and</strong> parents (DER <strong>and</strong> VL<br />

1) at all stages. The mortality <strong>and</strong> ga<strong>in</strong> weight was very much pronounced on neonate larvae.<br />

The resistance effect <strong>of</strong> these mutants also extended the larval period by three days <strong>and</strong> had<br />

pronounced effect on the fecundity <strong>of</strong> moths <strong>in</strong>dicat<strong>in</strong>g resistance <strong>in</strong> the mutants (Prasad et<br />

al., 2000). Leuk <strong>and</strong> Sk<strong>in</strong>ner (1971) reported that the mean length <strong>of</strong> the life cycle <strong>of</strong><br />

Spodoptera frugiperda (S.) was shorter (29 days) for the susceptible Starr than South Eastern<br />

runner (33.3 days). The mean percentage <strong>of</strong> moth emergence was significantly less for larvae<br />

fed on foliage <strong>of</strong> the resistant cultivar, south eastern runner <strong>and</strong> the mortality <strong>of</strong> the total<br />

<strong>in</strong>sects fed with the foliages was higher at all the stages <strong>of</strong> larval development <strong>and</strong> pupation<br />

on south eastern runner than starr.<br />

Accord<strong>in</strong>g to Patil et al. (2005) the <strong>in</strong>vestigations have been carried out for four years<br />

from 1996 to 1999 <strong>in</strong>volv<strong>in</strong>g <strong>elite</strong> <strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong> to assess the yield<strong>in</strong>g potentiality<br />

over different agroclimatological conditions <strong>and</strong> also underst<strong>and</strong> the mechanism <strong>of</strong> resistance<br />

to major defoliator S. litura. Among the <strong>genotypes</strong> Dh-53 surpassed all other entries for pod<br />

yield under unprotected conditions <strong>and</strong> hence considered to be a resistant variety <strong>of</strong><br />

<strong>groundnut</strong> aga<strong>in</strong>st S. litura.<br />

In the laboratory condition, rear<strong>in</strong>g <strong>of</strong> <strong>in</strong>sect on resistant <strong>genotypes</strong> like NC Ac 343,<br />

Mutant 28-2 <strong>and</strong> R 9227 affected larval growth <strong>and</strong> survival, pupal development, adult<br />

emergence <strong>and</strong> fecundity <strong>in</strong>dicat<strong>in</strong>g antibiosis as the pr<strong>in</strong>cipal mechanism <strong>of</strong> resistance<br />

(Prasad <strong>and</strong> Gowda, 2006).<br />

Patil et al. (2009) <strong>in</strong>vestigated the presence <strong>of</strong> resistance mechanism <strong>in</strong> <strong>elite</strong><br />

<strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong> aga<strong>in</strong>st S. litura. Eleven <strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong> such as TR-1-16-2,<br />

R-D-1-51, MN-1-35, DCG-17, M-1-28,R-9227, Dh-4-3, Dh-53, R-2001-2, ICGV-86590 <strong>and</strong><br />

Dh-3-30 were evaluated. The variation <strong>in</strong> larval development <strong>and</strong> pupal weight after feed<strong>in</strong>g<br />

on these <strong>groundnut</strong> varieties were taken as criteria <strong>and</strong> subjected to analysis. The larvae fed<br />

on leaves <strong>of</strong> MN-1-35, R-9227, DCG-17, M-1-28, Dh-53 & TR-1-16-2 recorded low to<br />

moderate larval weight <strong>and</strong> lower pupal weight. Higher larval <strong>and</strong> pupal weight was recorded<br />

<strong>in</strong> larvae fed on leaves <strong>of</strong> ICGV-86590, R-2001-2 <strong>and</strong> Dh-3-30. The results clearly <strong>in</strong>dicated<br />

the presence <strong>of</strong> resistance mechanism <strong>in</strong> some <strong>groundnut</strong> <strong>genotypes</strong> aga<strong>in</strong>st the S. litura.<br />

2.2 Different components <strong>of</strong> IPM for S.litura<br />

2.2.1 Seasonal <strong>in</strong>cidence <strong>of</strong> S. litura measured by the use <strong>of</strong> pheromone<br />

traps<br />

Sreedhar (1983) monitored the activity <strong>of</strong> S. litura moths <strong>in</strong> cabbage fields at two<br />

locations <strong>in</strong> Karnataka us<strong>in</strong>g sex pheromone traps <strong>and</strong> found peak moth catches dur<strong>in</strong>g last<br />

week <strong>of</strong> February at Raichur <strong>and</strong> dur<strong>in</strong>g second week <strong>of</strong> March at Dharwad. However,<br />

Kulkarni (1989) noticed this pest to be active throughout the year at Dharwad. But more moth<br />

catch was seen from June to October with peak moth activity dur<strong>in</strong>g September.<br />

Pawar <strong>and</strong> Shrivastava (1988) tried pheromone traps baited with lure <strong>of</strong> S. litura <strong>and</strong><br />

H. armigera separately <strong>and</strong> together <strong>in</strong> a <strong>groundnut</strong> field <strong>in</strong> Andhra Pradesh. There was no<br />

difference <strong>in</strong> catches <strong>of</strong> S. litura <strong>in</strong> traps with any one <strong>of</strong> the lures or a comb<strong>in</strong>ation <strong>of</strong> both the<br />

lures.


S<strong>in</strong>gh <strong>and</strong> Sachan (1991) recorded seven peaks <strong>of</strong> S. litura <strong>in</strong> the sex pheromone<br />

traps at Na<strong>in</strong>ital, Uttar Pradesh, dur<strong>in</strong>g the cropp<strong>in</strong>g seasons <strong>of</strong> 1988-1989 <strong>and</strong> 1989-1990 <strong>of</strong><br />

which five peaks were observed dur<strong>in</strong>g the ra<strong>in</strong>y season <strong>and</strong> the rest dur<strong>in</strong>g spr<strong>in</strong>g.<br />

Rao et al. (1991) reported that the efficacy <strong>of</strong> four pheromone trap designs was<br />

compared for catch<strong>in</strong>g male tobacco caterpillar, S. litura moths <strong>in</strong> fields. There was no<br />

significant difference <strong>in</strong> the performance <strong>of</strong> the s<strong>in</strong>gle <strong>and</strong> double funnel traps, <strong>and</strong> the s<strong>in</strong>gle<br />

funnel (20 cm dia) trap captured more moths than any other trap.<br />

Accord<strong>in</strong>g to Lalita <strong>and</strong> Reddy (1992) the relative efficiency <strong>of</strong> ICRISAT st<strong>and</strong>ard trap<br />

<strong>and</strong> sleeve trap for trapp<strong>in</strong>g males <strong>of</strong> S. litura <strong>and</strong> H. armigera us<strong>in</strong>g synthetic sex pheromone<br />

<strong>and</strong> their rhythm <strong>of</strong> male attraction has been assessed. ICRISAT st<strong>and</strong>ard trap have been<br />

found to be more efficient by 1.2 times over sleeve traps <strong>in</strong> mass trapp<strong>in</strong>g <strong>of</strong> both S. litura <strong>and</strong><br />

H. armigera particularly on the days with dist<strong>in</strong>ct peak for both the pests with a highest moth<br />

catch at 2.00 am to 4.00 am followed by 10.00 pm to 12.00 midnight for S. litura <strong>and</strong> 2.00 pm<br />

to 4.00 pm followed by 12.00 midnight to 2.00 am for H. armigera.<br />

S<strong>in</strong>gh <strong>and</strong> Sachan (1993) recorded four peaks <strong>of</strong> S. litura <strong>of</strong> which the first <strong>and</strong><br />

second were small <strong>and</strong> caused no threat to <strong>groundnut</strong> at Na<strong>in</strong>ital. The third was observed at<br />

the pegg<strong>in</strong>g <strong>and</strong> pod <strong>in</strong>itiation stage. Dur<strong>in</strong>g the first week <strong>of</strong> September <strong>and</strong> co<strong>in</strong>cided with<br />

the greatest rate <strong>of</strong> oviposition on leaves. The fourth peak was greatest <strong>and</strong> occurred<br />

between 40 th <strong>and</strong> 43 rd st<strong>and</strong>ard weeks.<br />

Sreenivasulu et al. (2003) monitor<strong>in</strong>g studies <strong>of</strong> S. litura on <strong>groundnut</strong> carried out<br />

dur<strong>in</strong>g rabi 2000 <strong>in</strong> Tirupati, Andhra Pradesh, India, us<strong>in</strong>g synthetic sex pheromone traps<br />

<strong>in</strong>dicated that the peak male moth catch was observed dur<strong>in</strong>g the 2nd week <strong>of</strong> February while<br />

the highest number <strong>of</strong> egg masses were observed dur<strong>in</strong>g the 2nd week <strong>of</strong> February <strong>and</strong> the<br />

highest number <strong>of</strong> larvae/20 m 2 dur<strong>in</strong>g the 4th week <strong>of</strong> February. The moth catches <strong>in</strong><br />

pheromone traps were found to be positively correlated with number <strong>of</strong> egg masses <strong>and</strong> larval<br />

counts <strong>of</strong> S. litura on <strong>groundnut</strong> <strong>in</strong> the field.<br />

Pheromone as a mass trapp<strong>in</strong>g tool have also been utilized <strong>in</strong> a few <strong>in</strong>sects such as<br />

Pthorimoaea opercullela (Z.), S. litura, Chilo sacchariphagus <strong>in</strong>dicus (K.), H. armigera, A.<br />

modicella, Lymantria obfuscata (W.), Cydia pomonella (L.) <strong>and</strong> Pect<strong>in</strong>ophora gossypiella (S.)<br />

The communication disruption as a tool has been tried <strong>in</strong> S. litura, A. modicella, Peripleneta<br />

americana (L.) <strong>and</strong> Chilo auricilius (D.) <strong>in</strong> India with limited success. Attempts were made to<br />

design the trap for efficient trapp<strong>in</strong>g <strong>of</strong> the target <strong>in</strong>sect, some <strong>of</strong> them were successful <strong>in</strong> the<br />

case <strong>of</strong> cotton, sugarcane <strong>and</strong> <strong>groundnut</strong> ecosystem. In oilseeds, seven <strong>in</strong>sects are be<strong>in</strong>g<br />

<strong>in</strong>cluded for monitor<strong>in</strong>g, <strong>and</strong> for mass trapp<strong>in</strong>g the <strong>groundnut</strong> leaf m<strong>in</strong>er (GLM), the tobacco<br />

caterpillar (S. litura) were tried. Mat<strong>in</strong>g disruption with saturation <strong>of</strong> sex pheromone was tried<br />

<strong>in</strong> GLM (N<strong>and</strong>agopal, 2006).<br />

Accord<strong>in</strong>g to Tojo et al. (2008) traps with sex pheromone (litlure) <strong>of</strong> S. litura were set<br />

at n<strong>in</strong>e locations <strong>in</strong> five countries <strong>in</strong> South Eastern Asia to compare the daily patterns <strong>of</strong> male<br />

moths caught <strong>in</strong> traps dur<strong>in</strong>g the overlapp<strong>in</strong>g two years between 1997 <strong>and</strong> 1999. When the<br />

records for observation periods were averaged, the daily number <strong>of</strong> males from June to<br />

November was low <strong>in</strong> the locations <strong>of</strong> the year-round occurrence <strong>of</strong> males, as 0.4 on Sulawesi<br />

Isl<strong>and</strong> <strong>in</strong> Indonesia (5°S), 2 on Luzon Isl<strong>and</strong> <strong>in</strong> the Philipp<strong>in</strong>es (15°N), 2 <strong>in</strong> Chiayi, Taiwan<br />

(24°N), 4 <strong>in</strong> Kwangsi, Ch<strong>in</strong>a (25°N), 11 <strong>in</strong> Fukien, Ch<strong>in</strong>a (27°N), <strong>and</strong> 20 <strong>in</strong> Ok<strong>in</strong>awa, Japan<br />

(26°N), whereas <strong>in</strong> locations where essentially no males were caught dur<strong>in</strong>g w<strong>in</strong>ter,<br />

significantly more males were caught daily as follows: 108 <strong>in</strong> Chekiang, Ch<strong>in</strong>a (30°N), 192 <strong>in</strong><br />

Kagoshima, Japan (31.5°N) <strong>and</strong> 47 <strong>in</strong> Saga, Japan (33.5°N). This <strong>in</strong>creas<strong>in</strong>g tendency <strong>of</strong><br />

males toward northern latitudes suggested the northward migration <strong>of</strong> this species, <strong>and</strong><br />

further to Kyushu from Ch<strong>in</strong>a, distributed at the same <strong>and</strong>/or lower latitude, if they could<br />

migrate overseas.<br />

2.2.2 Intercrops/ trap crops <strong>in</strong> <strong>groundnut</strong> to mange <strong>in</strong>sect pests<br />

Intercropp<strong>in</strong>g has been an important component <strong>of</strong> small farm agriculture (Lamb,<br />

1978) <strong>and</strong> one <strong>of</strong> the reasons for the evolution <strong>of</strong> these cropp<strong>in</strong>g patterns may be the reduced


<strong>in</strong>cidence <strong>of</strong> <strong>in</strong>sect pests (Altieri et al., 1978). Kennedy <strong>and</strong> Raveendran (1989) reported that<br />

<strong>groundnut</strong> <strong>in</strong>tercropped with pearl millet reduced the <strong>in</strong>cidence <strong>of</strong> suck<strong>in</strong>g pests substantially.<br />

Gavarra <strong>and</strong> Raros (1975) found more predatory spiders <strong>and</strong> predatory cocc<strong>in</strong>ellids <strong>in</strong><br />

<strong>groundnut</strong>-maize cropp<strong>in</strong>g system than <strong>in</strong> sole crop <strong>of</strong> <strong>groundnut</strong>. The <strong>in</strong>cidence <strong>of</strong> leaf<br />

hoppers, thrips <strong>and</strong> aphids were significantly reduced <strong>and</strong> population <strong>of</strong> predatory cocc<strong>in</strong>ellids<br />

was <strong>in</strong>creased, when pearl millet <strong>in</strong>tercropped with <strong>groundnut</strong> (Kennedy et al., 1990).<br />

S<strong>in</strong>gh et al. (1991) conducted the field experiments <strong>in</strong> Delhi, <strong>in</strong> kharif season <strong>of</strong> 1987-<br />

88, <strong>groundnut</strong> <strong>in</strong>tercropped with red gram, green gram, sorghum <strong>and</strong> soybean. Among these<br />

<strong>in</strong>tercrops, <strong>groundnut</strong>- sorghum <strong>in</strong>tercropp<strong>in</strong>g reduced the <strong>in</strong>cidence <strong>of</strong> leaf hoppers, thrips,<br />

bihar hairy caterpillar <strong>and</strong> tobacco caterpillar.<br />

Agasimani et al. (1993) studies conducted on the <strong>in</strong>cidence <strong>of</strong> S. litura <strong>in</strong> the<br />

<strong>in</strong>tercropp<strong>in</strong>g system <strong>in</strong>dicated the maximum <strong>in</strong>cidence noticed <strong>in</strong> <strong>groundnut</strong> + sunflower (4:1)<br />

<strong>in</strong>tercropp<strong>in</strong>g whereas, the least <strong>in</strong>cidence was noticed <strong>in</strong> <strong>groundnut</strong> + jower (4:1)<br />

<strong>in</strong>tercropp<strong>in</strong>g. Patil (1993) reported among various <strong>in</strong>tercrops, <strong>groundnut</strong> + sorghum recorded<br />

less S. litura damage. Whereas, <strong>groundnut</strong> + sunflower, <strong>groundnut</strong> + cotton <strong>and</strong> <strong>groundnut</strong> +<br />

chilli recorded more damage.<br />

Anonymous (2003) reported that among the two most important <strong>defoliators</strong> <strong>of</strong><br />

<strong>groundnut</strong>, S. litura <strong>and</strong> H. armigera both prefer sunflower over <strong>groundnut</strong> for oviposition <strong>and</strong><br />

feed<strong>in</strong>g. Also, the newly hatched larvae <strong>of</strong> these pests disperse immediately from the egg site<br />

on the <strong>groundnut</strong> crop, while on the sunflower they stay for a week to ten days on the same<br />

leaf. These larvae make skeletons <strong>of</strong> sunflower leaves. At this stage, the damage on the trap<br />

crop (sunflower) is clearly visible, mak<strong>in</strong>g it easier for the farmers to collect the leaves under<br />

attack for subsequent destruction <strong>of</strong> the larvae, <strong>and</strong> without chemical pesticides. S<strong>in</strong>ce<br />

<strong>groundnut</strong> is more vulnerable to <strong>defoliators</strong> before the flower<strong>in</strong>g stage, it is necessary to<br />

protect this crop from <strong>defoliators</strong> dur<strong>in</strong>g this phase. While the larvae feed <strong>and</strong> develops on the<br />

trap crop, the ma<strong>in</strong> crop (<strong>groundnut</strong>) escapes from the critical pest damage.<br />

The <strong>in</strong>fluence <strong>of</strong> straight fertilizers <strong>and</strong> organic manures on the <strong>groundnut</strong> suck<strong>in</strong>g<br />

<strong>in</strong>sect pests viz., jassid, Empoasca kerri Pruthi <strong>and</strong> aphid, Aphis craccivora Koch was studied<br />

<strong>in</strong> the field from 1994 to 1996 <strong>in</strong> s<strong>and</strong>y loam soils. These studies comb<strong>in</strong>ed with other cultural<br />

practices like plant<strong>in</strong>g sunflower as a trap crop for S. litura <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> nuclear<br />

polyhedrosis virus (NPV) to reduce the <strong>in</strong>cidence <strong>of</strong> S. litura (Rajasekhara, 2002).<br />

Theodore et al. (2008) reported that <strong>groundnut</strong> <strong>in</strong>tercropped with maize reduced the<br />

<strong>in</strong>cidence <strong>of</strong> aphids, thrips <strong>and</strong> pod borers <strong>and</strong> <strong>in</strong>creased the population <strong>of</strong> predators <strong>and</strong> also<br />

yield. The higher numbers <strong>of</strong> predators <strong>in</strong> <strong>groundnut</strong>/maize could be due to the crop canopy<br />

provid<strong>in</strong>g more food <strong>and</strong>, shade to allow development <strong>of</strong> their different stages (eggs, larvae).<br />

2.2.3 Natural enemies <strong>of</strong> Spodoptera litura<br />

Accord<strong>in</strong>g to Battu (1977), field collected larvae <strong>of</strong> S .litura were parasitized by the<br />

tachanid, Parasacrophaga misera (Wlk.) dur<strong>in</strong>g October –November <strong>and</strong> by the ichneumonid,<br />

Campoletis sp. Both <strong>of</strong> these were first recorded from India.<br />

Joshi et al. (1979) reported that the natural enemies <strong>of</strong> S. litura on tobacoo <strong>in</strong> Andhra<br />

Pradesh. They collected eggs <strong>and</strong> larvae <strong>of</strong> S. litura from the field <strong>and</strong> reared <strong>in</strong> the laboratory<br />

for the emergence <strong>of</strong> parasites like Trichogramma australicum (Girault), Chelonus<br />

formosanus (Sonan), Apanteles sp, Strobliomyia aegyptia (Vill.), Blepherella setigera (Corti),<br />

Sarcophaga dux (Thoms.) <strong>and</strong> also predator like Ropalidia sp.<br />

Rao (1983) noticed that eggs <strong>of</strong> Corcyra cephalonica (Sta<strong>in</strong>ton) served as food for<br />

the larvae <strong>of</strong> Chrysopa scelestes (E.). These Chrysopa larvae were highly effective <strong>and</strong> fed<br />

voraciously on Corcyra eggs, Myzus persicae (Sulzer), Bemisia tabacci (Gennadius), eggs<br />

<strong>and</strong> just hatched larvae <strong>of</strong> S. litura.


Thontadarya <strong>and</strong> Nangia (1983) reported natural enemies <strong>of</strong> S. litura <strong>in</strong>fest<strong>in</strong>g<br />

soybean at Hebbal, Bangalore. Trichogramma chilonis Ishii, Brachmaria sp. <strong>and</strong> Bracon<br />

brevicornis (Wesmael) parasitized 32.5 per cent <strong>of</strong> the eggs, 3.4 per cent <strong>of</strong> the pupae <strong>and</strong><br />

16.3 per cent <strong>of</strong> the larvae, respectively. In addition, a nuclear polyhedrosis virus <strong>in</strong>fected<br />

21.4 per cent <strong>of</strong> the larvae. The list <strong>in</strong>cluded Chrysopa sp, Cocc<strong>in</strong>ella sp <strong>and</strong> Scymnus sp<br />

prey<strong>in</strong>g on eggs or larvae <strong>of</strong> S. litura .Accord<strong>in</strong>g to the detailed studies conducted at IARI,<br />

New Delhi, Telenomus remus Nixon accepted 10 to 72 h old eggs <strong>of</strong> S. litura.<br />

Kulkarni (1989) recorded larval parasitoids emerged from S. litura <strong>in</strong> <strong>groundnut</strong> viz., a<br />

braconid, Bracon brevicornis Wesmael, an icneumonid, Campoletis chlorideae Uchidas <strong>and</strong><br />

two tach<strong>in</strong>ids, Campsilure conc<strong>in</strong>nata Meigen, Peribaea orbatta Wiedemann. The occurrence<br />

<strong>and</strong> abundance <strong>of</strong> <strong>in</strong>sect pests <strong>of</strong> <strong>groundnut</strong> <strong>and</strong> parasitoids, predators were studied <strong>in</strong> the<br />

field <strong>in</strong> Bangladesh <strong>in</strong>1984. 18 species <strong>of</strong> <strong>in</strong>sect pests were recorded <strong>of</strong> which, Spilosoma<br />

obliqua, S. litura, Thysanoplusia orichalcea (F.) were dom<strong>in</strong>ant <strong>and</strong> one parasitoid, Gryon<br />

antestiae (Dodd) (Scelionidae), two predatory species Cocc<strong>in</strong>ella septempunctata (L.) <strong>and</strong><br />

syrphids, Paragus sp. (Islam et al., 1983).<br />

Sridhar <strong>and</strong> Prasad (1996b) reported that larval parasitoids <strong>of</strong> S. litura, viz., Peribaea<br />

orbatta Wied. <strong>and</strong> Apanteles ruficrus Haliday caused 13.7 per cent <strong>and</strong> 8.2 per cent mortality,<br />

respectively <strong>in</strong> <strong>groundnut</strong>. Srivastava <strong>and</strong> Kushwaha (1995) reported that the parasitoid<br />

complex <strong>of</strong> S. litura consisted <strong>of</strong> an egg parasitoid, T. chilonis (31.8%) <strong>and</strong> n<strong>in</strong>e larval<br />

parasitoids <strong>of</strong> which P. orbatta (14.3%) was the most abundant <strong>in</strong> cauliflower.<br />

Rao et al. (1990) observed that 5-10 per cent parasitisation <strong>of</strong> Charops obtusa (M.)<br />

<strong>and</strong> 80 per cent parasitisation <strong>of</strong> Apanteles africanus Cameron on S. litura <strong>in</strong> laboratory<br />

condition <strong>and</strong> these parasitoids were highly effective <strong>in</strong> tobacco nurseries. They also reported<br />

A. ruficrus was gregarious polyembryonic parasitoids parasite on S. litura <strong>in</strong> tobacco field.<br />

Similar trend was reported by Braune (1989).<br />

2.2.4 Potentiality <strong>of</strong> Nomuraea rileyi (Farlow) Samson to Spodoptera litura<br />

(F.)<br />

Gopalkrishnan <strong>and</strong> Mohan (1990) reported that the field trials on N. rileyi aga<strong>in</strong>st third<br />

<strong>in</strong>star larvae <strong>of</strong> S. litura on cabbage revealed that the fungus @ 1.2 × 10 8 conidia/ml caused<br />

95 per cent mortality <strong>in</strong> 6 days after treatment. In the field, larval mortality <strong>of</strong> 52-60 per cent<br />

was observed at 12 days after spray<strong>in</strong>g. The highest cumulative mortality <strong>of</strong> 88-97 per cent<br />

was observed after 19 days (Vimaladevi, 1994).<br />

In the laboratory, spray<strong>in</strong>g the fungus at 10 8 , 10 9 , 10 10 <strong>and</strong> 10 11 conidia per litre <strong>of</strong><br />

water aga<strong>in</strong>st first <strong>in</strong>star larvae <strong>of</strong> S. litura resulted <strong>in</strong> cent per cent mortality with<strong>in</strong> 5 days.<br />

The LC50 for third <strong>in</strong>star larvae was 2.89 × 10 10 at eight days. In the net house studies, <strong>in</strong>itial<br />

mortality was observed at 7-8, days with an LC50 <strong>of</strong> 2.2×10 10 spores per litre. Larval mortality<br />

was <strong>in</strong>itially observed <strong>in</strong> the field at n<strong>in</strong>e days after spray<strong>in</strong>g with the conidia. Even the lowest<br />

dose <strong>of</strong> 2 × 10 11 spores per litre resulted <strong>in</strong> significant cumulative larval mortality. There was<br />

no <strong>in</strong>crease <strong>in</strong> mortality with <strong>in</strong>creased dose (Vimaladevi, 1994).The conidial suspension<br />

sprayed on egg mass was found to cause 95.2 per cent mortality <strong>of</strong> neonate larvae<br />

(Gopalkrishnan <strong>and</strong> Mohan, 1991).<br />

Sridhar <strong>and</strong> Prasad (1996 a) reported about 86.9 per cent mortality <strong>of</strong> S. litura due to<br />

the entomopathogenic fungus on <strong>groundnut</strong> dur<strong>in</strong>g 1991-1992 from Bapatla, a coastal region<br />

<strong>of</strong> Andhra Pradesh.<br />

Accord<strong>in</strong>g to Kulkarni (1999) seasonal <strong>in</strong>cidence <strong>of</strong> N. rileyi to S. litura <strong>in</strong> <strong>groundnut</strong>,<br />

soybean <strong>and</strong> potato was noticed between 32 nd (Aug 1 st week) to 40 th (October 1st week)<br />

st<strong>and</strong>ard weeks. Among the three crops, maximum <strong>in</strong>cidence was noticed <strong>in</strong> <strong>groundnut</strong><br />

followed by soybean <strong>and</strong> least <strong>in</strong> potato.<br />

Patil (2000) studied on the entomopathogenic fungus, N. rileyi occurred <strong>in</strong> epizootic<br />

form on S. litura <strong>in</strong> <strong>groundnut</strong> dur<strong>in</strong>g the ra<strong>in</strong>y season. N. rileyi was found to be more effective


aga<strong>in</strong>st S. litura on <strong>groundnut</strong> <strong>and</strong> also found more persistent on <strong>groundnut</strong> foliage dur<strong>in</strong>g<br />

kharif which was up to ten days.<br />

Accord<strong>in</strong>g to Hegde (2001) the mycopathogen @ 2×10 8 conidia per litre sprayed<br />

thrice aga<strong>in</strong>st S. litura <strong>in</strong> potato at 15 days <strong>in</strong>terval from 50 days after sow<strong>in</strong>g proved as<br />

effective as SlNPV <strong>and</strong> Bt <strong>and</strong> reduced the <strong>defoliators</strong> up to 32 per cent.<br />

Influence <strong>of</strong> host plants on the response <strong>of</strong> S. litura to N. rileyi <strong>in</strong>dicated that larvae<br />

fed on <strong>groundnut</strong> were more susceptible by record<strong>in</strong>g the lowest LC50 value <strong>of</strong> 5.79 × 10 6<br />

conidia per litre followed by soybean 5.98 × 10 6 conidia per litre, potato 6.96 × 10 6 conidia per<br />

litre <strong>and</strong> highest when feed on cotton 7.84 × 10 6 (Kulkarni <strong>and</strong> L<strong>in</strong>gappa, 2001).<br />

Accord<strong>in</strong>g to Navi (2002) spray<strong>in</strong>g <strong>of</strong> N. rileyi @ 1×10 11 conidia per hectare was most<br />

effective <strong>in</strong> soybean <strong>and</strong> <strong>groundnut</strong> <strong>in</strong> large scale demonstration <strong>in</strong> reduc<strong>in</strong>g larval population<br />

to the extent <strong>of</strong> 28 <strong>and</strong> 62 per cent <strong>in</strong> soybean, 33 <strong>and</strong> 77 per cent <strong>in</strong> <strong>groundnut</strong> after first <strong>and</strong><br />

second spray respectively.<br />

Manjula et al. (2004) record the occurrence <strong>of</strong> N. rileyi on S. litura <strong>and</strong> H. armigera <strong>in</strong><br />

<strong>groundnut</strong> fields <strong>in</strong> Anantapur (Andhra Pradesh, India) <strong>and</strong> adjacent areas. The numbers <strong>of</strong><br />

cadavers <strong>and</strong> live larvae were recorded at fortnightly <strong>in</strong>tervals from September 2001 until the<br />

end <strong>of</strong> the cropp<strong>in</strong>g season. N. rileyi was <strong>in</strong>itially observed dur<strong>in</strong>g the first fortnight <strong>of</strong><br />

September, <strong>and</strong> the level <strong>of</strong> <strong>in</strong>fection gradually <strong>in</strong>creased to 5-10, 25-50 <strong>and</strong> 50-100% dur<strong>in</strong>g<br />

the second fortnight <strong>of</strong> September, first fortnight <strong>of</strong> October <strong>and</strong> second fortnight <strong>of</strong> October,<br />

respectively. These periods were characterized by a mean maximum temperature <strong>of</strong> 31-32 ° C,<br />

m<strong>in</strong>imum temperature <strong>of</strong> 22-23 ° C, morn<strong>in</strong>g relative humidity (RH) <strong>of</strong> 79-84%, <strong>and</strong> even<strong>in</strong>g RH<br />

<strong>of</strong> 29-42%.<br />

Nagaraja, (2005) reported that <strong>in</strong> <strong>groundnut</strong> crop ecosystem, different formulations <strong>of</strong><br />

N. rileyi <strong>and</strong> spray equ<strong>ipm</strong>ents were evaluated, the results <strong>in</strong>dicated that oil based formulation<br />

<strong>of</strong> N. rileyi with knapsack sprayer recorded significantly higher mycosis (47.43%), followed by<br />

wettable powder <strong>and</strong> crude formulation.<br />

A field experiment was conducted dur<strong>in</strong>g the 2001 kharif <strong>in</strong> medium black soils <strong>in</strong><br />

India to study the effect <strong>of</strong> resistant (Dh-53, GPBD-4, Dh-74, Dh-86, Dh-22 (red), ICGV<br />

86590, Dh-995, <strong>and</strong> Dh-22 (tan)) <strong>and</strong> susceptible <strong>genotypes</strong> (ICGV-92242 <strong>and</strong> Jl-24) <strong>of</strong><br />

<strong>groundnut</strong> on the <strong>in</strong>cidence <strong>of</strong> S. litura. The reduction <strong>of</strong> the larval population due to the spray<br />

<strong>of</strong> N. rileyi was compared with Neem Seed Kernel Extract (NSKE), <strong>in</strong>secticide (qu<strong>in</strong>alphos<br />

0.05%) spray. Insecticidal spray recorded significantly lower larval population (3.18, 2.53 <strong>and</strong><br />

0.82 larvae/m row at 40, 55 <strong>and</strong> 70 DAS, respectively) <strong>and</strong> leaflet damage <strong>in</strong> all the<br />

<strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong>. Significantly higher yield (16.89 q/ha) <strong>and</strong> lowest leaflet damage was<br />

recorded <strong>in</strong> qu<strong>in</strong>alphos spray, whereas, N. rileyi <strong>and</strong> NSKE were next best <strong>in</strong> terms <strong>of</strong> yield<br />

(14.04 <strong>and</strong> 13.83 q/ha) with lesser leaflet damage (Navi et al., 2006).<br />

Rachappa <strong>and</strong> L<strong>in</strong>gappa (2007) conducted experiments dur<strong>in</strong>g 2000-01 <strong>and</strong> 2001-02<br />

at Bailhongal <strong>and</strong> dur<strong>in</strong>g 2000-01 <strong>and</strong> 2002-03 at Dharwad, Karnataka, India, to determ<strong>in</strong>e<br />

the seasonal occurrence <strong>of</strong> N. rileyi <strong>in</strong> relation to time <strong>and</strong> crop ecosystem. Fungal <strong>in</strong>cidence<br />

was more abundant on pests <strong>in</strong>habit<strong>in</strong>g soyabean <strong>and</strong> <strong>groundnut</strong> ecosystems at both<br />

locations, e.g. Spodoptera litura, T. orichalcea <strong>and</strong> H. armigera. These crops, aside from<br />

be<strong>in</strong>g suitable for host <strong>in</strong>sect build-up <strong>and</strong> provid<strong>in</strong>g congenial microclimate with their host,<br />

predisposed the <strong>in</strong>sect larvae to higher <strong>and</strong> quicker <strong>in</strong>fection.<br />

2.2.5 Integrated pest management for Spodoptera litura (F.)<br />

Mahesh (1996) reported that <strong>in</strong>tegration <strong>of</strong> rais<strong>in</strong>g tolerant varieties, rais<strong>in</strong>g trap crops<br />

like castor <strong>and</strong> sunflower around the fields <strong>and</strong> with<strong>in</strong> the field respectively. These trap crops<br />

will act as perches for predatory birds <strong>and</strong> lay<strong>in</strong>g <strong>of</strong> eggs on the broader leaves as per the<br />

performance <strong>of</strong> the pest. Installation <strong>of</strong> pheromone traps to predict oviposition, application <strong>of</strong><br />

neem seed kernel extract dur<strong>in</strong>g early stages <strong>of</strong> the crop <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> NPV @ 250 LE per<br />

hectare will be a good management strategy for S. litura <strong>in</strong> <strong>groundnut</strong>.


Monitor<strong>in</strong>g with pheromone traps to predict oviposition, grow<strong>in</strong>g sunflower <strong>and</strong> castor<br />

as trap crop around the field <strong>and</strong> 3-5 m apart with<strong>in</strong> the fields, collection <strong>of</strong> egg masses <strong>and</strong><br />

larvae from trap crop <strong>and</strong> destroy<strong>in</strong>g them on alternate days, spray<strong>in</strong>g <strong>of</strong> NPV @ 250 LE/ ha<br />

at 36 days after sow<strong>in</strong>g, release <strong>of</strong> egg parasitoid Telonomus remus Nixon @ 40,000/ ha at<br />

39 days after sow<strong>in</strong>g, spray<strong>in</strong>g <strong>of</strong> NSKE @ 3% at 42 days after sow<strong>in</strong>g <strong>and</strong> spray<strong>in</strong>g <strong>of</strong><br />

qu<strong>in</strong>alphos @ 0.05% or chlorpyriphos @ 0.05% or endosulfan @ 0.07% from 52 days<br />

onwards when the pest reaches economic threshold level. Utility <strong>of</strong> these components will be<br />

effective <strong>in</strong> the S. litura management <strong>in</strong> <strong>groundnut</strong> (Prasad, 1996).<br />

Ghew<strong>and</strong>e <strong>and</strong> N<strong>and</strong>agopal (1997) reported that the <strong>in</strong>tegration <strong>of</strong> resistant l<strong>in</strong>es,<br />

<strong>in</strong>tercropp<strong>in</strong>g with pearlmillet, soybean, castor <strong>and</strong> pigeonpea, use <strong>of</strong> pheromone traps <strong>and</strong><br />

use <strong>of</strong> novel <strong>in</strong>secticides will be a good IPM strategy for major pests <strong>in</strong> <strong>groundnut</strong>.<br />

Spray<strong>in</strong>g <strong>of</strong> chlorpyriphos @ 3 ml/l or qu<strong>in</strong>alphos @ 2 ml/l or acephate @ 1 g/l or<br />

monocrotophos @ 1.6 ml/l <strong>and</strong> keep pheromone traps (2/acre) <strong>in</strong> the field to attract the male<br />

moths has been recommended. Poison bait<strong>in</strong>g with bran, jaggery <strong>and</strong> chlorpyriphos (10:1:1<br />

w/w) is promis<strong>in</strong>g aga<strong>in</strong>st grown up caterpillars which withst<strong>and</strong> contact <strong>in</strong>secticides as<br />

sprays. And plant<strong>in</strong>g castor or sunflower as trap crop for egg lay<strong>in</strong>g <strong>and</strong> destroy<strong>in</strong>g eggs or<br />

first stage larvae (on skeletonised leaf) help <strong>in</strong> reduc<strong>in</strong>g the <strong>in</strong>cidence (Anon., 2000).<br />

Field experiments were conducted to determ<strong>in</strong>e the effect <strong>of</strong> an <strong>in</strong>tegrated pest<br />

management module, exclusive use <strong>of</strong> <strong>in</strong>secticides <strong>and</strong> <strong>in</strong>secticide sprays on S. litura on<br />

<strong>groundnut</strong> <strong>in</strong> Tirupati, Andhra Pradesh, India, dur<strong>in</strong>g 2000. Integrated pest management<br />

module consist<strong>in</strong>g <strong>of</strong> seed treatment with imidacloprid <strong>and</strong> mancozeb (3 g/kg), use <strong>of</strong> trap<br />

crop (castor), manual pick<strong>in</strong>g <strong>of</strong> larvae <strong>and</strong> egg masses, use <strong>of</strong> pheromone trap, spray<strong>in</strong>g <strong>of</strong><br />

SlNPV at 250LE/ha <strong>and</strong> use <strong>of</strong> larval bait with chlorpyriphos (0.05%) proved significantly<br />

effective by manag<strong>in</strong>g the populations <strong>of</strong> S. litura <strong>and</strong> suck<strong>in</strong>g pests on <strong>groundnut</strong> <strong>and</strong> gave<br />

higher yield <strong>and</strong> cost-benefit ratio compared with the chemical control schedule, consist<strong>in</strong>g <strong>of</strong><br />

sprays <strong>of</strong> monocrotophos (0.05%), chlorpyriphos (0.05%), qu<strong>in</strong>alphos (0.05%) <strong>and</strong><br />

endosulfan (0.07%), <strong>and</strong> farmers practice, i.e. spray with cypermethr<strong>in</strong> (0.02%) at 60 days<br />

after sow<strong>in</strong>g (Sreenivasulu et al., 2002).<br />

S<strong>in</strong>gh et al. (2005a) reported that the IPM module, consist<strong>in</strong>g seed treatment with<br />

Trichoderma viride Lieckfeldt @ 4 g/kg, foliar spray <strong>of</strong> NSKE (5%) applied at 30 DAS, foliar<br />

spray <strong>of</strong> sorghum leaf extract (10%) at 20 <strong>and</strong> 30 DAS, <strong>in</strong>stallation <strong>of</strong> pheromone traps @<br />

10/ha each for monitor<strong>in</strong>g <strong>of</strong> S. litura, erect<strong>in</strong>g <strong>of</strong> “T” shaped bamboo bird perches @ 60/ha<br />

<strong>and</strong> need based application <strong>of</strong> SINPV spray @ 250 LE/ha was effective pest management<br />

option for <strong>groundnut</strong> + sunflower (5:1) based production system.<br />

Pest <strong>and</strong> disease <strong>in</strong>cidence <strong>in</strong> <strong>groundnut</strong> plots ma<strong>in</strong>ta<strong>in</strong>ed under <strong>in</strong>tegrated pest<br />

management (IPM; seed treatment with (Trichoderma) 4 g/kg <strong>of</strong> seeds, sow<strong>in</strong>g through h<strong>and</strong><br />

dibbl<strong>in</strong>g, <strong>in</strong>tercropp<strong>in</strong>g with soybean cv. JS 335 <strong>and</strong> <strong>groundnut</strong> cv. Phule Unap at 4:1, soil<br />

amendment with 500 kg castor cake/ha, plant<strong>in</strong>g <strong>of</strong> castor bean as a trap crop, establishment<br />

<strong>of</strong> 10 pheromone traps/ha, <strong>and</strong> application <strong>of</strong> neem seed kernel extract (5%) at 30 <strong>and</strong> 50<br />

days after sow<strong>in</strong>g (DAS) <strong>and</strong> SlNPV (1.5x10 13 POB’S/ha) or farmers' practice (FP; seed<br />

drill<strong>in</strong>g, sole crop <strong>of</strong> <strong>groundnut</strong>, <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> 0.03% dimethoate at 35 DAS <strong>and</strong> spray<strong>in</strong>g <strong>of</strong><br />

0.07% endosulfan at 60 DAS) were studied <strong>in</strong> Jalgaon <strong>and</strong> Dhule districts <strong>of</strong> Maharashtra,<br />

India, dur<strong>in</strong>g the ra<strong>in</strong>y seasons (July-November) <strong>of</strong> 2003, 2004 <strong>and</strong> 2005. Infestation by thrips<br />

<strong>and</strong> leaf hopper was severe at 30-45 DAS. The average percentage <strong>of</strong> damage by thrips was<br />

lower <strong>in</strong> IPM plots (15-25%) than <strong>in</strong> FP plots (20-50%). S. litura <strong>and</strong> <strong>groundnut</strong> leaf m<strong>in</strong>er<br />

were observed at 60 <strong>and</strong> 80 DAS, respectively. Damage was reduced by 5-25% when neem<br />

seed kernel extract <strong>and</strong> SlNPV were applied. The population <strong>of</strong> lady bird beetle was low <strong>in</strong><br />

plots sprayed with <strong>in</strong>secticides. The <strong>in</strong>cidence <strong>of</strong> soil borne diseases was reduced by 20-50%<br />

<strong>in</strong> IPM plots compared to FP plots. The <strong>in</strong>tensity <strong>of</strong> foliar diseases, particularly late leaf spot<br />

(Cercosporidium personatum (Berk. & M.A. Curtis) Deighton [Mycosphaerella berkeleyi]), was<br />

lower under IPM (30%) than under FP (up to 80%). IPM resulted <strong>in</strong> higher net return (8345<br />

rupees/ha, higher by 42.3 per cent <strong>and</strong> benefit-cost ratio (1.43 vs. 1.31) than FP<br />

(Shambharkar et al., 2006).


3. MATERIAL AND METHODS<br />

The <strong>in</strong>vestigations on the objectives envisaged <strong>in</strong> previous chapter were carried out<br />

dur<strong>in</strong>g kharif 2009 at Ma<strong>in</strong> Agricultural Research Station (MARS), University <strong>of</strong> Agricultural<br />

Sciences, Dharwad. Dharwad is located <strong>in</strong> Northern Transition Zone (Zone 8) <strong>of</strong> Karnataka<br />

<strong>and</strong> is situated at 15° 26' North latitude, 75° 07' East longitude <strong>and</strong> at an altitude <strong>of</strong> 678 m<br />

above mean sea level (MSL) <strong>and</strong> ra<strong>in</strong>y climate. Dur<strong>in</strong>g experimental year the annual ra<strong>in</strong>fall<br />

received was 1140.4 mm (69 ra<strong>in</strong>y days), which was 31.9 per cent higher compared to the<br />

average <strong>of</strong> past 59 years. The air temperature, both m<strong>in</strong>imum <strong>and</strong> maximum temperature did<br />

not vary much from the normal. However, relative humidity showed higher value compared to<br />

mean monthly average values.<br />

The biology <strong>of</strong> Spodoptera litura on seven <strong>elite</strong> <strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong> was carried<br />

out under laboratory condition, the field <strong>screen<strong>in</strong>g</strong> <strong>and</strong> evaluation <strong>of</strong> IPM modules aga<strong>in</strong>st<br />

major <strong>defoliators</strong> <strong>of</strong> <strong>groundnut</strong> were under taken at Ma<strong>in</strong> Agricultural Research Station UAS,<br />

Dharwad dur<strong>in</strong>g 2009 kharif season. The details <strong>of</strong> the materials used <strong>and</strong> methodology<br />

adopted dur<strong>in</strong>g the course <strong>of</strong> <strong>in</strong>vestigation are described below.<br />

3.1 Field Screen<strong>in</strong>g<br />

1. Plant material<br />

Seven <strong>genotypes</strong> were screened aga<strong>in</strong>st S. litura under artificial <strong>in</strong>festation <strong>in</strong> the field<br />

condition dur<strong>in</strong>g 2009, ra<strong>in</strong>y season. Each <strong>of</strong> the genotype was sown <strong>in</strong> three rows <strong>of</strong> 10<br />

meters length with spac<strong>in</strong>g <strong>of</strong> 30×10 cm. The <strong>genotypes</strong> were assessed for foliage damage<br />

due to S. litura.<br />

2. Artificial <strong>in</strong>festation <strong>in</strong> the field<br />

Egg masses <strong>of</strong> S. litura were collected from the unsprayed <strong>groundnut</strong> field. Those<br />

collected egg masses were p<strong>in</strong>ned on the surface <strong>of</strong> young leaves (egg mass fac<strong>in</strong>g the leaf<br />

surface) <strong>in</strong> each genotype <strong>of</strong> three rows <strong>of</strong> 10 meters length when crop was 50 days old.<br />

3. Scor<strong>in</strong>g method<br />

The leaf area damage by S. litura was scored when the crop was 70 days old (Prasad<br />

et al., 1998). Five leaflets on the ma<strong>in</strong> stem from top to bottom were used for the estimation <strong>of</strong><br />

leaf area damaged, as the damage was conf<strong>in</strong>ed to young leaflets show<strong>in</strong>g difference among<br />

entries. The leaf area damaged (<strong>in</strong> per cent) was visually assessed by adopt<strong>in</strong>g 1-9 scale<br />

(Wightman <strong>and</strong> Ranga Rao, 1994). On the bases <strong>of</strong> 1-9 scale the <strong>genotypes</strong> were grouped<br />

<strong>in</strong>to four categories 1-2, 2-4, 4-6 <strong>and</strong> > 6 visual damage grade. Observations on larvae per<br />

meter row <strong>and</strong> per cent defoliation <strong>of</strong> each variety were also taken.<br />

3.1.1 Biology <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>genotypes</strong> under laboratory<br />

conditions<br />

The experimental material was raised <strong>in</strong> the field dur<strong>in</strong>g 2009 ra<strong>in</strong>y season. All the<br />

cultural practices as recommended on package <strong>of</strong> practice were adopted, except spray<strong>in</strong>g <strong>of</strong><br />

<strong>in</strong>secticides. Care was also taken to protect the plants from drift<strong>in</strong>g <strong>of</strong> <strong>in</strong>secticide spray from<br />

neighbour<strong>in</strong>g fields.<br />

Egg masses <strong>of</strong> S. litura were collected from unsprayed <strong>groundnut</strong> fields. Uniform<br />

sized egg masses were surface sterilized with 10 per cent formaldehyde, washed 3-4 times<br />

with distilled water <strong>and</strong> kept <strong>in</strong> sterilized petriplates (5 cm diameter) for hatch<strong>in</strong>g on moist filter<br />

paper. Third leaf from top was selected for rear<strong>in</strong>g. Freshly hatched hundred neonate larvae<br />

were released <strong>in</strong>to seven trays conta<strong>in</strong><strong>in</strong>g seven <strong>genotypes</strong> viz.,


1. JL-24 (Susceptible check)<br />

2. ICGV-86699 Red<br />

3. GPBD- 5<br />

4. ICGV-86699 Tan<br />

5. GPBD- 6<br />

6. Mutant III<br />

7. GPBD-4, which were replicated trice.<br />

The cut end <strong>of</strong> the fresh <strong>groundnut</strong> leaves were covered with wet cotton wad for<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g freshness <strong>of</strong> the leaves. The open top <strong>of</strong> the tray was covered by musl<strong>in</strong> cloth<br />

secured with rubber b<strong>and</strong>. Fresh leaves were provided daily morn<strong>in</strong>g after clean<strong>in</strong>g the tray.<br />

Once the larvae atta<strong>in</strong> third <strong>in</strong>star, only 25 larvae were ma<strong>in</strong>ta<strong>in</strong>ed on each genotype.<br />

Before pupation, larvae were transferred to another tray conta<strong>in</strong><strong>in</strong>g sterilized sawdust. Two<br />

pairs <strong>of</strong> male <strong>and</strong> female pupae were kept for moth emergence <strong>in</strong> cages (35 × 25 × 45 cm) to<br />

study the oviposition period <strong>and</strong> fecundity. Diluted honey (10%) was provided as adult food <strong>in</strong><br />

small vials with cotton wad. Groundnut plants placed <strong>in</strong> conical flask with water were kept<br />

<strong>in</strong>side the cage for egg lay<strong>in</strong>g. The follow<strong>in</strong>g parameters were recorded.<br />

Number <strong>of</strong> days required for completion for each larval <strong>in</strong>star, prepupa <strong>and</strong> pupa <strong>and</strong><br />

also larval weight, larval mortality at 5, 10 <strong>and</strong> 15 days after hatch<strong>in</strong>g. Per cent pupal survival<br />

on each variety <strong>and</strong> pupal weight were recorded. Pre-oviposition, oviposition <strong>and</strong> post-<br />

oviposition period, adult longevity, per cent adult emergence <strong>and</strong> total life cycle were<br />

recorded.<br />

3.2 IPM modules for Northern transitional zone <strong>of</strong> Karnataka<br />

3.2.1 Mass multiplication <strong>of</strong> Nomuraea rileyi<br />

The number <strong>of</strong> spores per ml was calculated us<strong>in</strong>g the follow<strong>in</strong>g formula. For field<br />

studies the entomopathogenic fungus N. rileyi was cultured on Sabouraud’s Maltose Agar<br />

Yeast (SMAY) medium. For this, 200ml <strong>of</strong> the medium was put <strong>in</strong>to conical flasks (500 ml),<br />

autoclaved at 15 PSI for 20 m<strong>in</strong>utes, cooled <strong>and</strong> <strong>in</strong>oculated with pure culture <strong>of</strong> the fungus<br />

ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> culture slants. Inoculated flasks were <strong>in</strong>cubated at room temperature <strong>of</strong> 26 ± 1 °<br />

C for 15 days. All the steps were carried out <strong>in</strong> aseptic conditions to avoid contam<strong>in</strong>ation.<br />

Spores were harvested with the help <strong>of</strong> a small sterile metal spatula <strong>and</strong> stored <strong>in</strong> small<br />

airtight screw type tubes at 10 ° C <strong>and</strong> 60 per cent relative humidity.<br />

The suspension <strong>of</strong> week old spores was made us<strong>in</strong>g distilled water <strong>and</strong> filtered<br />

through musl<strong>in</strong> cloth. Few drops <strong>of</strong> Tween-80, a wett<strong>in</strong>g agent was added to the filtrate. From<br />

the stock solution, serial dilutions were made to obta<strong>in</strong> the required concentration.<br />

Spore count was made us<strong>in</strong>g Neaubuar’s haemocytometer<br />

Number <strong>of</strong> spores per unit = N × 400 × 1000 × 10 × D<br />

Where,<br />

N : Mean number <strong>of</strong> spores per small square <strong>of</strong> the haemocytometer.<br />

D : Dilution factor


3.2.2 Preparation <strong>of</strong> Neem Seed Kernel Extract (NSKE)<br />

5 kg <strong>of</strong> dehusked neem seeds have been taken<br />

Ground the neem seed kernals <strong>in</strong>to f<strong>in</strong>e powder<br />

Overnight soak f<strong>in</strong>e powder <strong>in</strong> 10 liters <strong>of</strong> water<br />

Filtered it through musl<strong>in</strong> cloth <strong>and</strong> added 90 liters <strong>of</strong> water <strong>and</strong> 100 ml <strong>of</strong> soap<br />

solution to get 5 per cent NSKE (50 grams <strong>in</strong> 1 liter <strong>of</strong> water gives 5 per cent NSKE).<br />

3.2.3 Evaluation <strong>of</strong> IPM modules<br />

The experiment was carried out under field condition dur<strong>in</strong>g kharif 2009 at the Ma<strong>in</strong><br />

Agricultural Research Station, University <strong>of</strong> Agricultural Sciences, Dharwad. The trial was<br />

conducted to evaluate effects <strong>of</strong> three IPM modules on <strong>groundnut</strong> pests. The sow<strong>in</strong>g was<br />

done dur<strong>in</strong>g first fortnight <strong>of</strong> July, 2009 <strong>in</strong> all the modules. Each module was implemented on<br />

1000 sq m (10 guntas) area with GPBD-4 variety which is hav<strong>in</strong>g resistance to late leaf spot<br />

<strong>and</strong> spac<strong>in</strong>g followed was 30×10 cm. The details <strong>of</strong> modules tested <strong>in</strong> the field are given<br />

below.<br />

Module I:<br />

Seed treatment with Trichoderma @ 4 g/kg<br />

200 grams <strong>of</strong> sunflower seeds were mixed with <strong>groundnut</strong> seeds<br />

Pheromone traps @ 2/acre <strong>in</strong>stalled after sow<strong>in</strong>g for the monitor<strong>in</strong>g <strong>of</strong> S. litura<br />

Mechanical removal <strong>of</strong> egg masses from both sunflower <strong>and</strong> <strong>groundnut</strong> periodically<br />

<strong>and</strong><br />

Sprayed with Nomuraea rileyi @ 1×10 8 conidia /ml <strong>and</strong> NSKE @ 5% two times at 45<br />

<strong>and</strong> 60 days after sow<strong>in</strong>g.<br />

Module II:<br />

Seed treatment with Trichoderma @ 4 g/kg<br />

Intercropp<strong>in</strong>g <strong>of</strong> <strong>groundnut</strong> with foxtail millet at the row proportion <strong>of</strong> 7:1 (7 rows <strong>of</strong><br />

<strong>groundnut</strong> <strong>and</strong> 1 row <strong>of</strong> foxtail millet) <strong>and</strong> all along the experimental plot<br />

Pheromone traps @ 2/acre <strong>in</strong>stalled after sow<strong>in</strong>g for the monitor<strong>in</strong>g <strong>of</strong> S. litura<br />

Mechanical egg collection on ma<strong>in</strong> crop <strong>and</strong><br />

Sprayed with Emamect<strong>in</strong> benzoate @ 0.2 g/l at 45 <strong>and</strong> 60 days after sow<strong>in</strong>g<br />

Module III: Farmer’s practice<br />

Insecticidal spray with qu<strong>in</strong>alphos @ 2 ml/ l was taken up at 50 <strong>and</strong> 60 days after<br />

sow<strong>in</strong>g<br />

In all the three modules, the sprays were imposed 2 times at an <strong>in</strong>terval <strong>of</strong> 15 days, at<br />

45 <strong>and</strong> 60 days after sow<strong>in</strong>g.<br />

The observations were recorded, when there was a <strong>in</strong>itial notice <strong>of</strong> both suck<strong>in</strong>g <strong>and</strong><br />

defoliat<strong>in</strong>g pests on <strong>groundnut</strong>.


Observations were recorded daily on trap catches <strong>of</strong> S. litura<br />

The population count <strong>of</strong> suck<strong>in</strong>g pests <strong>and</strong> defoliat<strong>in</strong>g pests were taken at weekly<br />

<strong>in</strong>tervals<br />

For suck<strong>in</strong>g pests-<br />

Five spots (per meter row) have been selected r<strong>and</strong>omly <strong>in</strong> each module, from each<br />

spot the pest population on top three leaves <strong>of</strong> selected five plants was recorded<br />

For defoliat<strong>in</strong>g pests-<br />

Five spots have been selected r<strong>and</strong>omly <strong>in</strong> each module, from each spot population<br />

(larvae) per meter row was recorded<br />

Natural enemy population <strong>in</strong> each module was recorded<br />

The leaf area damaged (<strong>in</strong> per cent) was visually assessed once <strong>in</strong> a week by<br />

adopt<strong>in</strong>g 1-9 scale on <strong>groundnut</strong> at r<strong>and</strong>omly selected five spots.<br />

The leaf damage prior to spray <strong>and</strong> after spray at 7 <strong>and</strong> 15 days <strong>and</strong> also larvae per<br />

meter row were recorded.<br />

After the harvest, pod yield <strong>of</strong> <strong>groundnut</strong> <strong>and</strong> gra<strong>in</strong> yield <strong>of</strong> both <strong>in</strong>tercrop <strong>and</strong> trap<br />

crop were recorded.<br />

Whereas, all other data were compared by us<strong>in</strong>g Paired‘t’ test.<br />

3.2.4 Cost economics<br />

Based on the yield data the gross returns <strong>and</strong> net returns were calculated for each<br />

module. The Cost-Benefit ratio (C:B) was determ<strong>in</strong>ed by Gross returns divided by cost <strong>of</strong><br />

cultivation for each module.


4. EXPERIMENTAL RESULTS<br />

The results <strong>of</strong> the present study on biology <strong>of</strong> Spodoptera litura on seven <strong>elite</strong><br />

<strong>genotypes</strong> <strong>and</strong> <strong>in</strong>tegrated pest management modules for <strong>groundnut</strong> pests was undertaken at<br />

Ma<strong>in</strong> Agricultural Research Station (MARS), University <strong>of</strong> Agricultural Sciences, Dharwad,<br />

dur<strong>in</strong>g Kharif, 2009 <strong>and</strong> results presented here under.<br />

4.1 Field <strong>screen<strong>in</strong>g</strong> <strong>of</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

Seven <strong>groundnut</strong> <strong>genotypes</strong> were screened aga<strong>in</strong>st S. litura under artificial <strong>in</strong>festation<br />

<strong>in</strong> the field condition dur<strong>in</strong>g 2009, ra<strong>in</strong>y season. All the <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong> differed<br />

significantly <strong>in</strong> per cent defoliation <strong>and</strong> larval count (per m row).<br />

The damage ranged from 11.5 to 44.0 per cent <strong>in</strong> different <strong>genotypes</strong>. Maximum<br />

defoliation <strong>and</strong> number <strong>of</strong> larvae / m row were observed <strong>in</strong> the JL-24 (44.0% <strong>and</strong> 4.0) followed<br />

by GPBD-4 (33.5% <strong>and</strong> 3.5). The <strong>genotypes</strong> viz., Mutant-III (11.5% <strong>and</strong> 1.0) <strong>and</strong> ICGV-<br />

86699 Tan (12.0% <strong>and</strong> 1.0) recorded m<strong>in</strong>imum damage <strong>and</strong> less number <strong>of</strong> larvae / m row.<br />

The damage <strong>and</strong> number <strong>of</strong> larvae were moderate <strong>in</strong> GPBD-5 (23.5% <strong>and</strong> 2.0), ICGV86699<br />

RED (23.5% <strong>and</strong> 2.0) <strong>and</strong> GPBD-6 (28.5% <strong>and</strong> 2.0) (Table 1).<br />

4.1.1 Biology <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>genotypes</strong> under laboratory<br />

conditions<br />

Spodoptera litura was reared on seven <strong>groundnut</strong> <strong>genotypes</strong> viz., JL-24, ICGV-86699<br />

Red, GPBD- 5, ICGV-86699 Tan, GPBD- 6, Mutant III <strong>and</strong> GPBD- 4. Various parameters <strong>of</strong><br />

growth <strong>and</strong> development <strong>of</strong> S. litura viz., number <strong>of</strong> days required for completion <strong>of</strong> each<br />

larval <strong>in</strong>star, prepupa, pupa, pre oviposition, oviposition, post oviposition <strong>and</strong> also larval<br />

weight, larval mortality at 5, 10 <strong>and</strong> 15 days after hatch<strong>in</strong>g, pupal weight, per cent survival on<br />

each variety, per cent adult emergence, adult longevity <strong>and</strong> total life cycle were studied.<br />

4.1.1.1 Larval period<br />

Dur<strong>in</strong>g the entire larval period, the caterpillar moulted five times. Thus completed six<br />

larval <strong>in</strong>stars. A brief description <strong>of</strong> each larval <strong>in</strong>star is presented below (Table 2).<br />

4.1.1.1.1 First Instar<br />

Neonate larvae t<strong>in</strong>y, cyl<strong>in</strong>drical <strong>and</strong> pale green with brown head. First abdom<strong>in</strong>al<br />

segment has a pair <strong>of</strong> black spots. Three dorsal stripes were seen all along the body. Larvae<br />

congregated below the leaf at the site <strong>of</strong> egg lay<strong>in</strong>g. Scraped the epidermis which resulted <strong>in</strong><br />

the papery leaf devoid <strong>of</strong> chlorophyll.<br />

The duration <strong>of</strong> first <strong>in</strong>star varied from 1.75 to 2.00 days <strong>in</strong> different <strong>genotypes</strong>. But<br />

there was no significant difference between the <strong>genotypes</strong> tested.<br />

4.1.1.1.2 Second <strong>in</strong>star<br />

Except for <strong>in</strong>crease <strong>in</strong> size, no marked change <strong>in</strong> body color was noticed. The larvae<br />

rema<strong>in</strong>ed <strong>in</strong> congregation but moved little away from the previous site <strong>and</strong> scraped the<br />

chlorophyll result<strong>in</strong>g <strong>in</strong>to th<strong>in</strong> papery leaf.<br />

The duration <strong>of</strong> second <strong>in</strong>star was significantly longer (3.83 days) on the <strong>genotypes</strong>,<br />

ICGV- 86699 Tan followed by Mutant III (3.50 days) than on other except GPBD-4 on which<br />

the second <strong>in</strong>star duration was least 2.42 days.<br />

4.1.1.1.3 Third <strong>in</strong>star<br />

The larvae <strong>in</strong>creased <strong>in</strong> size, turned pale green with brown head. A pair <strong>of</strong> black dots<br />

on first abdom<strong>in</strong>al segment <strong>and</strong> three dorsal stripes all along the body were prom<strong>in</strong>ent.<br />

Larvae <strong>of</strong> this <strong>in</strong>star moved <strong>in</strong>dividually <strong>and</strong> punctured the leaflet.


Table 1: Performance <strong>of</strong> <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong> aga<strong>in</strong>st Spodoptera litura damage under<br />

field condition dur<strong>in</strong>g Kharif 2009<br />

Sl. No. Genotypes<br />

Per cent<br />

defoliation<br />

1 JL-24 (Susceptible check ) 44.0 a<br />

2 ICGV86699 RED 23.5 d<br />

3 GPBD-5 23.5 d<br />

4 ICGV86699 TAN 12.0 e<br />

5 GPBD-6 28.5 cd<br />

6 MUTANT -III 11.5 e<br />

7 GPBD-4 33.5 bc<br />

No. <strong>of</strong> larvae / m row<br />

4.0 a<br />

2.0 c<br />

2.0 c<br />

1.0 d<br />

2.0 c<br />

1.0 d<br />

3.5 b<br />

S. Em ± 1.09 0.063<br />

C.D. at 5% 3.31 0.019<br />

C.V. (%) 13.0 8.53<br />

In a column, means followed by the same alphabet do not differ significantly (P = 0.05) by<br />

DMRT


ICGV-86699 TAN (Resistant)<br />

JL-24 (Susceptible)<br />

Mutant- III (Resistant)<br />

Plate.1. Resistant <strong>and</strong> susceptible <strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong>


Third <strong>in</strong>star duration was significantly longer on the <strong>genotypes</strong> ICGV-86699 Tan (3.83<br />

days) <strong>and</strong> Mutant III (3.75 days) followed by GPBD-6 (3.25 days) <strong>and</strong> GPBD-5 (3.25 days)<br />

<strong>and</strong> were on par with JL-24 (3.08 days), GPBD-4 (3.00 days) <strong>and</strong> ICGV- 86699 Red (3.00<br />

days).<br />

4.1.1.1.4 Fourth <strong>in</strong>star<br />

The color <strong>of</strong> the fourth <strong>in</strong>star larvae was grayish to black with a dark head <strong>and</strong> three<br />

white spots were observed on cervix. On meso <strong>and</strong> metathoracic segments white spots were<br />

seen on the lateral sides along the black stripes. The larvae got scattered from the egg lay<strong>in</strong>g<br />

site <strong>and</strong> fed on the leaves irregularly from the marg<strong>in</strong> <strong>in</strong>wards.<br />

The duration <strong>of</strong> fourth <strong>in</strong>star was significantly longer on the resistant <strong>genotypes</strong>,<br />

ICGV- 86699 Tan (4.33 days) <strong>and</strong> Mutant III (4.17 days) followed by GPBD-5 (3.83 days),<br />

GPBD-6 (3.67 days) <strong>and</strong> ICGV- 86699 Red (3.67 days). The shortest larval duration was<br />

recorded <strong>in</strong> susceptible <strong>genotypes</strong> GPBD-4 (3.25 days) <strong>and</strong> JL-24 (3.17 days).<br />

4.1.1.1.5 Fifth <strong>in</strong>star<br />

Considerable variation <strong>in</strong> the color rang<strong>in</strong>g from light green to dark brown with a dark<br />

brown head was apparent. A prom<strong>in</strong>ent ‘Y’ shaped epicranial suture was present on the head.<br />

The lateral stripes were more clearly visible from a distance. Larvae were more gregarious<br />

<strong>and</strong> fed irregularly on the leaves from marg<strong>in</strong> <strong>in</strong>wards.<br />

The duration <strong>of</strong> fifth larval <strong>in</strong>star was significantly longer <strong>in</strong> the <strong>genotypes</strong>, ICGV-<br />

86699 Tan (4.75 days) <strong>and</strong> Mutant III (4.58 days) followed by GPBD-5 (3.92 days), <strong>and</strong><br />

GPBD-6 (3.90 days) <strong>and</strong> were on par with ICGV- 86699 Red (3.42 days). The least larval<br />

duration was recorded <strong>in</strong> susceptible <strong>genotypes</strong> GPBD-4 (3.33 days) <strong>and</strong> JL-24 (3.25 days).<br />

4.1.1.1.6 Sixth <strong>in</strong>star<br />

The full grown sixth <strong>in</strong>star larva was stout <strong>and</strong> smooth. It was dull grayish to blackish<br />

green <strong>in</strong> color with a bright yellow stripes bordered by semicircular stripe. Along the lower<br />

edge <strong>of</strong> lateral side <strong>of</strong> the body, dull yellow stripe was dist<strong>in</strong>ct. On the dark brown head<br />

<strong>in</strong>verted ‘Y’ shaped suture was prom<strong>in</strong>ent.<br />

The duration <strong>of</strong> last <strong>in</strong>star was significantly longer <strong>in</strong> the resistant <strong>genotypes</strong>, ICGV-<br />

86699 Tan (4.92 days) <strong>and</strong> Mutant III (4.83 days) followed by GPBD-5 (4.08 days), <strong>and</strong><br />

GPBD-6 (4.09 days) <strong>and</strong> shortest larval duration was noticed <strong>in</strong> ICGV- 86699 Red (3.42<br />

days).However, it was on par with JL-24 (3. 52 days) <strong>and</strong> GPBD-4 (3.50 days).<br />

4.1.1.1.7 Total larval period<br />

The total larval period on all the <strong>genotypes</strong> ranged from 17.33 to 23.67 days. The<br />

resistant <strong>genotypes</strong>, ICGV- 86699 Tan <strong>and</strong> Mutant III permitted the larvae to complete their<br />

development <strong>in</strong> longer period (23.67 days <strong>and</strong> 22.83 days respectively) followed by GPBD-5<br />

(19.75 days) <strong>and</strong> GPBD-6 (19.49 days) <strong>and</strong> ICGV- 86699 Red (18.17 days). The susceptible<br />

varieties JL-24 <strong>and</strong> GPBD-4 allowed the larvae to complete their larval period with<strong>in</strong> shortest<br />

period (17.93 days <strong>and</strong> 17.33 days) (Table 2).<br />

4.1.1.2 Larval weight<br />

Mean <strong>of</strong> 20 larval weight was recorded on each genotype at 5, 10 <strong>and</strong> 15 days after<br />

hatch<strong>in</strong>g. The weight ga<strong>in</strong> by the larvae after 5 days after hatch<strong>in</strong>g (DAH) was maximum on<br />

susceptible <strong>genotypes</strong>, JL-24 (0.08 g) <strong>and</strong> GPBD-4 (0.08 g) followed by GPBD-5 (0.06 g) <strong>and</strong><br />

m<strong>in</strong>imum weight was recorded <strong>in</strong> resistant <strong>genotypes</strong>, ICGV- 86699 Tan (0.02 g) <strong>and</strong> Mutant<br />

III (0.02 g) <strong>and</strong> rema<strong>in</strong><strong>in</strong>g <strong>genotypes</strong> were on par with each other (Table 3).<br />

After 10 DAH, the larval weight was significantly highest on JL-24 (1.98 g) <strong>and</strong><br />

GPBD-4 (1.91 g) followed by GPBD-6 (1.44 g), GPBD-5 (1.41 g) ICGV-86699 Red (1.28 g).


Table 2: In vitro larval duration (<strong>in</strong> days) <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

Sl. No. Genotypes<br />

1 GPBD-5 2.00 a<br />

2 ICGV-86699 Red 1.83 a<br />

3 ICGV-86699 Tan 2.00 a<br />

4 GPBD-6 1.75 a<br />

5 Mutant-III 2.00 a<br />

6 GPBD-4 1.83 a<br />

7 JL-24 (Susceptible check) 2.00 a<br />

Larval <strong>in</strong>star duration (<strong>in</strong> days)<br />

1 st <strong>in</strong>star 2 nd <strong>in</strong>star 3 rd <strong>in</strong>star 4 th <strong>in</strong>star 5 th <strong>in</strong>star 6 th <strong>in</strong>star Total<br />

2.67 c<br />

2.83 c<br />

3.83 a<br />

2.92 bc<br />

3.50 ab<br />

2.42 c<br />

2.92 bc<br />

3.25 ab<br />

3.00 b<br />

3.83 a<br />

3.25 ab<br />

3.75 a<br />

3.00 b<br />

3.08 b<br />

3.83 ab<br />

3.67 ab<br />

4.33 a<br />

3.67 ab<br />

4.17 a<br />

3.25 b<br />

3.92 b<br />

3.42 bc<br />

4.75 a<br />

3.90 b<br />

4.58 a<br />

3.33 bc<br />

3.17 b 3.25 c<br />

S. Em ± 0.11 0.14 0.14 0.18 0.14 0.12 0.32<br />

C.D.at 1% NS 0.56 0.59 0.71 0.59 0.49 1.26<br />

In a column, means followed by the same alphabet do not differ significantly (P = 0.01) by DMRT<br />

4.08 b<br />

3.42 c<br />

4.92 a<br />

4.09 b<br />

4.83 a<br />

3.50 c<br />

3.52 c<br />

19.75 b<br />

18.17 cd<br />

23.67 a<br />

19.49 bc<br />

22.83 a<br />

17.33 d<br />

17.93 d


Table 3: Ga<strong>in</strong> <strong>in</strong> larval weight <strong>and</strong> larval mortality <strong>of</strong> Spodoptera litura at different days after hatch<strong>in</strong>g on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong> under laboratory<br />

conditions<br />

Sl. No. Genotypes<br />

1 GPBD-5 0.06 a<br />

2 ICGV-86699 Red 0.05 ab<br />

3 ICGV-86699 Tan 0.02 b<br />

4 GPBD-6 0.05 ab<br />

5 Mutant-III 0.02 b<br />

6 GPBD-4 0.08 a<br />

7 JL-24 (Susceptible check) 0.08 a<br />

Mean <strong>of</strong> 20 larval weight (g) Larval mortality (%)<br />

Total<br />

mortality<br />

5 DAH 10 DAH 15 DAH 5 DAH 10 DAH 15 DAH (%)<br />

1.41 ab<br />

1.28 ab<br />

0.79 b<br />

1.44 ab<br />

0.82 b<br />

1.91 a<br />

1.98 a<br />

10.30 ab<br />

9.92 b<br />

7.12 c<br />

10.31 ab<br />

6.13 c<br />

11.99 a<br />

11.70 a<br />

31.67 ab<br />

29.33 b<br />

41.00 a<br />

30.67 ab<br />

41.33 a<br />

27.00 b<br />

28.00 b<br />

6.67 b<br />

5.53 b<br />

9.67 a<br />

7.00 ab<br />

S. Em. ± 0.007 0.20 0.38 2.45 0.65 2.46<br />

C.D. at 1% 0.029 0.80 1.51 9.82 2.65 9.84<br />

In a column, means followed by the same alphabet do not differ significantly (P = 0.01) by DMRT<br />

DAH: Days after hatch<strong>in</strong>g<br />

9.67 a<br />

5.67 b<br />

5.67 b<br />

16.80 ab<br />

12.55 b<br />

25.27 a<br />

15.11 ab<br />

25.47 a<br />

13.00 b<br />

12.93 b<br />

55.14<br />

47.41<br />

75.95<br />

52.78<br />

76.47<br />

45.67<br />

46.60


The least larval weight recorded <strong>in</strong> ICGV- 86699 Tan (0.79 g) <strong>and</strong> Mutant III (0.82 g).<br />

However, after 15 DAH larvae reared on GPBD-4 <strong>and</strong> JL-24 registered significantly higher<br />

weight ga<strong>in</strong> (11.99 g <strong>and</strong> 11.70 g) <strong>and</strong> the least larval weight was recorded <strong>in</strong> ICGV- 86699<br />

Tan (7.12 g) <strong>and</strong> Mutant-III (6.13 g). The <strong>genotypes</strong> GPBD-6 (10.31 g), GPBD-5 (10.30 g)<br />

<strong>and</strong> ICGV-86699 Red (9.92 g) were <strong>in</strong>termediate <strong>in</strong> ga<strong>in</strong><strong>in</strong>g the weight.<br />

4.1.1.3 Larval mortality (%)<br />

Per cent larval mortality at 5, 10 <strong>and</strong> 15 DAH varied significantly between the<br />

<strong>genotypes</strong> evaluated. Significantly high larval mortality was recorded on resistant <strong>genotypes</strong><br />

at all the stages compared to susceptible <strong>genotypes</strong>.<br />

The per cent larval mortality after 5 DAH Significantly high on resistant <strong>genotypes</strong><br />

Mutant III (41.33%) <strong>and</strong> ICGV- 86699 Tan (41.00%) compared to susceptible <strong>genotypes</strong><br />

ICGV-86699 Red (29.33%), JL-24 (28%) <strong>and</strong> GPBD-4 (27%) followed by GPBD-5 (31.67%)<br />

<strong>and</strong> GPBD- 6 (30.67%) (Table 3).<br />

After 10 DAH, the per cent larval mortality was significantly more on ICGV- 86699<br />

Tan (9.67%) <strong>and</strong> Mutant III (9.67%) followed by GPBD-6 (7.00%) <strong>and</strong> less larval mortality was<br />

noticed on the genotype ICGV-86699 Red (5.53%) <strong>and</strong> it was on par with JL-24 (5.67%) <strong>and</strong><br />

GPBD-4 (5.67%). However, after 15 DAH larvae reared on ICGV- 86699 Tan <strong>and</strong> Mutant III<br />

registered significantly high larval mortality (25.27% <strong>and</strong> 25.47%) followed by GPBD-5 (16.80<br />

%), GPBD-6 (15.11%). The <strong>genotypes</strong> ICGV-86699 Red (12.55%), JL-24 (12.93%) <strong>and</strong><br />

GPBD-4 (13.00%) were <strong>in</strong>termediate <strong>in</strong> larval mortality.<br />

4.1.1.4 Total per cent mortality<br />

Total per cent mortality was significantly highest on the <strong>genotypes</strong> Mutant III (76.47%)<br />

<strong>and</strong> ICGV- 86699 Tan (75.95%) <strong>and</strong> it was lowest on GPBD-4 (45.67%) <strong>and</strong> it was on par<br />

with JL-24 (46.60%) <strong>and</strong> ICGV-86699 Red (47.41%). Whereas GPBD-5 (55.14%), GPBD-6<br />

(52.14%) were <strong>in</strong>termediate <strong>in</strong> total per cent mortality (Table 3).<br />

4.1.1.5 Pupal weight<br />

Mean <strong>of</strong> 15 pupal weight was recorded on each genotype at a day after pupation.<br />

Pupal weight varied significantly between the <strong>genotypes</strong> evaluated. The highest pupal weight<br />

was recorded on the susceptible <strong>genotypes</strong>, JL-24 (4.66 g) <strong>and</strong> GPBD-4 (4.63 g) followed by<br />

GPBD-5 (4.27 g), GPBD-6 (4.21 g) <strong>and</strong> ICGV-86699 Red (3.93 g). The lowest pupal weight<br />

was recorded on ICGV- 86699 Tan (3.07 g) <strong>and</strong> Mutant III (2.98 g) (Table 4).<br />

4.1.1.6 Per cent pupal survival<br />

Per cent pupal survival on each variety varied significantly. The per cent pupal<br />

survival was highest on the <strong>genotypes</strong>, GPBD-4 (49.67%), JL-24 (48.00%).Which were on par<br />

with ICGV-86699 Red (46.67%) <strong>and</strong> per cent pupal survival was lowest on ICGV- 86699 Tan<br />

(20.67 %) <strong>and</strong> Mutant III (19.00%).Whereas GPBD-6 (43.00%) <strong>and</strong> GPBD-5 (40.00%) were<br />

<strong>in</strong>termediate <strong>in</strong> per cent pupal survival (Table 4).<br />

4.1.1.7 Percentage <strong>of</strong> adult emergence<br />

Percentage <strong>of</strong> adult emergence was significantly least on ICGV- 86699 Tan (16.72%)<br />

<strong>and</strong> Mutant III (14.94%) <strong>and</strong> it was highest <strong>in</strong> the <strong>genotypes</strong> GPBD-4 (46.38%) <strong>and</strong> JL-24<br />

(46.08%). Which were on par with ICGV-86699 Red (38.70 %) <strong>and</strong> GPBD-6 (38.48%) (Table<br />

4).<br />

4.1.1.8 Adult longevity<br />

Adult longevity was maximum on susceptible <strong>genotypes</strong> JL-24 (11.83 days) <strong>and</strong><br />

GPBD-4 (11.67 days) followed by GPBD-6 (10.25 days), GPBD-5 (10.17 days) <strong>and</strong> m<strong>in</strong>imum


Table 4: Biological parameters <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong> under laboratory conditions<br />

Sl. No. Genotypes<br />

Mean <strong>of</strong> 15 pupal<br />

weight (g)<br />

Pupal survival (%)<br />

Adult emergence<br />

(%)<br />

Adult longevity<br />

(days)<br />

1 GPBD-5 4.27 ab 40.00 b 30.79 b 10.17 b<br />

2 ICGV-86699 Red 3.93 ab<br />

3 ICGV-86699 Tan 3.07 b<br />

46.67 ab 38.70 ab 9.58 b<br />

20.67 c<br />

16.72 c 9.33 b<br />

4 GPBD-6 4.21 ab 43.00 ab 38.48 ab 10.25 b<br />

5 Mutant-III 2.98 b 19.00 c 14.94 c 9.67 b<br />

6 GPBD-4 4.63 a 49.67 a 46.38 a 11.67 a<br />

7 JL-24 (Susceptible check) 4.66 a<br />

48.00 a 46.08 a 11.83 a<br />

Fecundity (eggs/<br />

female)<br />

520.67 ab<br />

492.67 ab<br />

386.00 b<br />

517.00 ab<br />

379.67 b<br />

588.67 a<br />

592.00 a<br />

S. Em. ± 0.31 1.57 2.38 0.23 30.75<br />

C.D. at 1% 1.24 6.28 9.00 0.92 123.23<br />

In a column, means followed by the same alphabet do not differ significantly (P = 0.01) by DMRT


on ICGV- 86699 Tan (9.33 days) <strong>and</strong> it was on par with Mutant III (9.67 days) <strong>and</strong> ICGV-<br />

86699 Red (9.58 days) (Table 4).<br />

4.1.1.9 Fecundity<br />

There was greater variation <strong>in</strong> the fecundity. JL-24 <strong>and</strong> GPBD-4 established their<br />

superiority <strong>in</strong> record<strong>in</strong>g significantly higher number <strong>of</strong> eggs / female (592.0 <strong>and</strong> 588.67)<br />

followed by GPBD-5 (520.67), GPBD-6 (517.0), ICGV-86699 Red (492.67) <strong>and</strong> the least<br />

number <strong>of</strong> eggs were recorded <strong>in</strong> ICGV- 86699 Tan (386.0) <strong>and</strong> Mutant III (379.0) (Table 4).<br />

4.1.1.10 Pre-pupal period<br />

The fully developed larvae gradually shrunk <strong>and</strong> entered prepupal stage. There was<br />

no significant difference <strong>in</strong> the pre-pupal period <strong>in</strong> <strong>genotypes</strong>, thus pre pupal period did not<br />

vary between the <strong>genotypes</strong> (Table 5).<br />

4.1.1.11 Pupal period<br />

There was further reduction <strong>in</strong> the length <strong>of</strong> the prepupa <strong>and</strong> it transformed <strong>in</strong>to a<br />

pupa. The pupa was brown, obtect with prom<strong>in</strong>ent compound eyes.<br />

The total pupal period was significantly m<strong>in</strong>imum on susceptible <strong>genotypes</strong>, JL-24<br />

(9.83days) <strong>and</strong> GPBD-4 (9.75 days).Whereas Mutant III (11.67 days) <strong>and</strong> ICGV- 86699 Tan<br />

(11.33 days) recorded maximum pupal period <strong>and</strong> GPBD-5 (10.33 days), GPBD-6 (10.25<br />

days) <strong>and</strong> ICGV- 86699 Red (10.17days) were <strong>in</strong>termediate <strong>in</strong> pupal duration (Table 5).<br />

4.1.1.12 Pre-oviposition period<br />

Pre-oviposition period was significantly extended on resistant <strong>genotypes</strong>, Mutant III<br />

(4.25 days) <strong>and</strong> ICGV- 86699 Tan (4.17 days) <strong>and</strong> the Pre-oviposition period was least on JL-<br />

24 (3.08 days) <strong>and</strong> it was on par with GPBD-6 (3.50 days), GPBD-5 (3.42 days), GPBD-4<br />

(3.33 days) <strong>and</strong> ICGV- 86699 Red (3.25 days) (Table 5).<br />

4.1.1.13 Oviposition period<br />

Oviposition period was significantly higher on GPBD-4 (4.92 days) followed by JL-24<br />

(4.83 days) <strong>and</strong> least on Mutant III (4.25 days) <strong>and</strong> ICGV- 86699 Tan (4.17 days). Whereas<br />

GPBD-5 (4.42 days), GPBD-6 (4.42 days) <strong>and</strong> ICGV- 86699 Red (4.33 days) were<br />

<strong>in</strong>termediate <strong>in</strong> oviposition period (Table 5).<br />

4.1.1.14 Post-oviposition period<br />

GPBD-4 (4.00 days) showed significantly higher post-oviposition period. Whereas<br />

Mutant III (3.25 days) <strong>and</strong> ICGV-86699 Tan (3.17 days) recorded least post-oviposition period<br />

followed by GPBD-6 (3.58 days) <strong>and</strong> GPBD-5 (3.50 days) <strong>and</strong> were on par with ICGV- 86699<br />

Red (3.33 days) (Table 5).<br />

4.1.1.7 Total developmental period (egg-adult)<br />

The total developmental period was significantly least on JL-24 (41.02 days), GPBD-4<br />

(41.00 days) <strong>and</strong> ICGV-86699 Red (41.17 days) when compared to ICGV-86699 Tan (49.00<br />

days) <strong>and</strong> Mutant III (48.92 days). Whereas GPBD-5 (43.33 days) <strong>and</strong> GPBD-6 (43.15 days)<br />

were <strong>in</strong>termediate <strong>in</strong> total developmental period <strong>and</strong> were on par with each other (Table 5).<br />

4.2 Evaluation <strong>of</strong> IPM modules <strong>in</strong> <strong>groundnut</strong><br />

Three different IPM modules viz., (1) the effective IPM modules developed aga<strong>in</strong>st S.<br />

litura (M-I) <strong>in</strong>volv<strong>in</strong>g seed treatment with Trichoderma, sunflower as trap crop, pheromone<br />

traps, spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE was imposed (2) <strong>in</strong> this module (M-II) <strong>in</strong>stead <strong>of</strong>


Table 5: In vitro biology <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

Sl. No. Genotypes<br />

Larval period<br />

Pre pupal<br />

period<br />

Pupal period<br />

Duration (<strong>in</strong> days)<br />

Pre<br />

oviposition<br />

period<br />

Oviposition<br />

period<br />

Post<br />

oviposition<br />

period<br />

Total<br />

development<br />

al period<br />

(egg-adult)<br />

1 GPBD-5 19.75 b 1.75 a 10.33 abc 3.42 b 4.42 abc 3.50 abc 43.33 b<br />

2 ICGV-86699 Red 18.17 cd<br />

1.58 a<br />

10.17 abc 3.25 b 4.33 bc 3.33 bc 41.17 c<br />

3 ICGV-86699 Tan 23.67 a 2.17 a 11.33 ab 4.17 a 4.17 c 3.17 c 49.00 a<br />

4 GPBD-6 19.49 bc 1.67 a 10.25 abc 3.50 b 4.42 abc 3.58 abc 43.15 b<br />

5 Mutant-III 22.83 a 2.08 a 11.67 a 4.25 a 4.25 c 3.25 c 48.92 a<br />

6 GPBD-4 17.33 d 1.75 a 9.75 c 3.33 b 4.92 a 4.00 a 41.00 c<br />

7 JL-24 (Susceptible check) 17.93 d<br />

1.67 a<br />

9.83 bc<br />

3.08 b 4.83 ab 3.92 ab<br />

S. Em. ± 0.32 0.16 0.32 0.14 0.12 0.12 0.34<br />

C.D. at 1% 1.26 NS 1.28 0.56 0.49 0.48 1.36<br />

In a column, means followed by the same alphabet do not differ significantly (P = 0.01) by DMRT<br />

41.02 c


Module II (Groundnut + Foxtail millet)<br />

Module III (Farmers practice)<br />

Plate.2. IPM modules take up <strong>in</strong> <strong>groundnut</strong><br />

Module I (Groundnut + Sunflower)


sunflower <strong>and</strong> N. rileyi, foxtail millet used as <strong>in</strong>tercrop <strong>and</strong> Emamect<strong>in</strong> benzoate used for<br />

spray<strong>in</strong>g where as other treatments rema<strong>in</strong>ed same as that <strong>of</strong> M-I. These two modules were<br />

compared with M-III which comprised <strong>of</strong> farmer’s practice. The results obta<strong>in</strong>ed are presented<br />

<strong>in</strong> tables.<br />

4.2.1 Monitor<strong>in</strong>g the activity <strong>of</strong> S. litura<br />

The daily trap catches <strong>of</strong> male adults <strong>of</strong> S. litura <strong>in</strong> pheromone traps dur<strong>in</strong>g Kharif<br />

2009 <strong>in</strong>dicated def<strong>in</strong>ite pattern <strong>of</strong> occurrence dur<strong>in</strong>g August <strong>and</strong> September (Apendix-I).<br />

In first module<br />

Dur<strong>in</strong>g the cropp<strong>in</strong>g season, the maximum number <strong>of</strong> moths were caught on fourth<br />

day <strong>of</strong> second week <strong>of</strong> August (451.0) <strong>and</strong> m<strong>in</strong>imum number <strong>of</strong> moths were caught on fourth<br />

day <strong>of</strong> third week <strong>of</strong> August (13.0). The maximum number <strong>of</strong> adults were caught dur<strong>in</strong>g first<br />

<strong>and</strong> second week <strong>of</strong> August. The least number <strong>of</strong> moths were caught on fifth day <strong>of</strong> first week<br />

<strong>of</strong> September (18.0) <strong>and</strong> maximum (75.0) on seventh day <strong>of</strong> second week. In September<br />

month, the maximum number <strong>of</strong> adults were caught dur<strong>in</strong>g second week compare to other<br />

weeks.<br />

In second module<br />

Dur<strong>in</strong>g August month, the maximum number <strong>of</strong> moths were caught on fifth day <strong>of</strong><br />

third week (159.0) <strong>and</strong> the m<strong>in</strong>imum (18.0) number <strong>of</strong> moths on first day <strong>of</strong> fourth week.<br />

Dur<strong>in</strong>g September month, the highest number <strong>of</strong> moths caught on seventh day <strong>of</strong> second<br />

week (112.0) <strong>and</strong> lowest (13.0) on fourth day <strong>of</strong> first week. In second module, the highest<br />

number <strong>of</strong> moths were caught dur<strong>in</strong>g first week <strong>of</strong> August compare to September.<br />

Between Module-I <strong>and</strong> II, the highest number <strong>of</strong> moths were caught <strong>in</strong> Module-I<br />

compare to Module –II.<br />

4.2.2 Suck<strong>in</strong>g pest population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

4.2.2.1 Thrips (Scirtothrips dorsalis <strong>and</strong> Thrips palmi)<br />

Nymphs <strong>and</strong> adults were found suck<strong>in</strong>g the sap from leaves, start<strong>in</strong>g from 21 DAS to<br />

63 DAS. Population <strong>of</strong> thrips ranged from 2.60 to 3.28 /top three leaves <strong>in</strong> M-I. In M-II it was<br />

ranged from 1.40 to 2.48. In case <strong>of</strong> third module the thrips population was varied from 3.16<br />

to 3.84 (Table 6).<br />

As per Paired ‘t’ value, there was significant variation <strong>in</strong> suck<strong>in</strong>g pest population <strong>in</strong><br />

different IPM modules. Module-II was significantly superior over module-I <strong>and</strong> module-III<br />

dur<strong>in</strong>g 21 DAS to 63 DAS. Whereas module-I was significantly superior over module-III dur<strong>in</strong>g<br />

same period.<br />

4.2.2.2 Leafhoppers (Empoasca kerri)<br />

Leafhoppers population found to attack the crop from 21 DAS to 63 DAS with the<br />

population <strong>of</strong> 1.44 to 2.24 / top three leaves <strong>in</strong> M-I. In M-II, the population <strong>of</strong> leafhoppers<br />

ranged from 1.24 to 2.38. In module-III (farmer’s practice) the population varied from 2.40 to<br />

3.45/ top three leaves (Table 7).<br />

As per Paired ‘t’ value, all the three modules varied significantly from each other.<br />

Module-II was significantly superior over module-I <strong>and</strong> module-III dur<strong>in</strong>g 21 DAS to 63 DAS.<br />

However module-I was significantly superior over module-III dur<strong>in</strong>g 21 DAS to 63 DAS.<br />

4.2.3 Defoliator population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

4.2.3.1 Semilooper (Thysanoplusia orichalcea)<br />

This pest was observed on the crop from 37 DAS to 79 DAS. The young caterpillars<br />

scraped the chlorophyll content <strong>of</strong> the tender leaves from undersurface. Later <strong>in</strong>stars caused


Table 6: Thrips population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Thrips population / top 3 leaves<br />

21 DAS 28 DAS 35 DAS 42 DAS 49 DAS 56 DAS 63 DAS<br />

2.60 2.68 3.28 3.24 3.12 3.00 2.80<br />

2.00 2.12 2.40 2.48 2.24 1.80 1.40<br />

3.16 3.28 3.84 3.72 3.56 3.40 3.36<br />

Module I & Module II 3.35* 2.88* 3.22* 3.28* 2.99* 5.26* .37*<br />

Module II & Module III 5.98* 7.89* 2.88* 6.07* 3.65* 7.62* 7.89*<br />

Module III & Module I 2.88* 3.58* 3.58* 4.70* 5.87* 3.65* 3.50*<br />

* Significant at 5% level DAS- Days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


Table 7: Leaf hoppers population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Leafhoppers population / top 3 leaves<br />

21 DAS 28 DAS 35 DAS 42 DAS 49 DAS 56 DAS 63 DAS<br />

2.48 2.24 2.87 2.51 2.47 1.88 1.44<br />

2.00 2.38 2.16 2.06 2.00 1.48 1.24<br />

Module III (Farmers’ practice) 3.16 3.00 3.44 3.36 3.45 2.60 2.40<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Module I & Module II 2.95* 1.25 7.88* 2.78* 2.93* 6.53* 0.95<br />

Module II & Module III 5.98* 2.90* 9.58* 5.12* 5.74* 3.31* 83*<br />

Module III & Module I 2.56* 2.97* 2.86* 2.97* 3.57* 3.08* 5.57*<br />

* Significant at 5% level DAS- Days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


severe defoliation. Their population varied from 1.24 to 1.72 larvae / m row <strong>in</strong> first module.<br />

Whereas <strong>in</strong> second module, the population varied from 0.44 to 0.68 <strong>and</strong> <strong>in</strong> case <strong>of</strong> third<br />

module the population ranged between 2.00 to 2.48 (Table 8).<br />

As per Paired ‘t’ value, all the three modules differed significantly from each other.<br />

Module-II was significantly superior over module-I <strong>and</strong> module-III dur<strong>in</strong>g 37 DAS to 79 DAS.<br />

Whereas module-I was significantly superior over module-III dur<strong>in</strong>g same period.<br />

4.2.3.2 Tobacco caterpillar (Spodoptera litura)<br />

This pest was noticed on the crop from 37 DAS to 79 DAS. They were gregarious <strong>in</strong><br />

early <strong>in</strong>stars <strong>and</strong> scraped the chlorophyll content from under surface <strong>of</strong> leaves, resulted <strong>in</strong><br />

skeletonisation. Later <strong>in</strong>stars spread <strong>and</strong> fed on leaves voraciously. The population varied<br />

from 1.48 to 3.96 larvae/ m row <strong>in</strong> first module. Whereas <strong>in</strong> second module, the S.litura<br />

population ranged from 0.76 to 3.08 <strong>and</strong> it was varied from 2.56 to 4.40 <strong>in</strong> third module<br />

(Table 9).<br />

As per Paired ‘t’ value, all the three modules varied significantly from each other.<br />

Module-II was significantly superior over module-I <strong>and</strong> module-II dur<strong>in</strong>g 37 DAS to 79 DAS.<br />

However module-I was significantly superior over module-III dur<strong>in</strong>g same period.<br />

4.2.3.3 Bihar hairy caterpillar (Spilactia obliqua)<br />

Larvae scraped the green matter from under surface <strong>of</strong> leaves <strong>and</strong> skeletonised them<br />

<strong>in</strong> the early <strong>in</strong>stars. The grown up caterpillars defoliated the crop. This pest was found to<br />

attacked the crop 37 DAS to 79 DAS. In M-I the larval number varied from 0.78 to 1.11 / m<br />

row. Whereas <strong>in</strong> M-II it was varied from 0.28 to 0.70 larvae /m row. However <strong>in</strong> M-III, the<br />

larval population ranged from 1.04 to 1.69 (Table 10).<br />

As per Paired ‘t’ value, all the three modules varied significantly from each other.<br />

Module-II was significantly superior over module-I <strong>and</strong> module-III dur<strong>in</strong>g 37 DAS to 79 DAS.<br />

The same trend was followed with module-I <strong>and</strong> module-III.<br />

4.2.3.4 Groundnut leaf m<strong>in</strong>er (Aproraema modicella)<br />

Infestation was noticed on the crop for a short period from 51 DAS to 72 DAS. The<br />

larvae were m<strong>in</strong><strong>in</strong>g <strong>in</strong>to midrib <strong>of</strong> the leaves <strong>and</strong> feed<strong>in</strong>g on the mesophyll between the two<br />

epidermal layers for a week <strong>and</strong> comes out from m<strong>in</strong>e <strong>and</strong> webb<strong>in</strong>g the leaves <strong>and</strong> feed<strong>in</strong>g on<br />

them. At later stage to give burnt appearance <strong>of</strong> leaves from a distance. The population <strong>of</strong><br />

GLM varied from 0.92 to 1.20 larvae/ plant <strong>in</strong> M-I. Whereas <strong>in</strong> M-II, the leaf m<strong>in</strong>er population<br />

ranged from 0.36 to 0.50 <strong>and</strong> <strong>in</strong> M-III, it was varied from 1.82 to 2.04 (Table 11). Though the<br />

pest population was below ETL <strong>in</strong> all the IPM modules.<br />

Paired ‘t’ value, all the three modules differed significantly from each other. Module-II<br />

was significantly superior over module-I <strong>and</strong> module-III dur<strong>in</strong>g 51 DAS to 72 DAS. However<br />

module-I was significantly superior over module-III dur<strong>in</strong>g same period.<br />

4.2.4 Per cent defoliation by <strong>defoliators</strong> <strong>in</strong> different IPM modules <strong>of</strong><br />

<strong>groundnut</strong><br />

4.2.4.1 35 days after sow<strong>in</strong>g<br />

The per cent defoliation was highest <strong>in</strong> module-III (36.6) followed by module-I (26.4)<br />

<strong>and</strong> lowest <strong>in</strong> module-II (22.8) at 35 days after sow<strong>in</strong>g. As per Paired ‘t’ value, all the three<br />

modules differ significantly from each other (Table 12).


Table 8: Thysanoplusia orichalcea population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Thysanoplusia orichalcea population / m row<br />

37 DAS 44 DAS 51 DAS 58 DAS 65 DAS 72 DAS 79 DAS<br />

1.24 1.64 1.72 1.68 1.71 1.56 1.44<br />

0.68 0.48 0.52 0.53 0.58 0.50 0.44<br />

2.48 2.00 2.16 2.12 2.14 2.06 2.20<br />

Module I & Module II 2.88* 5.20* 5.47* 4.46* 5.23* 4.16* 4.56*<br />

Module II & Module III 7.89* 7.05* 9.75* 9.47* 10.67* 10.09* 10.22*<br />

Module III & Module I 6.76* 2.59 3.77* 3.31* 3.26* 2.30 2.96*<br />

* Significant at 5% level DAS- Days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


Table 9: Spodoptera litura population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Spodoptera litura population/ m row<br />

37 DAS 44 DAS 51 DAS 58 DAS 65 DAS 72 DAS 79 DAS<br />

1.48 2.20 2.16 2.80 3.60 3.80 3.96<br />

0.76 1.60 1.48 2.36 2.84 3.00 3.08<br />

2.56 3.20 3.28 3.60 4.04 4.20 4.40<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Module I & Module II 3.49* 2.86* 3.47* 3.77* 3.91* 3.38* 4.74*<br />

Module II & Module III 7.89* 9.56* 8.58* 10.63* 6.70* 4.47* 6.73*<br />

Module III & Module I 5.24* 4.76* 8.25* 4.21* 5.87* 3.16* 3.77*<br />

* Significant at 5% level DAS- Days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


Table 10: Spilarctia obliqua population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Spilarctia obliqua population / m row<br />

37 DAS 44 DAS 51 DAS 58 DAS 65 DAS 72 DAS 79 DAS<br />

0.78 0.82 0.90 0.95 0.99 1.09 1.11<br />

0.28 0.32 0.36 0.38 0.43 0.64 0.70<br />

1.04 1.10 1.12 1.20 1.29 1.60 1.69<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Module I & Module II 2.79* 3.95* 5.01* 4.42* 5.20* 3.77* 4.21*<br />

Module II & Module III 4.75* 7.00* 5.17* 9.85* 8.29* 3.53* 6.54*<br />

Module III & Module I 4.33* 3.81* 1.62 2.98* 3.35* 6.50* 3.71*<br />

* Significant at 5% level DAS- Days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


Table 11: Aproraema modicella population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Aproraema modicella population / plant<br />

51 DAS 58 DAS 65 DAS 72 DAS 79 DAS 86 DAS<br />

0.92 1.00 1.20 1.08 - -<br />

0.36 0.44 0.48 0.50 - -<br />

1.82 1.94 2.00 2.04 - -<br />

Module I & Module II 4.63* 3.25* 3.02* 2.88* - -<br />

Module II & Module III 6.69* 4.48* 4.41* 6.01* - -<br />

Module III & Module I 6.28* 3.98* 4.20* 6.00* - -<br />

* Significant at 5% level DAS- Days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


4.2.4.2 50 days after sow<strong>in</strong>g<br />

The defoliation percentage was more (39.8) <strong>in</strong> module-III followed by module-I (35.8)<br />

<strong>and</strong> less (29.0) <strong>in</strong> module –II <strong>and</strong> at 50 days after sow<strong>in</strong>g. All the three modules varied<br />

significantly from each other as per Paired ‘t’ value (Table 12).<br />

4.2.4.3 65 days after sow<strong>in</strong>g<br />

The per cent defoliation was highest <strong>in</strong> module-III (25.2) followed by module-I (22.2)<br />

<strong>and</strong> least <strong>in</strong> module-II (16.4) at 65 days after sow<strong>in</strong>g. As per Paired ‘t’ value, all the three<br />

modules differ significantly from each other (Table 12).<br />

4.2.5 The management <strong>of</strong> Spodoptera litura <strong>in</strong> IPM modules <strong>of</strong> <strong>groundnut</strong><br />

The management <strong>of</strong> Spodoptera litura <strong>in</strong> IPM modules <strong>of</strong> <strong>groundnut</strong> is given <strong>in</strong> table<br />

13. Two sprays 45 <strong>and</strong> 60 days after sow<strong>in</strong>g was done <strong>and</strong> observations have taken. All the<br />

three treatments differed significantly <strong>in</strong> percent defoliation before spray<strong>in</strong>g <strong>in</strong> both the cases.<br />

Module III has shown significantly higher defoliation percentage (43.6, 24.4) followed by<br />

module I (37.8, 17.4) <strong>and</strong> lowest observed <strong>in</strong> module II (31.8, 15.4) <strong>in</strong> first <strong>and</strong> second spray<br />

respectively.<br />

In first spray, 7DAS defoliation percentage <strong>and</strong> larvae per mt row were counted. All<br />

three treatments differed significantly <strong>in</strong> both the observations. Module III reported<br />

significantly highest defoliation <strong>and</strong> larvae (39.8 <strong>and</strong> 4.2) followed by module I (35.8 <strong>and</strong> 3.2)<br />

<strong>and</strong> the module II showed less defoliation <strong>and</strong> larvae (29.0 <strong>and</strong> 2.2). Observations taken 15<br />

DAS also showed the same trend show<strong>in</strong>g significantly higher defoliation <strong>and</strong> larvae <strong>in</strong><br />

module III (25.2 <strong>and</strong> 3.8) followed by module I (22.2 <strong>and</strong> 3.0) <strong>and</strong> lowest <strong>in</strong> module II (16.4<br />

<strong>and</strong> 1.6).<br />

In second spray, 7DAS per cent defoliation <strong>and</strong> larvae per mt row were recorded. All<br />

three treatments varied significantly <strong>in</strong> both the observations. M- III showed significantly<br />

highest defoliation <strong>and</strong> larvae (24.4 <strong>and</strong> 3.6) followed by M-I (21.2 <strong>and</strong> 2.6) <strong>and</strong> the M -II<br />

showed less defoliation <strong>and</strong> larvae (15.4 <strong>and</strong> 1.8). Observations taken 15 DAS also followed<br />

the same trend show<strong>in</strong>g significantly higher defoliation <strong>and</strong> larvae <strong>in</strong> M-III (19.4 <strong>and</strong> 3.4)<br />

followed by M-I (17.4 <strong>and</strong> 2.0) <strong>and</strong> lowest <strong>in</strong> M- II (12.4 <strong>and</strong> 1.2).<br />

4.2.6 Incidence <strong>of</strong> suck<strong>in</strong>g <strong>and</strong> defoliat<strong>in</strong>g <strong>in</strong>sect pest on sunflower crop<br />

4.2.6.1 Suck<strong>in</strong>g pests<br />

Leafhoppers, both nymphs <strong>and</strong> adults were found to suck the plant sap, start<strong>in</strong>g from<br />

21 DAS to 63 DAS. The leafhopper population varied from 1.02 to 2.04 / top three leaves with<br />

an average <strong>of</strong> 1.49 ± 0.32 (Table 14).<br />

Thrips, Thrips palmi were noticed on the crop from 21 DAS to 63 DAS. The<br />

population <strong>of</strong> thrips ranged from 1.42 to 2.64 / top three leaves with an average <strong>of</strong> 1.24 ±<br />

0.29. The nymphs <strong>and</strong> adults were found to attack <strong>and</strong> suck the sap from the tender leaves<br />

(Table 14).<br />

Aphids, Aphis sp were observed on the crop from 21 DAS to 63 DAS. Both nymphs<br />

<strong>and</strong> adults were found feed<strong>in</strong>g around succulent parts <strong>and</strong> under surface <strong>of</strong> tender leaves.<br />

The aphid population differed from 0.86 to 1.84 per top three leaves with the mean value <strong>of</strong><br />

1.28 ± 0.34.<br />

4.2.6.2 Defoliators<br />

DAS.<br />

Semilooper, Thysanoplusia orichalcea was noticed on the crop from 37 DAS to 79


Table 12: Per cent defoliation by <strong>defoliators</strong> at 35, 50 <strong>and</strong> 65 days after sow<strong>in</strong>g <strong>in</strong> different IPM modules<br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Defoliation (%) by <strong>defoliators</strong><br />

35 DAS 50 DAS 65 DAS<br />

26.4 35.8 22.2<br />

22.8 29.0 16.4<br />

36.6 39.8 25.2<br />

Module I & Module II 3.09* 2.81* 2.81*<br />

Module II & Module III 4.81* 4.22* 4.00*<br />

Module III & Module I 3.45* 3.81* 4.73*<br />

* Significant at 5% level DAS- days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


Table 13: The management <strong>of</strong> Spodoptera litura <strong>in</strong> IPM modules <strong>of</strong> <strong>groundnut</strong> dur<strong>in</strong>g Kharif 2009<br />

Module I<br />

Treatments<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Before<br />

Spray<br />

( per cent<br />

defoliation)<br />

First spray (45 days after sow<strong>in</strong>g) Second spray (60 days after sow<strong>in</strong>g)<br />

Defoliation<br />

(%)<br />

After spray After spray<br />

7 DAS 15 DAS<br />

Before<br />

spray<br />

7 DAS 15 DAS<br />

larvae/ mt<br />

row<br />

Defoliation<br />

(%)<br />

larvae/ mt<br />

row<br />

( per cent<br />

defoliation) Defoliation<br />

(%)<br />

larvae/ mt<br />

row<br />

Defoliation<br />

(%)<br />

larvae/ mt<br />

row<br />

37.8 35.8 3.20 22.2 3.00 22.2 21.2 2.6 17.4 2.00<br />

31.8 29.0 2.20 16.4 1.60 16.4 15.4 1.8 12.4 1.20<br />

43.6 39.8 4.20 25.2 3.80 25.2 24.4 3.6 19.4 3.40<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Module I & Module II 2.89* 2.81* 3.16* 2.81* 3.50* 2.81* 5.43* 3.62* 4.38* 4.00*<br />

Module II & Module III 4.35* 4.22* 6.32* 4.00* 11.0* 4.00* 5.81* 4.83* 5.53* 4.47*<br />

Module III & Module I 5.98* 3.81* 3.16* 4.73* 3.16* 4.73* 6.53* 7.40* 6.32* 3.50*<br />

* Significant at 5% level DAS- days after spray<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


Table 14: Incidence <strong>of</strong> suck<strong>in</strong>g <strong>and</strong> defoliat<strong>in</strong>g <strong>in</strong>sect pests on sunflower (Trap crop)<br />

Weekly <strong>in</strong>terval<br />

Suck<strong>in</strong>g pests / top 3 leaves Defoliator population/ plant<br />

Leaf hoppers Thrips Aphids<br />

Weekly <strong>in</strong>terval<br />

T. orichalcea S. litura S. obliqua<br />

21 DAS 1.42 2.64 1.42 37 DAS 2.68 1.86 1.48<br />

28 DAS 1.64 2.26 1.64 44 DAS 4.42 3.64 2.86<br />

35 DAS 1.02 1.42 1.02 51 DAS 2.28 5.18 4.08<br />

42 DAS 1.24 1.68 0.86 58 DAS 2.46 6.28 5.48<br />

49 DAS 1.86 2.16 1.84 65 DAS 1.86 9.86 7.68<br />

56 DAS 2.04 1.82 1.48 72 DAS 2.06 11.06 10.06<br />

63 DAS 1.42 2.24 1.06 79 DAS 1.64 13.84 11.56<br />

Mean± SD 1.49 ± 0.32 ± 0.29 1.28± 0.34 Mean± SD 2.43±0.86 7.38±3.99 6.17±3.47<br />

DAS - days after sow<strong>in</strong>g


The early <strong>in</strong>star larvae scraped the chlorophyll content <strong>of</strong> the leaves from<br />

undersurface. Later <strong>in</strong>stars caused severe defoliation. Their population varied from 1.64 to<br />

4.42 with an average <strong>of</strong> 2.43 ± 0.86 larvae / plant.<br />

Tobacco caterpillar, Spodoptera litura was observed dur<strong>in</strong>g vegetative stage <strong>of</strong> the<br />

crop from 37 DAS to 79 DAS. Early <strong>in</strong>stars larvae were gregarious <strong>and</strong> scraped the<br />

chlorophyll content from under surface <strong>of</strong> leaves, resulted <strong>in</strong> skeletonisation. Later <strong>in</strong>stars<br />

spread <strong>and</strong> fed on leaves voraciously. The population ranged between 1.86 to 13.84 larvae/<br />

plant. Initially the population was less (1.86 larvae/ plant) whereas gradually the population<br />

was <strong>in</strong>creased (13.84 larvae/ plant) with the mean value <strong>of</strong> 7.38 ± 3.99.<br />

Bihar hairy caterpillar, Spilosoma obliqua scraped the green mater from under<br />

surface <strong>of</strong> leaves <strong>and</strong> skeletonised them <strong>in</strong> the early <strong>in</strong>stars. The grown up caterpillar<br />

defoliated the crop. This pest was noticed on the crop from 37 DAS to 79 DAS with mean<br />

larval population <strong>of</strong> 6.17 ± 3.47. Initially the larval population was less (1.48 larvae/ plant) <strong>and</strong><br />

it was <strong>in</strong>creased to 11.56 larvae/ plant at end <strong>of</strong> the crop stage (Table 14).<br />

4.2.7 Incidence <strong>of</strong> <strong>defoliators</strong> on ma<strong>in</strong> <strong>and</strong> trap crop<br />

The defoliator pest population was more on sunflower compared to <strong>groundnut</strong> at all<br />

the stages <strong>of</strong> the crop. The semiloopers population varied from 1.24 to 1.72 larvae / m row <strong>in</strong><br />

<strong>groundnut</strong> whereas <strong>in</strong> sunflower varied from 1.64 to 4.42/ plant.<br />

The population <strong>of</strong> S. litura <strong>and</strong> S. obliqua varied from 1.48 to 3.96 <strong>and</strong> 0.78 to 1.11<br />

larve/ m row respectively <strong>in</strong> <strong>groundnut</strong> whereas <strong>in</strong> sunflower, the population ranged from 1.86<br />

to 13.84 <strong>and</strong> 1.48 to 11.56 larvae/ plant (Table 15).<br />

4.2.8 Natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

Natural enemy population was recorded <strong>in</strong> all the three IPM modules <strong>of</strong> <strong>groundnut</strong>.<br />

4.2.8.1 Cocc<strong>in</strong>ellids<br />

Cocc<strong>in</strong>ellid population was noticed on the crop 21 DAS to 63 DAS. Both adult <strong>and</strong><br />

grubs were predators on suck<strong>in</strong>g pests. The population both adult <strong>and</strong> grubs were ranged<br />

from 1.20 to 2.40 <strong>and</strong> 1.20 to 2.60 per m row respectively <strong>in</strong> M-I. Whereas <strong>in</strong> M-II the adult<br />

<strong>and</strong> grub population was ranged from 2.00 to 3.80 <strong>and</strong> 2.40 to 3.80 grubs per m row<br />

respectively. In M-III, the population <strong>of</strong> adult <strong>and</strong> grubs were ranged between 1.00 to 2.00 <strong>and</strong><br />

1.00 to 1.80 respectively (Table 16).<br />

Paired ‘t’ value, module-II <strong>and</strong> module-I differed significantly <strong>and</strong> module-II <strong>and</strong><br />

module-III also varied significantly from each other. Module-II was significantly superior over<br />

module-I <strong>and</strong> module III dur<strong>in</strong>g 21 DAS to 63 DAS.<br />

4.2.8.2 Syrphids<br />

Syrphid population was observed on the crop from 21 DAS to 63 DAS. The<br />

population ranged between 1.40 to 2.70 syrphids / m row <strong>in</strong> first module. In second module<br />

Syrphid population was varied from 2.60 to 3.90. Whereas <strong>in</strong> third module it was differed from<br />

1.00 to 1.80 (Table 17).<br />

As per Paired ‘t’ value, all the three modules varied significantly from each other.<br />

Module-II was significantly superior over module-I <strong>and</strong> module-III dur<strong>in</strong>g 21 DAS to 63 DAS.<br />

Where the module-I was significantly superior over module-III.<br />

4.2.8.3 Campoletis chlorideae<br />

It was observed <strong>in</strong> large proportion dur<strong>in</strong>g August <strong>and</strong> September. The <strong>in</strong>cidence was<br />

noticed on the third <strong>in</strong>star larvae <strong>of</strong> S. litura dur<strong>in</strong>g 37 to 79 DAS. The population ranged


Table 15: Incidence <strong>of</strong> <strong>defoliators</strong> on ma<strong>in</strong> <strong>and</strong> trap crop<br />

Weekly <strong>in</strong>terval<br />

Groundnut Sunflower<br />

T. orichalcea S. litura S. obliqua T. orichalcea S. litura S. obliqua<br />

37 DAS 1.24 1.48 0.78 2.68 1.86 1.48<br />

44 DAS 1.64 3.48 0.82 4.42 3.64 2.86<br />

51 DAS 1.72 2.16 0.90 2.28 5.18 4.08<br />

58 DAS 1.68 2.80 0.95 2.46 6.28 5.48<br />

65 DAS 1.71 2.20 0.99 1.86 9.86 7.68<br />

72 DAS 1.56 2.00 1.09 2.06 11.06 10.06<br />

79 DAS 1.44 1.80 1.11 1.64 13.84 11.56<br />

DAS - days after sow<strong>in</strong>g


Module I<br />

Table 16: Natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong> (Cocc<strong>in</strong>ellids)<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Module I & Module II 3.16* 3.21 *<br />

Cocc<strong>in</strong>ellid population / m row<br />

21 DAS 28 DAS 35 DAS 42 DAS 49 DAS 56 DAS 63 DAS<br />

Adult Grub Adult Grub Adult Grub Adult Grub Adult Grub Adult Grub Adult Grub<br />

1.20 1.21 1.80 1.60 2.00 2.20 2.40 2.40 2.20 2.60 1.88 2.00 1.20 1.20<br />

2.20 2.40 2.80 2.80 3.20 3.40 3.80 3.80 3.20 3.20 2.80 3.00 2.00 2.40<br />

1.00 1.10 1.40 1.20 1.16 1.12 1.60 1.60 2.00 1.80 1.04 1.40 1.20 1.00<br />

3.17* 3.20* 3.21* 3.21* 6.11* 5.71* 3.16* 5.72* 3.57* 3.16* 4.00* 6.00*<br />

Module II & Module III 6.00* 3.17* 3.50* 6.53* 8.22* 7.50* 6.53* 11.0* 3.17* 5.71* 2.86* 8.43* 4.00* 5.72*<br />

Module III & Module I 1.00 3.50* 1.00 1.63 2.87* 5.51* 0.41 4.00* 1.00 4.02* 2.88* 3.17* 1.00 1.00<br />

* Significant at 5% level DAS- days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


Table 17: Natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong> (Syrphids)<br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Syrphid population / m row<br />

21 DAS 28 DAS 35 DAS 42 DAS 49 DAS 56 DAS 63 DAS<br />

1.80 2.00 2.40 2.70 2.60 1.80 1.40<br />

2.60 2.80 3.60 3.90 3.20 3.00 2.60<br />

1.10 1.40 1.60 1.80 1.80 1.20 1.00<br />

Module I & Module II 4.00* 6.00* 6.10* 6.00* 5.72* 3.20* 6.00*<br />

Module II & Module III 6.71* 5.72* 6.32* 8.57* 5.71* 9.00* 6.35*<br />

Module III & Module I 3.50* 2.44 4.00* 9.00* 4.00* 1.50 1.63<br />

* Significant at 5% level DAS- days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


Table 18: Natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong> (Campoletis chloridae)<br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Paired “ t” test value for comparison <strong>of</strong> means<br />

Campoletis chloridae population / m row<br />

37 DAS 44 DAS 51 DAS 58 DAS 65 DAS 72 DAS 79 DAS<br />

1.60 1.80 2.20 2.40 2.60 1.60 1.40<br />

2.40 2.80 3.40 3.60 3.80 2.80 2.60<br />

1.10 1.40 1.40 1.80 1.80 1.20 1.00<br />

Module I & Module II 4.00* 6.00* 3.21* 6.00* 6.00* 6.10* 6.00*<br />

Module II & Module III 6.50* 5.72* 6.32* 9.00* 11.00* 3.13* 6.53*<br />

Module III & Module I 3.50* 1.63 4.00* 2.45* 4.00* 0.78 1.63<br />

* Significant at 5% level DAS- days after sow<strong>in</strong>g<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos


etween 1.40 to 2.60/ m row <strong>in</strong> module-I. Whereas module-II the population was varied from<br />

2.40 to 3.80 <strong>and</strong> <strong>in</strong> M-III it was differed from 1.00 to 1.80 (Table 18).<br />

Paired ‘t’ value, module-II <strong>and</strong> module-I differed significantly <strong>and</strong> module-II <strong>and</strong><br />

module-III also varied significantly from each other. Module-II was significantly superior over<br />

module-I <strong>and</strong> module III dur<strong>in</strong>g 37 to 79 DAS.<br />

4.2.9 Yield <strong>and</strong> cost economics<br />

Among the different modules, the highest yield (39.95 q/ha) was obta<strong>in</strong>ed <strong>in</strong> M-II<br />

which resulted <strong>in</strong> higher gross returns (Rs. 1,07,525/ ha), net pr<strong>of</strong>it (Rs. 89,850/ ha) <strong>and</strong><br />

highest C: B ratio (1:5.1) compared with net pr<strong>of</strong>it (Rs. 70,190/ ha), C: B ratio (1:4.3), gross<br />

returns (Rs. 86,300/ ha) <strong>and</strong> yield (30.02 q/ha) <strong>in</strong> M-I. Net pr<strong>of</strong>it (Rs. 33,490/ ha), C: B ratio<br />

(1:2.0), gross returns (Rs. 50,000/ha) <strong>and</strong> yield (20.00 q/ha) were least <strong>in</strong> M-III (farmer’s<br />

practice) compared to M-II <strong>and</strong> M-I (Table 18).


Table 19: Economics <strong>of</strong> IPM modules dur<strong>in</strong>g Kharif 2009<br />

Module I<br />

Treatment<br />

(Groundnut + sunflower)<br />

Module II<br />

(Groundnut + foxtail millet)<br />

Module III<br />

(Farmers’ practice)<br />

Yield (q/ha)<br />

Groundnut Intercrop<br />

Gross returns<br />

(Rs/ ha)<br />

Cost <strong>of</strong> cultivation<br />

(Rs/ ha)<br />

Net pr<strong>of</strong>it<br />

(Rs/ ha)<br />

30.02 5.0 86,300.00 16110.00 70,190.00 1: 4.3<br />

39.95 4.5 1,07,525.00 17,675.00 89,850.00 1: 5.1<br />

20.00 - 50000.00 16,510.00 33,490.00 1: 2.0<br />

Module-I : Seed treatment with Trichoderma, sunflower (trap crop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> N. rileyi <strong>and</strong> NSKE<br />

Module-II : Seed treatment with Trichoderma, foxtail millet (<strong>in</strong>tercrop), pheromone trap <strong>and</strong> spray<strong>in</strong>g <strong>of</strong> Emamect<strong>in</strong> benzoate<br />

Module-III: Spray<strong>in</strong>g <strong>of</strong> qu<strong>in</strong>alphos<br />

C: B<br />

ratio


5. DISCUSSION<br />

Of more than a hundred species <strong>of</strong> <strong>in</strong>sect pests associated with <strong>groundnut</strong> crop,<br />

about ten are economically important <strong>in</strong> India. Defoliators ma<strong>in</strong>ly tobacco caterpillar, leaf<br />

m<strong>in</strong>er, Helicoverpa armigera <strong>and</strong> bihar hairy caterpillar (BHC) are ga<strong>in</strong><strong>in</strong>g importance <strong>in</strong><br />

Karnataka. At present, pest management strategies rely on chemical control. Overuse <strong>of</strong><br />

pesticides, especially <strong>in</strong> irrigated conditions has led to the outbreak <strong>of</strong> pests such as S. litura,<br />

destruction <strong>of</strong> natural enemies, development <strong>of</strong> resistance, environmental pollution <strong>and</strong><br />

operational hazards followed by substantial erosion <strong>in</strong> net <strong>in</strong>come. Further, farmers failed to<br />

get difference <strong>in</strong> sprayed <strong>and</strong> un-sprayed plots (Ranga Rao <strong>and</strong> Wightman, 1993).This<br />

<strong>in</strong>dicates the failure <strong>of</strong> <strong>in</strong>secticides sprays, which add to the total cost <strong>of</strong> production <strong>and</strong> affect<br />

the environment adversely.<br />

As S. litura is one <strong>of</strong> the key pests <strong>of</strong> <strong>groundnut</strong> <strong>in</strong> the transitional tract <strong>of</strong> Karnataka<br />

<strong>in</strong> kharif <strong>and</strong> other irrigated places dur<strong>in</strong>g rabi /summer, a study was envisaged to combat this<br />

noxious pest with an <strong>in</strong>tention to evolve cost effective <strong>and</strong> environmentally safe approaches<br />

such as resistant cultivars, cultural practices <strong>and</strong> bio-pesticides.<br />

Worldwide there is an <strong>in</strong>creased awareness that agricultural practices must be<br />

susta<strong>in</strong>able <strong>and</strong> environmentally friendly, greater emphasis is laid on <strong>in</strong>tegrated management<br />

<strong>of</strong> pests <strong>of</strong> which resistant cultivars form pr<strong>in</strong>ciple component. In <strong>groundnut</strong>, the Spanish<br />

bunch cultivars are most popular <strong>in</strong> India but they are highly susceptible to pests <strong>and</strong><br />

diseases compared to spread<strong>in</strong>g type. The research efforts have been successful <strong>in</strong><br />

identify<strong>in</strong>g resistant <strong>genotypes</strong> aga<strong>in</strong>st S. litura (Wightman et al.; 1990, Patil et al.; 1991,<br />

Dwivedi et al.; 1993, S<strong>in</strong>gh et al.; 1993, Nadaf et al.; 1995, Tiwari et al.; 1989, Prasad et al.;<br />

1998, Rame Gowda <strong>and</strong> Basavana Goud, 2002).<br />

The present <strong>in</strong>vestigations were undertaken on IPM modules for <strong>groundnut</strong> pests <strong>and</strong><br />

efforts were also made to know the nature <strong>of</strong> resistance <strong>of</strong> some selected <strong>elite</strong> <strong>genotypes</strong> <strong>of</strong><br />

<strong>groundnut</strong>, which ultimately helps to develop strong IPM strategies. The results obta<strong>in</strong>ed <strong>in</strong><br />

the light <strong>of</strong> available literature are discussed under here.<br />

5.1 Field <strong>screen<strong>in</strong>g</strong><br />

Different <strong>groundnut</strong> <strong>genotypes</strong> were screened aga<strong>in</strong>st S. litura under artificial<br />

<strong>in</strong>festation <strong>in</strong> the field condition dur<strong>in</strong>g 2009, ra<strong>in</strong>y season. All the <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

differed significantly <strong>in</strong> per cent defoliation <strong>and</strong> larval count per mt row.<br />

The damage ranged from 11.5 to 44.0 per cent <strong>in</strong> different <strong>genotypes</strong>. Maximum<br />

defoliation <strong>and</strong> number <strong>of</strong> larvae were observed <strong>in</strong> the JL-24 followed by GPBD-4. The<br />

<strong>genotypes</strong> viz., Mutant-III <strong>and</strong> ICGV- 86699 Tan recorded m<strong>in</strong>imum damage <strong>and</strong> less number<br />

<strong>of</strong> larvae <strong>in</strong>dicat<strong>in</strong>g their resistant nature (Fig. 1). The damage <strong>and</strong> number <strong>of</strong> larvae were<br />

moderate <strong>in</strong> GPBD-5, ICGV86699 Red <strong>and</strong> GPBD-6 (Table 1).<br />

Present f<strong>in</strong>d<strong>in</strong>gs corroborates with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Prasad <strong>and</strong> Gowda, (2006) where<br />

the damage ranged from 34.33 to 83.67 per cent <strong>in</strong> different <strong>genotypes</strong>. Maximum defoliation<br />

was observed <strong>in</strong> the Dh-40, KRG-1, JL-24 <strong>and</strong> GPBD-4 <strong>and</strong> m<strong>in</strong>imum damage was recorded<br />

<strong>in</strong> Mutant-45, ICGV-91180, NC Ac- 343 <strong>and</strong> Mutant-28-2.<br />

In <strong>screen<strong>in</strong>g</strong> study made by Patil et al. (1991), entries ICGV 87264 <strong>and</strong> 86598 have<br />

recorded the least damage (< 17.5%) <strong>and</strong> entries ICGV 86598 <strong>and</strong> 86125, ICGV 86350,<br />

86276 <strong>and</strong> 87287 showed promise for resistance with less damage (< 27.5%) at two stages<br />

<strong>of</strong> <strong>screen<strong>in</strong>g</strong> (75 <strong>and</strong> 90 DAS).<br />

5.1.1 Biological parameters <strong>of</strong> Spodoptera litura (F.) on selected <strong>elite</strong><br />

<strong>groundnut</strong> <strong>genotypes</strong><br />

Knowledge <strong>of</strong> an <strong>in</strong>sect biology on the host plant is imperative <strong>in</strong> host plant resistance<br />

<strong>in</strong>vestigations. Investigat<strong>in</strong>g developmental <strong>and</strong> biological parameters <strong>of</strong> an <strong>in</strong>sect has


Per cent defoliation<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

JL-24 (Susceptible<br />

check)<br />

Per cent defoliation No <strong>of</strong> larvae /mt row<br />

ICGV-86699 Red GPBD-5 ICGV-86699 TAN GPBD-6 MUTANT -III GPBD-4<br />

Genotypes<br />

Fig. 1: Performance <strong>of</strong> <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong> for Spodoptera litura damage dur<strong>in</strong>g Kharif 2009<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

No. <strong>of</strong> larvae/mt row


ecome an <strong>in</strong>tegral part <strong>of</strong> the process <strong>of</strong> identify<strong>in</strong>g <strong>and</strong> study<strong>in</strong>g pest resistance <strong>in</strong><br />

<strong>groundnut</strong> (Prasad et al., 2000).<br />

Groundnut <strong>genotypes</strong> such as ICGV- 86699 Tan, Mutant III, GPBD-6, GPBD-5,<br />

ICGV- 86699 Red, GPBD-4 <strong>and</strong> susceptible check (JL-24), were utilized for rear<strong>in</strong>g S. litura.<br />

The effect <strong>of</strong> these <strong>genotypes</strong> on larval, pre pupal, pupal, pre oviposition, oviposition <strong>and</strong> post<br />

oviposition period, larval weight, larval mortality, per cent pupal survival ,pupal weight ,adult<br />

longevity, per cent adult emergence <strong>and</strong> fecundity <strong>of</strong> S. litura was ascerta<strong>in</strong>ed on each <strong>of</strong> the<br />

<strong>elite</strong> <strong>genotypes</strong>. The present study demonstrated existence <strong>of</strong> substantial amount <strong>of</strong> variability<br />

<strong>in</strong> host, affect<strong>in</strong>g these biological parameters.<br />

5.1.1.1 Larval period<br />

The length <strong>of</strong> larval duration was affected <strong>in</strong> larvae fed on foliage <strong>of</strong> test <strong>genotypes</strong><br />

(Table 2) <strong>and</strong> there by reduces biotic potential <strong>of</strong> the pest. The <strong>genotypes</strong> Mutant III <strong>and</strong><br />

ICGV- 86699 Tan recorded longer larval duration <strong>in</strong> each <strong>in</strong>stars compare to other <strong>genotypes</strong>.<br />

While <strong>in</strong> susceptible <strong>genotypes</strong> viz., GPBD-4 <strong>and</strong> JL-24 recorded shorter larval duration (Fig.<br />

3). The present study corroborate with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Patil et al. (1995) where <strong>in</strong> S. litura had<br />

stretched larval duration on ICGV-87165, ICGV- 86350 <strong>and</strong> ICGV- 87264. Bioassay carried<br />

out with the larvae to underst<strong>and</strong> the mechanism <strong>of</strong> resistance by Wightman <strong>and</strong> Ranga Rao<br />

(1994) revealed no antibiosis effect on II <strong>and</strong> IV <strong>in</strong>star larvae when fed to matured leaves <strong>of</strong><br />

ICGV- 86031. Spodoptera frugiperda (S.) fed with resistant florunner took more days to<br />

develop compared to larvae fed with curly leaf (Todd et al., 1991). It has also been showed<br />

that longer larval duration on resistant <strong>genotypes</strong>, NC Ac -2243 (Xi Jia LI , 1987) was longer.<br />

5.1.1.2 Larval weight <strong>and</strong> larval mortality<br />

The <strong>genotypes</strong> Mutant III <strong>and</strong> ICGV- 86699 Tan recorded significantly low larval<br />

weight <strong>and</strong> high percentage <strong>of</strong> mortality at all the stages compared to susceptible <strong>genotypes</strong><br />

GPBD-4 <strong>and</strong> JL-24 (Table 3 <strong>and</strong> Fig. 2). The larval per cent mortality was high on resistant<br />

<strong>genotypes</strong> <strong>in</strong> early stages compare to susceptible <strong>genotypes</strong> <strong>in</strong>dicat<strong>in</strong>g the vulnerability <strong>of</strong><br />

neonate larvae to the exist<strong>in</strong>g resistant factor. Accord<strong>in</strong>g to Stevenson et al. (1993) <strong>in</strong> pest<br />

control strategies, neonate larvae should be a primary target <strong>in</strong> host plant resistance because<br />

plant damage can be m<strong>in</strong>imized if pest is elim<strong>in</strong>ated as early <strong>in</strong> the life cycle as possible. The<br />

higher larval mortality <strong>of</strong> S.litura on resistant <strong>groundnut</strong> <strong>genotypes</strong> like ICGV-86031, wild<br />

tetraploid Arachis manticola was also reported by many workers (Kulkarni, 1989; Dwivedi et<br />

al., 1993; Wightman <strong>and</strong> Ranga Rao, 1994; Patil et al., 1995; Prasad <strong>and</strong> Gowda, 2006).<br />

Mortality at early stages has also been observed <strong>in</strong> Heliothis zea when reared on maize plant.<br />

The development <strong>of</strong> first stadium larvae <strong>of</strong> H. zea was retarded by the presence <strong>of</strong><br />

chlorogenic acid <strong>and</strong> rut<strong>in</strong> <strong>in</strong> artificial diet (Isman <strong>and</strong> Duffey, 1982).<br />

Present f<strong>in</strong>d<strong>in</strong>gs corroborates with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Prasad <strong>and</strong> Gowda (2006) where <strong>in</strong><br />

the larval weight was significantly low from larvae fed on the foliage <strong>of</strong> resistant <strong>genotypes</strong> NC<br />

Ac 343, Mutant 28-2 <strong>and</strong> R 9227. S<strong>in</strong>gh <strong>and</strong> Sachan (1992) identified ICGV-86030, ICGV-<br />

86031 <strong>and</strong> NC Ac 343 as resistant to S. litura based on survival, weight ga<strong>in</strong> <strong>and</strong> larval<br />

duration. The differential response <strong>of</strong> the <strong>genotypes</strong> on larval parameters <strong>in</strong>dicates the<br />

possibility <strong>of</strong> antibiosis mechanisms <strong>of</strong> resistance operat<strong>in</strong>g <strong>in</strong> them.<br />

The effect <strong>of</strong> resistant <strong>genotypes</strong> on larval mortality <strong>in</strong> early stage, ga<strong>in</strong> <strong>in</strong> larval<br />

weight <strong>and</strong> growth <strong>of</strong> the larvae could obviously be due to chemical factors, i.e. antibiosis as<br />

elucidated by Pa<strong>in</strong>ter (1951). The chemicals viz., querecit<strong>in</strong> glycosiden, chlorogenic acid <strong>and</strong><br />

rut<strong>in</strong> have been reported to be the cause for resistance <strong>in</strong> wild Arachis species (Stevenson,<br />

1993) <strong>and</strong> could be the cause for antibiosis. However, physical resistance (leaf thickness)<br />

may be also important as panitrometric studies showed that leaves <strong>of</strong> resistant wild Arachis<br />

species required a greater bit<strong>in</strong>g effort than did the leaves <strong>of</strong> susceptible TMV-2 <strong>and</strong> more<br />

susceptible <strong>of</strong> Arachis.<br />

5.1.1.3 Pupal development <strong>and</strong> moth emergence<br />

The resistant effect <strong>of</strong> Mutant III <strong>and</strong> ICGV- 86699 Tan were also observed on pupal<br />

duration, pupal weight, per cent pupal survival <strong>and</strong> moth emergence (Table 5 <strong>and</strong> 4). Similar


Larval period <strong>and</strong> Total developmental period (egg-adult)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Larval period Total developmental period (egg-adult) Fecundity (eggs/female)<br />

GPBD-5 ICGV-86699 Red ICGV-86699 Tan GPBD-6 Mutant-III GPBD-4 JL-24 (Susceptible<br />

check)<br />

Genotypes<br />

Fig. 2: In vitro biology <strong>of</strong> Spodoptera litura on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Fecundity (eggs / female)


observations were also made by Leuk <strong>and</strong> Skimmer (1971) <strong>and</strong> Garner <strong>and</strong> Lynch (1981),<br />

where pupal weight, mean percentage <strong>of</strong> pupae <strong>and</strong> moth emergence were significantly less<br />

<strong>and</strong> the pupal duration was long from larvae fed on foliages <strong>of</strong> the resistant than susceptible<br />

<strong>groundnut</strong> cultivars. Prasad <strong>and</strong> Gowda (2006) reported that the larvae fed on the resistant<br />

<strong>genotypes</strong>, NC Ac 343, Mutant 28-2, ICGV-86031 <strong>and</strong> R 9227 showed less per cent pupal<br />

survival <strong>and</strong> moth emergence compare to susceptible checks. The effect <strong>of</strong> resistance on<br />

pupal development confirms the antibiosis mechanism <strong>of</strong> resistance exist<strong>in</strong>g <strong>in</strong> the resistant<br />

<strong>genotypes</strong> (Pa<strong>in</strong>ter, 1951).<br />

5.1.1.4 Pre-oviposition, oviposition <strong>and</strong> post oviposition period<br />

The duration <strong>of</strong> pre-oviposition, oviposition <strong>and</strong> post-oviposition were also affected <strong>in</strong><br />

larvae fed on foliage <strong>of</strong> resistant <strong>genotypes</strong>. The <strong>genotypes</strong> Mutant III <strong>and</strong> ICGV-86699 Tan<br />

recorded longer pre-oviposition <strong>and</strong> shorter oviposition, post-oviposition period compare to<br />

susceptible <strong>genotypes</strong> GPBD-4 <strong>and</strong> JL-24 (Table 5).<br />

5.1.1.5 Adult longevity<br />

Adult longevity was significantly longest on susceptible <strong>genotypes</strong> JL-24 <strong>and</strong> GPBD-4<br />

<strong>and</strong> shorter on resistant <strong>genotypes</strong> Mutant III <strong>and</strong> ICGV-86699 Tan (Table 4). The similar<br />

observations also made by Sreenivasa et al. (1997), where the development <strong>of</strong> S. litura was<br />

shortest (32.25 days)on Dh-3-30 with adult surviv<strong>in</strong>g maximum <strong>of</strong> 10.5 days <strong>and</strong> longest<br />

developmental period on ICGV-86031 (37.3 days) with adult surviv<strong>in</strong>g for maximum <strong>of</strong> 9.5<br />

days. The effect <strong>of</strong> these <strong>genotypes</strong> on adult longevity <strong>of</strong> S. litura could obviously due to<br />

chemical factor (i.e. antibiosis).<br />

5.1.1.6 Fecundity<br />

The resistant effect <strong>of</strong> Mutant III <strong>and</strong> ICGV- 86699 Tan were also affected the<br />

fecundity as disclosed by total number <strong>of</strong> eggs laid by the female moths developed from<br />

larvae fed on these <strong>genotypes</strong> (Table 4 <strong>and</strong> Fig. 3). This could be an important criterion for<br />

select<strong>in</strong>g resistant <strong>genotypes</strong>. Therefore, the antibiosis effect from these <strong>genotypes</strong> could<br />

result theoretically <strong>in</strong> cumulative seasonal reduction <strong>of</strong> eggs. Pa<strong>in</strong>ter (1951) stated that<br />

resistance at this level could be <strong>of</strong> high value as control measure.<br />

Higher mortality <strong>of</strong> neonate larvae on Mutant III <strong>and</strong> ICGV- 86699 Tan compared to<br />

JL-24 <strong>and</strong> GPBD-4 were perhaps because <strong>of</strong> the most common <strong>and</strong> easily observable<br />

characteristics <strong>of</strong> antibiosis. Low larval <strong>and</strong> pupal weight, extension <strong>of</strong> larval, pupal, preoviposition,<br />

oviposition <strong>and</strong> post-oviposition period, lower fecundity, per cent pupal survival<br />

<strong>and</strong> adult emergence confirm the possible role <strong>of</strong> antibiosis as mechanism <strong>of</strong> resistance <strong>in</strong><br />

these promis<strong>in</strong>g <strong>genotypes</strong> with vary<strong>in</strong>g degrees, as elucidated by Pa<strong>in</strong>ter (1951).<br />

Insect resistance <strong>in</strong> these <strong>genotypes</strong> may be due to high lam<strong>in</strong>ar thickness, low water<br />

content, fecundity <strong>and</strong> growth <strong>in</strong>dex (Tiwari et al., 1989; Dwivedi et al., 1993; Patil et al.,<br />

1995) <strong>and</strong> also due to the presence <strong>of</strong> anti- <strong>in</strong>sect properties like isomers <strong>of</strong> caffeol qu<strong>in</strong>ic<br />

acid (Stevenson, 1993).<br />

If these two resistant <strong>elite</strong> <strong>genotypes</strong> are agronomically superior <strong>in</strong> all characters<br />

<strong>in</strong>clud<strong>in</strong>g yield<strong>in</strong>g ability. These can be recommended for cultivation <strong>in</strong> farmer’s field after<br />

evaluat<strong>in</strong>g on large scale farmers field or otherwise these can be utilized as resistant source<br />

<strong>in</strong> improv<strong>in</strong>g agronomically superior susceptible varieties <strong>of</strong> <strong>groundnut</strong>.<br />

5.2 Evaluation <strong>of</strong> IPM modules <strong>in</strong> <strong>groundnut</strong><br />

In recent years <strong>groundnut</strong> has suffered heavy losses due to severe outbreak <strong>of</strong> the<br />

tobacco caterpillar, Spodoptera litura (F.). The farmers fail to adopt management practices<br />

because <strong>of</strong> high populations dur<strong>in</strong>g monsoon ra<strong>in</strong>s <strong>and</strong> overlapp<strong>in</strong>g generations. Besides,<br />

many other suck<strong>in</strong>g pests <strong>of</strong> this crop, <strong>in</strong>clud<strong>in</strong>g leafhoppers, Empoasca kerri Pruthi <strong>and</strong><br />

thrips, Thrips palmi Karny, damage the foliage extensively. In view <strong>of</strong> environmental impact <strong>of</strong><br />

pesticides <strong>and</strong> development <strong>of</strong> resistance to pesticides by S. litura (Rame Gowda, 1999) the


Larval Larval weight weight (g) (g)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Larval weight (g) Larval mortality (%)<br />

GPBD-5 ICGV-86699 Red ICGV-86699 Tan GPBD-6 Mutant-III GPBD-4 JL-24 (Susceptible<br />

check)<br />

Genotypes<br />

Fig. 3: Ga<strong>in</strong> <strong>in</strong> larval weight <strong>and</strong> larval mortality <strong>of</strong> Spodoptera litura at different days after hatch<strong>in</strong>g on <strong>elite</strong> <strong>groundnut</strong> <strong>genotypes</strong><br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Larval Larval mortality mortality (%)<br />

(%)


concept <strong>of</strong> IPM has emerged that emphasizes the need for m<strong>in</strong>imiz<strong>in</strong>g the use <strong>of</strong> pesticides<br />

<strong>and</strong> conserve the naturally occurr<strong>in</strong>g beneficial fauna for effective suppression <strong>of</strong> pest<br />

species. IPM modules were developed <strong>and</strong> evaluated <strong>in</strong> field at MARS Dharwad dur<strong>in</strong>g kharif,<br />

2009.<br />

The two IPM modules viz., (1) IPM module, M-I compris<strong>in</strong>g <strong>of</strong> GPBD-4 variety, seed<br />

treatment with Trichoderma , <strong>groundnut</strong> + sunflower as trap crop, pheromone trap (received<br />

N.rileyi spray @ 1×10 8 conidia/ml <strong>and</strong> NSKE spray @ 5% two times at 45 <strong>and</strong> 60 days after<br />

sow<strong>in</strong>g), (2) IPM module, M-II <strong>groundnut</strong> + foxtail millet, pheromone trap (received<br />

Emamect<strong>in</strong> benzoate spray @ 0.2 g/l at 45 <strong>and</strong> 60 days after sow<strong>in</strong>g) compared with (3) IPM<br />

module, M-III (Farmer’s practice).<br />

5.2.1 Monitor<strong>in</strong>g the activity <strong>of</strong> S. litura<br />

The pattern <strong>of</strong> adults trapped <strong>in</strong> pheromone traps <strong>in</strong>dicates that the activity <strong>of</strong> S.litura<br />

was observed dur<strong>in</strong>g kharif, 2009 (Appendix I). In M-I, the maximum number <strong>of</strong> adults were<br />

caught dur<strong>in</strong>g first <strong>and</strong> second week <strong>of</strong> August <strong>and</strong> second week <strong>of</strong> September. Whereas <strong>in</strong><br />

M-I, the maximum number <strong>of</strong> moths were caught dur<strong>in</strong>g first week <strong>of</strong> August <strong>and</strong> second<br />

week <strong>of</strong> September.<br />

In M-I, the maximum number <strong>of</strong> moths were caught dur<strong>in</strong>g first two weeks <strong>of</strong> August<br />

compared to M-II. This may be due to <strong>in</strong>tercropp<strong>in</strong>g <strong>of</strong> sunflower <strong>in</strong> M-I as it act as trap crop<br />

<strong>and</strong> attracted more moths for egg lay<strong>in</strong>g.<br />

Kulkarni (1989) noticed this pest to be active throughout the year at Dharwad. But<br />

more moth catch was seen from June to October with peak moth activity dur<strong>in</strong>g August <strong>and</strong><br />

September. The similar observations were also made by Krishnaprasad et al. (1985) <strong>and</strong><br />

Patel et al. (1985) are <strong>in</strong> conformity with present f<strong>in</strong>d<strong>in</strong>gs. Therefore the pheromone trap<br />

catches aid <strong>in</strong> def<strong>in</strong>ite predictions about adult moth activity. Which helps <strong>in</strong> <strong>in</strong>itiation <strong>of</strong><br />

management practices such as collection <strong>of</strong> egg masses <strong>in</strong> <strong>groundnut</strong> leaves <strong>and</strong> gregarious<br />

stage <strong>of</strong> early <strong>in</strong>star larvae on trap crops like sunflower <strong>and</strong> castor as well as <strong>groundnut</strong>. In<br />

case <strong>of</strong> <strong>groundnut</strong> S. litura lays eggs on upper surface <strong>of</strong> the leaves which helps <strong>in</strong> easy<br />

location <strong>of</strong> egg mass compared to other crops where it lays <strong>in</strong> lower surface <strong>in</strong>clud<strong>in</strong>g<br />

sunflower <strong>and</strong> castor.<br />

5.2.2 Suck<strong>in</strong>g pest population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

The population <strong>of</strong> leafhoppers <strong>and</strong> thrips were found least under M-II followed by M-I<br />

<strong>and</strong> the highest population was recorded <strong>in</strong> M-III (Fig. 5). Low pest population <strong>in</strong> M-II may be<br />

due to the <strong>in</strong>tercropp<strong>in</strong>g <strong>of</strong> foxtail millet where the natural enemies fauna attracted to foxtail<br />

millet for nectar <strong>and</strong> it also act as barrier for movement <strong>of</strong> thrips which is passive mover <strong>in</strong><br />

comparison to M-III (Farmer’s practice) where no <strong>in</strong>tercrops but <strong>in</strong>secticidal applications was<br />

taken up (Table 6 <strong>and</strong> 7).<br />

Present study corroborates with other IPM modules <strong>in</strong> <strong>groundnut</strong> carried by<br />

Shambharkar et al. (2006) recorded the <strong>in</strong>festation by thrips <strong>and</strong> leaf hopper was severe at<br />

30-45 DAS. The average percentage <strong>of</strong> damage by thrips was lower <strong>in</strong> IPM plots (15-25%)<br />

than <strong>in</strong> FP plots (20-50%). IPM modules compris<strong>in</strong>g <strong>of</strong> seed treatment with Trichoderma 4<br />

g/kg <strong>of</strong> seeds, sow<strong>in</strong>g through h<strong>and</strong> dibbl<strong>in</strong>g, <strong>in</strong>tercropp<strong>in</strong>g with soyabean cv. JS 335 <strong>and</strong><br />

<strong>groundnut</strong> cv. Phule Unap at 4:1, soil amendment with 500 kg castor cake/ha, plant<strong>in</strong>g <strong>of</strong><br />

castor bean as a trap crop, establishment <strong>of</strong> 10 pheromone traps/ha, <strong>and</strong> application <strong>of</strong> NSKE<br />

(5%) at 30 <strong>and</strong> 50 days after sow<strong>in</strong>g (DAS) <strong>and</strong> SlNPV (1.5x10 13 /ha).<br />

The <strong>in</strong>cidence <strong>of</strong> leafhoppers <strong>and</strong> thrips were lowest <strong>in</strong> IPM module compared to<br />

chemical control <strong>and</strong> farmer’s practice. The IPM module compris<strong>in</strong>g <strong>of</strong> seed treatment with<br />

imidacloprid <strong>and</strong> mancozeb, <strong>in</strong>terplant<strong>in</strong>g <strong>of</strong> cowpea as trap crop, <strong>in</strong>stallation <strong>of</strong> light trap ,<br />

spray with Bacillus thur<strong>in</strong>giensis <strong>and</strong> a poison bait spray with dichlorovos (Sreenivasulu et<br />

al.,2002). The similar observations were also made by S<strong>in</strong>gh et al. (2005a) where the<br />

population <strong>of</strong> leafhoppers <strong>and</strong> thrips were least <strong>in</strong> IPM module compared to non- IPM module.


5.2.3 Defoliator population <strong>in</strong> three different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

Groundnut leaf m<strong>in</strong>er, tobacco caterpillar, semiloopers <strong>and</strong> Bihar hairy caterpillar<br />

population was least <strong>in</strong> M-II followed by M-I (Fig. 5). However the highest population was<br />

recorded <strong>in</strong> M-III. This is due to <strong>in</strong>tercropp<strong>in</strong>g <strong>of</strong> foxtail millet <strong>in</strong> M-II <strong>and</strong> sunflower as trap<br />

crop <strong>in</strong> M-I (Table 8,9,10 <strong>and</strong> 11).<br />

S<strong>in</strong>gh et al. (2005b) revealed that the population <strong>of</strong> tobacco caterpillar (S. litura) <strong>and</strong><br />

Bihar hairy caterpillar population <strong>in</strong> castor were lowest <strong>in</strong> IPM module followed by modified<br />

IPM module <strong>and</strong> the population was highest <strong>in</strong> farmer’s practice. The leaf m<strong>in</strong>er (A. modicella)<br />

<strong>and</strong> tobacco caterpillar (S. litura) population was less <strong>in</strong> IPM module <strong>in</strong> comparison with non<br />

IPM module <strong>in</strong> <strong>groundnut</strong> crop (S<strong>in</strong>gh et al., 2005a). Similar trend was reported by<br />

Sreenivasulu et al. (2002) <strong>and</strong> Shambharkar et al. (2006).<br />

5.2.4 Management <strong>of</strong> Spodoptera litura <strong>in</strong> different IPM modules <strong>of</strong><br />

<strong>groundnut</strong><br />

The per cent defoliation was least <strong>in</strong> M-II Followed by M-I <strong>and</strong> it was highest <strong>in</strong> M-III<br />

at 35, 50 <strong>and</strong> 65 days after sow<strong>in</strong>g (Table 12).<br />

Module III has shown significantly higher defoliation percentage followed by Module I<br />

<strong>and</strong> lowest <strong>in</strong> Module II at 45 <strong>and</strong> 65 days before spray respectively.<br />

In first spray, 7days after spray<strong>in</strong>g (DAS), Module III recoded significantly highest<br />

defoliation <strong>and</strong> larvae per mt row followed by Module I <strong>and</strong> the Module II showed less<br />

defoliation <strong>and</strong> larval population. After 15 DAS also showed the same trend i.e. significantly<br />

higher defoliation <strong>and</strong> larvae <strong>in</strong> Module III followed by Module I <strong>and</strong> lowest <strong>in</strong> Module II. In<br />

second spray, the same trend was followed at 7 DAS <strong>and</strong> 15 DAS (Table 13).<br />

In M-II, the defoliation <strong>and</strong> larvae were least after two sprays <strong>of</strong> Emamect<strong>in</strong> benzoate.<br />

This is due to its high effectiveness. Emamect<strong>in</strong> benzoate is more effective <strong>in</strong>secticide than<br />

that <strong>of</strong> monocrotophos for S. litura. Which is a safer molecule obta<strong>in</strong>ed from act<strong>in</strong>omycetes.<br />

5.2.5 Incidence <strong>of</strong> suck<strong>in</strong>g <strong>and</strong> defoliat<strong>in</strong>g <strong>in</strong>sect pests on sunflower (Trap<br />

crop).<br />

Suck<strong>in</strong>g pests such as leafhoppers, thrips, aphids <strong>and</strong> <strong>defoliators</strong> such as<br />

semiloopers, tobacco caterpillar <strong>and</strong> Bihar hairy caterpillar were noticed on the sunflower crop<br />

(Table 14). The pest population was more on sunflower compared to <strong>groundnut</strong> crop (Table<br />

15 <strong>and</strong> Fig. 4). This is due to sunflower act as trap crop which attracted the pests more than<br />

<strong>groundnut</strong>.<br />

Present f<strong>in</strong>d<strong>in</strong>gs are <strong>in</strong> corroborate with f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Mahesh, (1996) reported that<br />

sunflower <strong>and</strong> castor were proved to be good trap crops <strong>and</strong> facilitated for easy collection <strong>of</strong><br />

egg masses <strong>and</strong> larvae. Which prefer feed<strong>in</strong>g on trap crop. Similar f<strong>in</strong>d<strong>in</strong>gs were made by<br />

many workers (Prasad, 1996; Anon; 2000).<br />

5.2.6 Natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

The natural enemies such as cocc<strong>in</strong>ellids, syrphids <strong>and</strong> Campoletis chlorideae, the<br />

population <strong>of</strong> these natural enemies were highest <strong>in</strong> M-II followed by M-I <strong>and</strong> the population<br />

was lowest <strong>in</strong> M-III ( Farmer’s practice) (Table 16,17 <strong>and</strong> 18). This is due to <strong>in</strong>tercropp<strong>in</strong>g <strong>of</strong><br />

foxtail millet <strong>in</strong> M-II <strong>and</strong> sunflower <strong>in</strong> M-I, the natural enemy was high <strong>in</strong> M-II <strong>and</strong> M-I because<br />

pest population on <strong>in</strong>tercrop serve as a food reservoir for adults <strong>of</strong> natural enemies <strong>and</strong> also<br />

they provided favourable microclimate for natural enemies. It is believed the natural enemy<br />

fauna also move <strong>and</strong> reduce the pest damage on ma<strong>in</strong> crop (Fig. 5).


Defoliators<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

F. orichalka S. litura S. obligua F. orichalka S. litura S. obligua<br />

37 DAS 44 Das 51 DAS 58 Das 65 DAS 72 DAS 79 DAS<br />

Weekly <strong>in</strong>terval<br />

Fig. 4: Incidence <strong>of</strong> <strong>defoliators</strong> on ma<strong>in</strong> <strong>and</strong> trap crop


Pest population<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Pest population Natural enemy population<br />

Module-I Moduel-II Module-III<br />

Treatment<br />

Fig. 5: Pest <strong>and</strong> natural enemy population <strong>in</strong> different IPM modules <strong>of</strong> <strong>groundnut</strong><br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Natural enemy population


Accord<strong>in</strong>g to Battu (1977), recorded the occurrence <strong>of</strong> Campoletis. sp on S. litura <strong>in</strong><br />

<strong>groundnut</strong> crop. Kulkarni (1989) reporded natural enemies <strong>of</strong> S. litura. The <strong>in</strong>sect predator like<br />

Menochilus sexmaculatus <strong>and</strong> Cocc<strong>in</strong>ella septempunctata <strong>and</strong> ichneumonid parasitoid,<br />

Campoletis chlorideae <strong>and</strong> N. rileyi on S. litura <strong>in</strong> <strong>groundnut</strong> crop (Kulkarni <strong>and</strong> L<strong>in</strong>gappa,<br />

2002).<br />

5.2.7 Yield <strong>and</strong> cost economics<br />

Among the different IPM modules, the highest yield was obta<strong>in</strong>ed <strong>in</strong> module-II, which<br />

resulted maximum net returns (Rs.89,850/ ha) <strong>and</strong> C: B ratio (1:5.1) followed by M-I where <strong>in</strong><br />

net returns (Rs.70,190/ ha) <strong>and</strong> C: B ratio was (1:4.3) (Fig. 6). Net returns (Rs. 33,490/ ha)<br />

<strong>and</strong> C: B ratio (1:2.0) were low <strong>in</strong> module-III (farmer’s practice) compared to M-II <strong>and</strong> M-I due<br />

to low yield (Table 19).These results are <strong>in</strong> conformity with S<strong>in</strong>gh et al. (2005a) who reported<br />

that IPM modules gave higher pr<strong>of</strong>it <strong>in</strong> comparison to farmer’s practices <strong>of</strong> pest control <strong>in</strong><br />

<strong>groundnut</strong>.<br />

M-II was an effective IPM module <strong>and</strong> best for everywhere, it compris<strong>in</strong>g <strong>of</strong> foxtail<br />

millet as <strong>in</strong>tercrop <strong>and</strong> <strong>in</strong>secticide Emamect<strong>in</strong> benzoate. M-I was totally bio-<strong>in</strong>tensive module<br />

<strong>and</strong> it was suitable for northern transitional belt.<br />

Future l<strong>in</strong>e <strong>of</strong> work<br />

The promis<strong>in</strong>g resistant <strong>genotypes</strong> viz., Mutant-III <strong>and</strong> ICGV-86699 Tan need to be<br />

evaluated for their yield potential, if they are more potential than exist<strong>in</strong>g verities they<br />

can be directly recommended.<br />

These <strong>elite</strong> <strong>genotypes</strong> can be utilized <strong>in</strong> the further resistance breed<strong>in</strong>g programme.<br />

Module-II (<strong>groundnut</strong> + foxtail millet) should be evaluated on large scale <strong>in</strong> farmers<br />

field for management <strong>of</strong> S. litura.


Gross returns <strong>and</strong> Net returns (Rs./ha)<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

Gross returns (Rs./ha) Net pr<strong>of</strong>it (Rs./ha) B:C ratio<br />

Module-I Moduel-II Module-III<br />

Treatment<br />

Fig. 6 : Economics <strong>of</strong> IPM modules dur<strong>in</strong>g kharif, 2009<br />

6<br />

5<br />

4<br />

B:C ratio<br />

3<br />

2<br />

1<br />

0


6. SUMMARY AND CONCLUSIONS<br />

Investigations were carried out on the <strong>in</strong>tegrated pest management for <strong>defoliators</strong> on<br />

<strong>groundnut</strong> crop under both field <strong>and</strong> laboratory condition at Ma<strong>in</strong> Agricultural Research<br />

Station, University <strong>of</strong> Agricultural Sciences, Dharwad. The objectives <strong>of</strong> the study were 1)<br />

Screen<strong>in</strong>g <strong>of</strong> <strong>elite</strong> <strong>genotypes</strong> <strong>in</strong> field <strong>and</strong> to study the biology <strong>of</strong> Spodoptera litura on <strong>elite</strong><br />

<strong>genotypes</strong> <strong>of</strong> <strong>groundnut</strong> under laboratory condition 2) Evaluation <strong>of</strong> different IPM modules <strong>of</strong><br />

<strong>groundnut</strong>. The f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> the <strong>in</strong>vestigation are summarized below:<br />

The seven <strong>groundnut</strong> <strong>genotypes</strong> were screened aga<strong>in</strong>st S. litura resistance <strong>in</strong> the<br />

field. The <strong>genotypes</strong> viz., Mutant-III <strong>and</strong> ICGV- 86699 Tan showed 11.5 <strong>and</strong> 12.0 per cent leaf<br />

damage compared to 44.0 per cent foliar damage <strong>in</strong> susceptible check JL-24. It clearly<br />

<strong>in</strong>dicates that they are highly resistant to S. litura damage.<br />

Growth <strong>and</strong> development <strong>of</strong> an <strong>in</strong>sect on <strong>elite</strong> <strong>genotypes</strong> become an important<br />

criterion <strong>in</strong> <strong>in</strong>vestigat<strong>in</strong>g mechanism <strong>of</strong> resistance. The detail <strong>in</strong>vestigation on biology <strong>of</strong> S.<br />

litura on all the seven <strong>genotypes</strong> further confirmed with the field <strong>screen<strong>in</strong>g</strong> studied by<br />

record<strong>in</strong>g longest larval period (22.83 <strong>and</strong> 23.67 days), pupal period (11.67 <strong>and</strong> 11.33 days) ,<br />

lowest adult longevity ( 9.67 <strong>and</strong> 9.33 days) <strong>and</strong> fecundity (379.67 <strong>and</strong> 386.00 eggs/ female)<br />

<strong>in</strong> resistant <strong>genotypes</strong> Mutant-III <strong>and</strong> ICGV- 86699 Tan respectively. Whereas susceptible<br />

check JL-24 has recorded shortest larval period (17.93 days), pupal period (9.83 days),<br />

higher adult longevity (11.83 days) <strong>and</strong> fecundity (592.00 eggs/ female).<br />

The resistant <strong>genotypes</strong> Mutant-III <strong>and</strong> ICGV-86699 Tan recorded higher per cent<br />

larval mortality <strong>and</strong> lower larval weight at different stages <strong>of</strong> growth <strong>and</strong> development. Adult<br />

emergence, adult longevity <strong>and</strong> fecundity were affected more <strong>in</strong> these two resistant<br />

<strong>genotypes</strong> than others.<br />

The resistant <strong>genotypes</strong>, Mutant-III <strong>and</strong> ICGV-86699 Tan were permitted the S. litura<br />

to complete its life cycle <strong>in</strong> longest period (48.92 <strong>and</strong> 49.00 days) compared to susceptible<br />

<strong>genotypes</strong>, JL-24 <strong>and</strong> GPBD-4 (41.02 <strong>and</strong> 41.00 days). The other <strong>genotypes</strong> GPBD-5,<br />

GPBD-6 <strong>and</strong> ICGV-86699 Red were <strong>in</strong>termediate. The effects <strong>of</strong> these resistant <strong>genotypes</strong> on<br />

the growth <strong>and</strong> development <strong>of</strong> S. litura could obviously be due to chemical factors i.e.<br />

antibiosis. The differential response <strong>of</strong> resistant <strong>genotypes</strong> on various components <strong>of</strong> <strong>in</strong>sect<br />

growth <strong>and</strong> development could be due to different resistance factors present <strong>in</strong> these<br />

<strong>genotypes</strong>.<br />

Evaluation <strong>of</strong> IPM modules aga<strong>in</strong>st S. litura <strong>in</strong> <strong>groundnut</strong> crop. The population <strong>of</strong><br />

suck<strong>in</strong>g pests <strong>and</strong> defoliat<strong>in</strong>g pests were least <strong>in</strong> M-II (<strong>groundnut</strong> + foxtail millet) followed by<br />

M-I (<strong>groundnut</strong> + sunflower) <strong>and</strong> highest <strong>in</strong> M-III (farmer’s practice). Low pest population <strong>in</strong> M-<br />

II may be due to the <strong>in</strong>tercropp<strong>in</strong>g <strong>of</strong> foxtail millet, where the natural enemies’ fauna attracted<br />

to foxtail millet for nectar.<br />

The natural enemy population was high <strong>in</strong> M-II followed by M-I <strong>and</strong> it was least <strong>in</strong> M-<br />

III (farmer’s practice). The natural enemy population was high <strong>in</strong> M-II <strong>and</strong> M-I because<br />

<strong>in</strong>tercrop serve as a food reservoir for adults <strong>of</strong> natural enemies <strong>and</strong> also they provided<br />

favourable microclimate for other natural enemies.<br />

Among the different IPM modules, the highest yield was obta<strong>in</strong>ed <strong>in</strong> module-II, which<br />

resulted <strong>in</strong> maximum net returns (Rs.89, 850/ ha) <strong>and</strong> C: B ratio (1: 5.1) followed by M-I<br />

where <strong>in</strong> net returns (Rs.70, 190/ ha) <strong>and</strong> C: B ratio was (1: 4.3) <strong>and</strong> net returns, C: B ratio<br />

were least <strong>in</strong> M-III. It <strong>in</strong>dicated that the M-II (<strong>groundnut</strong>+ foxtail millet) appeared to be effective<br />

IPM module with highest yield, net pr<strong>of</strong>it <strong>and</strong> C: B ratio followed by M-I (<strong>groundnut</strong>+<br />

sunflower).


REFERENCES<br />

Agasimani, C. A., Ravishankar, G., Mannikeri, I. M., Patil, R. K <strong>and</strong> Giriraj, K., 1993,<br />

Groundnut based <strong>in</strong>tercropp<strong>in</strong>g systems. National Sem<strong>in</strong>ar on Oilseeds Res. <strong>and</strong><br />

Dev. <strong>in</strong> India : Status <strong>and</strong> Strategies, pp. 161.<br />

Altieri, M. A., Francis, C. A., Schoon, H. A. V. <strong>and</strong> Doli, J. D., 1978, A review <strong>of</strong> <strong>in</strong>sect<br />

prevalence <strong>in</strong> Maize (Zea mays L.) <strong>and</strong> bean (Phaseolus vulgaris L.) <strong>in</strong><br />

polycultural system. Field Crops Res., 1: 33-49.<br />

Am<strong>in</strong>, P. W. <strong>and</strong> Mohammad, 1980, Groundnut pest research at ICRISAT. Proceed<strong>in</strong>gs <strong>of</strong> the<br />

International Workshop on Groundnut, ICRISAT Center, Patancheru, A. P., India,<br />

13-17 October, 1980, pp. 158-166.<br />

Anonymous, 1985, Annu. Prog. Rep., XXVII Annual Kharif Oilseed Workshop. Directorate <strong>of</strong><br />

Oilseeds Research, Rajendranagar, Hyderabad.<br />

Anonymous, 1986, Annu. Rep., XXVIII Annual Kharif Oilseed Workshop. Directorate <strong>of</strong><br />

Oilseeds Research, Rajendranagar, Hyderabad.<br />

Anonymous, 1995, Annu. Rep., ICRISAT, Patancheru, A. P., India, p. 68.<br />

Anonymous, 1998, Rabi/Summer <strong>groundnut</strong> Workshop, Progress Report, 1997-98 Project<br />

Coord<strong>in</strong>at<strong>in</strong>g Unit, Groundnut, National Research Centre for Groundnut,<br />

Junagad, pp. 20-34.<br />

Anonymous, 1999, Rabi/Summer <strong>groundnut</strong> Workshop, Progress Report, 1998-99 Project<br />

Coord<strong>in</strong>at<strong>in</strong>g Unit, Groundnut, National Research Centre for Groundnut,<br />

Junagad, pp. 21-27.<br />

Anonymous, 2000, Ikisan: Introduction to <strong>in</strong>sect management <strong>in</strong> <strong>groundnut</strong>, http : //www.<br />

ikisan. com/. . . /ap_<strong>groundnut</strong>Insect%20Management. shtm.<br />

Anonymous, 2003, New Agriculturist : Focus on . . . Crops <strong>of</strong> the Semi-arid Tropics, http :<br />

//www.wrenmedia.co.<strong>in</strong>.<br />

Anonymous, 2009, Agriculture Centre for Monitor<strong>in</strong>g Indian Economy, pp. 156.<br />

Bae-SoonDo., 1999, Leaf characteristics <strong>of</strong> legum<strong>in</strong>ous plants <strong>and</strong> the biology <strong>of</strong> tobacco<br />

cutworm, Spodoptera litura (F.): I. The larval development <strong>and</strong> leaf feed<strong>in</strong>g<br />

amount. Korean J. Appl. Ent., 38(3) : 217-224.<br />

Balsubramanian, G., Chelliah, S. <strong>and</strong> Balsubramanian, M., 1984, Effect <strong>of</strong> host plants on the<br />

biology <strong>of</strong> Spodoptera litura (F.). Indian J. Agric. Sci., 54 : 1075-1080.<br />

Basu, M. S., 2003, Stress management <strong>in</strong> <strong>groundnut</strong>. Proc. Nation. Sem. on Stress<br />

Management <strong>in</strong> Oilseeds for Atta<strong>in</strong><strong>in</strong>g Self Reliance <strong>in</strong> Vegetable Oils, 28-30<br />

January, 2003, Hyderabad, India, pp. 1-6.<br />

Battu, G. S., 1977, Occurrence <strong>of</strong> Parasarcophaga misera (Walker) <strong>and</strong> Campoletis sp. As<br />

parasite <strong>of</strong> Spodoptera litura (F.) from India. Curr. Sci., 46 : 568-569.<br />

Bhalani, P. A., 1989, Suitability <strong>of</strong> host plants for growth <strong>and</strong> development <strong>of</strong> leaf eat<strong>in</strong>g<br />

caterpillar, Spodoptera litura (F.). Indian J. Ent., 51(3) : 427-430.<br />

Bhargava, M. C., Choudhary, R. K. <strong>and</strong> Ja<strong>in</strong>, P. C, 2008, Genetic eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> plants for<br />

<strong>in</strong>sect resistance. In : Entomology : Novel Approaches (Eds . Ja<strong>in</strong>, P. C. <strong>and</strong><br />

Bhargava, M. C.). New India Publish<strong>in</strong>g, New Delhi, India., pp. 133-144.


Braune, H. J., 1989, The development <strong>of</strong> an <strong>in</strong>tegrated pest management system <strong>in</strong> Samao.<br />

Rev. Appl. Ent., 77(4) : 2575.<br />

Dara, S. K. <strong>and</strong> Prasad, V. D., 2007, Population dynamics <strong>of</strong> Spodoptera litura on some host<br />

plants <strong>in</strong> laboratory studies. Bionotes, 9(2) : 51.<br />

Dharne, P. K. <strong>and</strong> Patel, S. K., 2000, Screen<strong>in</strong>g <strong>of</strong> promis<strong>in</strong>g <strong>groundnut</strong> <strong>genotypes</strong> for their<br />

reaction to Spodoptera litura. Intl. Arachis Newslett., 20 : 67-69.<br />

Dwivedi, S. L., Reddy, D. V. R., Nigam, S. N., Rao, G. V. R., Wightman, J. A., Am<strong>in</strong>, P. W.,<br />

Nagabhushanam, G. V. S., Reddy, A. S., Scholberg , E. <strong>and</strong> Ramraj, V. M.,<br />

1993, Registration <strong>of</strong> ICGV 86031 peanut germplasm. Crop Sci., 33 : 220.<br />

Garad, G. P., Shivapuje, P. R. <strong>and</strong> Bilpate, G. G., 1984, Life fecundity tables <strong>of</strong> Spodoptera<br />

litura (F.) on different hosts. Proc. Indian Acd. Sci. Anim. Sci., 93 : 29-33.<br />

Garner, J. W. <strong>and</strong> Lynch, R. E., 1981, Fall armyworm leaf consumption <strong>and</strong> development on<br />

florunner peanuts. J. Econ. Ent., 74(2) : 191-193.<br />

Gavarra, M. R. <strong>and</strong> Raros, R. S., 1975, Studies on the biology <strong>of</strong> the predatory wolfspider,<br />

Lycosa pseudoannulata Boes ( Aran : Lycosidae). Phillip<strong>in</strong>es Entomol., 2 : 427-<br />

444.<br />

Ghew<strong>and</strong>e, M. P. <strong>and</strong> N<strong>and</strong>agopal, V., 1997, Integrated pest management <strong>in</strong> <strong>groundnut</strong><br />

(Arachis hypogaea L.) <strong>in</strong> India. Integrated Pest Manage. Rev., 2 : 1-15.<br />

Ghumare, S. S. <strong>and</strong> Mukheijee, S. N., 2003, Performance <strong>of</strong> Spodoptera litura (F.) on<br />

different host plants : Influence <strong>of</strong> nitrogen <strong>and</strong> total phenolics <strong>of</strong> plants <strong>and</strong> midgut<br />

esterase activity <strong>of</strong> the <strong>in</strong>sect. Indian J. Exp. Biol., 41(8) : 895-899.<br />

Gopalkrishnan, C. <strong>and</strong> Mohan, K. S., 1990, Studies on <strong>in</strong>digenous entomogenous fungi<br />

affect<strong>in</strong>g <strong>in</strong>sect pest <strong>of</strong> horticultural crops. Annu. Rep., 1989-90, Indian Institute<br />

<strong>of</strong> Horticultural Research, Hesaraghatta, Bangalore, pp. 64-65.<br />

Gopalkrishnan, C. <strong>and</strong> Mohan, K. S., 1991, Studies on <strong>in</strong>digenous entomogenous fungi<br />

affect<strong>in</strong>g <strong>in</strong>sect pest <strong>of</strong> horticultural crops. Annu. Rep., 1990-91, Indian Institute<br />

<strong>of</strong> Horticultural Research , Hesaraghatta, Bangalore, pp. 45.<br />

Hegde, R., 2001, Exploitation <strong>of</strong> Nomuraea rileyi (Farlow) Samson aga<strong>in</strong>st important<br />

lepidopterous pests <strong>of</strong> potato, cotton <strong>and</strong> chickpea. Ph. D. Thesis. Univ. Agric.<br />

Sci, Dharwad, Karnataka (India).<br />

Inderjit, S., Navreet, K., Sohi, A. S. <strong>and</strong> Balj<strong>in</strong>der, S., 2006, Development <strong>and</strong> survival <strong>of</strong><br />

Spodoptera litura (Fab.) on common weeds occurr<strong>in</strong>g <strong>in</strong> cotton agroecosystem.<br />

Indian J. Crop Sci., 2(2) : 431-432.<br />

Islam, M. B. <strong>and</strong> Duffey, S. S., 1982, Toxicity <strong>of</strong> tomato phenolic compounds to the fruit worm,<br />

(Heliothis zea). Entomologia Experimentalis et Applicata, 31 : 370.<br />

Islam, W., Ahmed, K. N., Nargis, A. <strong>and</strong> Islam, U., 1983, Occurrence, abundance <strong>and</strong> extent<br />

<strong>of</strong> damage caused by <strong>in</strong>sect pests <strong>of</strong> <strong>groundnut</strong> (Arachis hypogaea L.).<br />

Malaysian Agric. J., 54(1) : 18-24.<br />

Joshi, B. G., Sitaramaiah, S., Satyanarayana, S. V. V. <strong>and</strong> Ramaprasad, G., 1979, Note on<br />

natural enemies <strong>of</strong> Spodoptera litura F. Myzous persicae (S.) on flue- cured<br />

tobacco <strong>in</strong> Andhra Pradesh. Sci. & Cult., 44 : 251-252.<br />

Kennedy, F. J. S. <strong>and</strong> Raveendran, T. S., 1989, Intercropp<strong>in</strong>g m<strong>in</strong>imize pests <strong>in</strong>cidence.<br />

Oilseeds Newslett., 3 : 2-3.


Kennedy, F. J. S., Rajamanickam. K. <strong>and</strong> Raveendran. T. S., 1990, Effect <strong>of</strong> <strong>in</strong>tercropp<strong>in</strong>g on<br />

<strong>in</strong>sect pests <strong>of</strong> <strong>groundnut</strong> <strong>and</strong> their natural enemies. J. Biol. Control, 4(1) : 63-64.<br />

Krishnaprasad, N. K., Mallikarjunaiah, H. <strong>and</strong> N<strong>and</strong>ihalli, B. S., 1985, Efficacy <strong>of</strong> different<br />

types <strong>of</strong> trap <strong>in</strong> monitor<strong>in</strong>g Spodoptera litura (F.) populations with synthetic sex<br />

pheromones. In : Proceed<strong>in</strong>gs Natn. Sem<strong>in</strong>ar on Behav. Physical Appr. Mgmt.<br />

Crop Pests, TNAU, Coimbatore, pp. 53-55.<br />

Kulkarni, K. A., 1989, Bio ecology <strong>and</strong> management <strong>of</strong> Spodoptera litura (F.) (Lepidoptera :<br />

Noctuidae) on <strong>groundnut</strong> (Arachis hypogaea L.). Ph. D. Thesis. Univ. Agric. Sci,<br />

Dharwad, Karnataka (India).<br />

Kulkarni, N. S., 1999, Utilization <strong>of</strong> fungal pathogen Nomuraea rileyi (Farlow) Samson on the<br />

management <strong>of</strong> lepidopterous pests. Ph. D. Thesis. Univ. Agric. Sci, Dharwad,<br />

Karnataka (India).<br />

Kulkarni, K. A. <strong>and</strong> L<strong>in</strong>gappa, S., 1993, Life fecundity tables <strong>of</strong> Spodoptera litura (F.) on<br />

<strong>groundnut</strong>. Karnataka J. Agric. Sci., 6(3) : 255-258.<br />

Kulkarni, N. S. <strong>and</strong> L<strong>in</strong>gappa, S., 2001, Influence <strong>of</strong> host plants on the susceptibility <strong>of</strong><br />

Spodoptera litura to entomopathogenic fungus Nomuraea rileyi (Farlow)<br />

Samson. Karnataka J. Agric. Sci., 14(3) : 816-818.<br />

Kulkarni, N. S. <strong>and</strong> L<strong>in</strong>gappa, S., 2002, Seasonal <strong>in</strong>cidence <strong>of</strong> entomopathogenic fungus,<br />

Nomuraea rileyi (F.) <strong>in</strong> <strong>groundnut</strong>, soybean <strong>and</strong> potato – A comparative study.<br />

Karnataka J. Agric. Sci., 15(1) : 63-70.<br />

Lalita, K. V. L. <strong>and</strong> Reddy, D. D. R, 1992, Evaluation <strong>of</strong> pheromone trap designs for trapp<strong>in</strong>g<br />

Spodoptera litura <strong>and</strong> Helicoverpa armigera <strong>and</strong> their reproductive behaviour.<br />

Indian J. Pl. Protec. 20 : 18-23.<br />

Lamb, K. P., 1978, Economic entomology <strong>in</strong> the Third World. Pest Articles <strong>and</strong> News<br />

Summaries, 24 : 27-28.<br />

Leuk, D. B. <strong>and</strong> Sk<strong>in</strong>ner, J. L., 1971, Resistance <strong>in</strong> peanut foliage <strong>in</strong>fluenc<strong>in</strong>g fall armyworm<br />

control. J. Econ. Ent., 64 : 148-150.<br />

Maghodia, A. B. <strong>and</strong> Koshiya, D. J., 2008, Life fecundity studies (for female) <strong>of</strong> Spodoptera<br />

litura Fabricius on different hosts. Crop Res., 35(3) : 132-136.<br />

Mahesh, B. V., 1996, Integrated pest management <strong>in</strong> <strong>groundnut</strong> for control <strong>of</strong> Spodoptera<br />

species dur<strong>in</strong>g rabi season 1995-96. Spodoptera litura <strong>in</strong> India : Proceed<strong>in</strong>gs <strong>of</strong><br />

the National Scientists Forum on Spodoptera litura (F.), 2-4 April 1996, ICRISAT<br />

Asia Centre, India, pp. 93-95.<br />

Manjula, K., Rao, P. A. <strong>and</strong> Nagal<strong>in</strong>gam, B., 2004, Record <strong>of</strong> Nomuraea rileyi (Farlow)<br />

Samson on Helicoverpa armigera Hubner <strong>in</strong> kharif <strong>groundnut</strong>. Indian J. Pl.<br />

Protec., 32(2) : 125.<br />

Moss, J. P., 1980, Wild species <strong>in</strong> the improvement <strong>of</strong> <strong>groundnut</strong>s. In : Advances <strong>in</strong> Legume<br />

Science, Proceed<strong>in</strong>gs <strong>of</strong> the International Legume Conference, Kew, Engl<strong>and</strong>,<br />

1978, 1 : 525-535.<br />

Nadaf, H. L., Patil, R. K., Giriraj, K. <strong>and</strong> Hanamaratti, N. G., 1995, Field performance <strong>of</strong><br />

<strong>groundnut</strong> <strong>genotypes</strong> with <strong>in</strong>herent resistance to biotic stresses. Crop Improv., 22<br />

: 261-263.<br />

Nagaraja, S. D., 2005, Effect <strong>of</strong> different formulations <strong>of</strong> Nomuraea rileyi <strong>and</strong> spray<br />

equ<strong>ipm</strong>ents <strong>in</strong> the management <strong>of</strong> tobacco caterpillar <strong>in</strong> <strong>groundnut</strong> <strong>and</strong> pod borer<br />

<strong>in</strong> chickpea. M. Sc. (Agri) Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India).


N<strong>and</strong>gopal, V, 2006, Commercialization <strong>of</strong> pheromone research <strong>and</strong> their application <strong>in</strong> Indian<br />

agriculture. Sci. Tech. Entrepreneur, pp. 1-20.<br />

Navi, S. S., 2002, Ecosystem manipulation <strong>in</strong> soybean <strong>and</strong> <strong>groundnut</strong> to enhance the efficacy<br />

<strong>of</strong> Nomuraea rileyi (Farlow) Samson aga<strong>in</strong>st Spodoptera litura (F.) M. Sc. (Agri)<br />

Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India).<br />

Navi, S. S., Patil, R. K., Somanagouda, G., Prashanth, J. M. <strong>and</strong> Aski, G. S., 2006, Evaluation<br />

<strong>of</strong> Nomuraea rileyi (Farlow) Samson with botanical <strong>and</strong> <strong>in</strong>secticide <strong>in</strong> <strong>groundnut</strong><br />

<strong>genotypes</strong> for the management <strong>of</strong> Spodoptera litura (Fab.). Mysore J. Agric. Sci.<br />

40(1) : 8-13.<br />

Pa<strong>in</strong>ter, R. H., 1951, Insect Resistance <strong>in</strong> Crop Plants, MacMillan Company, New York, pp.<br />

23-53.<br />

Parasuraman, S. <strong>and</strong> Jayaraj, S., 1985, Effect <strong>of</strong> host plants on the biology <strong>of</strong> Spodoptera<br />

litura (F.). Cotton Dev., 14 : 37-40.<br />

Patel, R. C., Yadav, D. N., Joshi, A. D. <strong>and</strong> Patel, A. K., 1985, Impact <strong>of</strong> mass trapp<strong>in</strong>g <strong>of</strong><br />

Heliothis armigera <strong>and</strong> Spodoptera litura from cotton with sex pheromones. In :<br />

Proceed<strong>in</strong>gs Natn. Sem<strong>in</strong>ar on Behav. Physical appr. Mgmt. Crop Pests, TNAU,<br />

Coimbatore, pp. 120-125.<br />

Patil, R. K., 1993, Progress <strong>of</strong> research <strong>in</strong> <strong>groundnut</strong> pest management at Dharwad. Sem<strong>in</strong>ar<br />

on “Prospective <strong>in</strong> Entomological Research for Susta<strong>in</strong>able Agriculture <strong>in</strong><br />

Northern Karnataka, UAS Dharwad, pp. 132.<br />

Patil, R. K., 2000, Ec<strong>of</strong>riendly approaches for the management <strong>of</strong> Spodoptera litura (F) <strong>in</strong><br />

<strong>groundnut</strong>. M. Sc. (Agri) Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India).<br />

Patil, R. K., Gowda, M. V. C. <strong>and</strong> Nadaf, H. L., 1991, Screen<strong>in</strong>g <strong>of</strong> Spanish bunch breed<strong>in</strong>g<br />

l<strong>in</strong>es <strong>of</strong> <strong>groundnut</strong> aga<strong>in</strong>st Spodoptera litura (F.) damage. Intl. Arachis Newslett.,<br />

10 : 26-27.<br />

Patil, R. K., Nadaf, H. L., Sattagi, H. N., Hanamaratti, N. G. <strong>and</strong> L<strong>in</strong>gappa, S. <strong>and</strong> Gopali. J.<br />

B., 1995, Effect <strong>of</strong> <strong>groundnut</strong> <strong>genotypes</strong> on biology <strong>and</strong> development <strong>of</strong><br />

Spodoptera litura (F.). Crop Improv., 22 :184-189.<br />

Patil, R. K., Parameshwarappa, K. G. <strong>and</strong> Kenchanagoudar, P. V., 2005, Studies on the<br />

mechanism <strong>of</strong> host plant resistance to Spodoptera litura (F.) <strong>in</strong> <strong>elite</strong> breed<strong>in</strong>g<br />

l<strong>in</strong>es <strong>of</strong> <strong>groundnut</strong>, Arachis hypogaea L. J. Oilseeds Res., 23 : 256-259.<br />

Patil, R. K., Hegde, M. G., Parameshwarappa, K. G. <strong>and</strong> Kenchanagoudar, P. V., 2009,<br />

Influence <strong>of</strong> some <strong>elite</strong> breed<strong>in</strong>g l<strong>in</strong>es/varieties <strong>of</strong> <strong>groundnut</strong> crop on Spodoptera<br />

litura (F.) larval development. J. Oilseeds Res., 26 : 729-731.<br />

Pawar, C. S. <strong>and</strong> Shrivastava, C. P., 1988, Interaction between sex pheromones <strong>of</strong><br />

Spodoptera litura (F.) ans Heliothis armigera (Hub.). Intl Arachis Newsletter, 14 :<br />

22.<br />

Prasad, R. G., 1996, Integrated management <strong>of</strong> Spodoptera litura (F.) <strong>in</strong> India : Proc. Nation.<br />

Scientists Forum on Spodoptera litura (F.), 2-4 April 1996, ICRISAT Asia Centre,<br />

India, pp. 96-103.<br />

Prasad, M. N. R., Gowda, M. V. C. <strong>and</strong> Patil, R. K., 1998, Screen<strong>in</strong>g <strong>groundnut</strong> mutants for<br />

resistance to Spodoptera litura <strong>and</strong> thrips. Intl. Arachis Newsletter, 18 : 29-30.<br />

Prasad, M. N. R., Gowda, M. V. C. <strong>and</strong> Naidu, G. K., 2000, Groundnut mutants for resistance<br />

to tobacco cutworm (Spodoptera litura F.). Curr. Sci., 79 : 158-160.


Prasad, M. N. R. <strong>and</strong> Gowda, M. V. C., 2006, Mechanisms <strong>of</strong> resistance to tobacco cutworm<br />

(Spodoptera litura F.) <strong>and</strong> their implications to <strong>screen<strong>in</strong>g</strong> for resistance <strong>in</strong><br />

<strong>groundnut</strong>. Euphytica, 149 : 387-399.<br />

Rachappa, V. <strong>and</strong> L<strong>in</strong>gappa, S., 2007, Seasonality <strong>of</strong> Nomuraea rileyi (Farlow) Samson <strong>in</strong><br />

northern transitional belt <strong>of</strong> Karnataka. Ann. Pl. Protec. Sci., 15(1) : 68-72.<br />

Radhamani, J. <strong>and</strong> S<strong>in</strong>gh, A. K., 2008, Conservation <strong>and</strong> utilization <strong>of</strong> genetic resources <strong>of</strong><br />

<strong>groundnut</strong> (Arachis hypogaea L.) <strong>in</strong> India. Proc. Indian Natn . Sci. Acad., 74(3) :<br />

131-147.<br />

Rajasekhara, R. K., 2002, Induced host plant resistance <strong>in</strong> the management <strong>of</strong> suck<strong>in</strong>g <strong>in</strong>sect<br />

pests <strong>of</strong> <strong>groundnut</strong>. Ann. Pl. Protec. Sci., 10(1) : 45-50.<br />

Rajgopal, K., N<strong>and</strong>gopal, N. <strong>and</strong> Bhagat, N. R., 1988, Prelim<strong>in</strong>ary <strong>screen<strong>in</strong>g</strong> <strong>of</strong> Virg<strong>in</strong>ia<br />

<strong>groundnut</strong> <strong>genotypes</strong> aga<strong>in</strong>st tobacco caterpillar, Spodoptera litura (F.). J.<br />

Oilseeds Res., 5 : 162-165.<br />

Ramakrishnan , N., Saxena, V. S. <strong>and</strong> Dh<strong>in</strong>gra, S., 1984, Insecticide resistance <strong>in</strong> the<br />

population <strong>of</strong> Spodoptera litura (F.) <strong>in</strong> Andhra Pradesh. Pesticides, 18 : 23-24.<br />

Rame Gowda, G. K., 1999, Studies on resistance to <strong>in</strong>secticides <strong>in</strong> Spodoptera litura (F.) on<br />

<strong>groundnut</strong>. M. Sc. (Agri) Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India).<br />

Rame Gowda, G. K. <strong>and</strong> Basavana Goud. K., 2002, Prilim<strong>in</strong>ary studies on development <strong>of</strong><br />

resistance to <strong>in</strong>secticides <strong>in</strong> Spodoptera litura (F.) <strong>in</strong> northern Karnataka. J.<br />

Oilseeds Res., 19 : 95-97.<br />

Rao, G. V. R. <strong>and</strong> Shanower, T. G., 1989, A survey <strong>of</strong> <strong>groundnut</strong> <strong>in</strong>sect pests <strong>in</strong> Andhra<br />

Pradesh, India dur<strong>in</strong>g post ra<strong>in</strong>y season 1987-88. Intl. Arachis Newslett., 4 : 8-<br />

10.<br />

Ranga Rao, G. V. <strong>and</strong> Wightman, J. A., 1993, Groundnut <strong>in</strong>sect problems <strong>and</strong> their<br />

management <strong>in</strong> India. In : Proceed<strong>in</strong>gs <strong>of</strong> the National Sem<strong>in</strong>ar on Chang<strong>in</strong>g<br />

Scenario <strong>in</strong> Pest Management <strong>in</strong> India, The Plant Protection Association <strong>of</strong> India,<br />

January. 31 to February 1, 1992 at CPPTI, Rajendranagar, Hyderabad, India, pp.<br />

70-77.<br />

Rao, R. S. N., 1983, A note on new record <strong>of</strong> Chrysopa (Apterochrysa) crass<strong>in</strong>ervis Esben<br />

Peterson from India. Curr. Sci., 52 : 438-439.<br />

Rao, R. S. N., Joshi, B. G. <strong>and</strong> Satyanarayana, S. V. V. <strong>and</strong> Soundararajan, V., 1990, Note<br />

on new addition to the natural enemies <strong>of</strong> Spodoptera litura (F.) <strong>and</strong> Myzous<br />

persicae (S.) on FCV tobacco <strong>in</strong> Andhra Pradesh. Sci. & Cult., 47 : 98-99.<br />

Sankarperumal, G., Baskaran, S. <strong>and</strong> Moh<strong>and</strong>oss, A., 1989, Influence <strong>of</strong> host plants on the<br />

organic constituents <strong>and</strong> fecundity <strong>of</strong> Spodoptera litura (F.) (Lepidoptera :<br />

Noctuidae). Proc. Indian Nat. Sci. Acad., part B (Bio. Sci.), 55 : 393-396.<br />

Shambharkar, D. A., Dharne, P. K., Bahale, T. M., Deshmukh, A., Surywanshi, R. T. <strong>and</strong><br />

Jadhav, R. B., 2006, Assessment <strong>of</strong> <strong>in</strong>tegrated pest management modules <strong>in</strong><br />

<strong>groundnut</strong> on farmers' fields. Intl. Arachis Newslett., 26 : 31-33.<br />

Shreedhar, P., 1983, Studies on trapp<strong>in</strong>g <strong>of</strong> the tobacco cutworm, Spodoptera litura (Fab.),<br />

(Lepidoptera : Noctuidae) with pheromones <strong>in</strong> <strong>groundnut</strong> fields. M. Sc. (Agri)<br />

Thesis, Univ. Agric. Sci., Bangalore, Karnataka (India).<br />

S<strong>in</strong>gh, K. N. <strong>and</strong> Sachan, G. C., 1991, Monitor<strong>in</strong>g <strong>of</strong> Spodoptera litura F. populations with<br />

pheromone baited traps at Pantnagar, India. J. Pl. Protec. Tropics., 8(2) : 97-101.


S<strong>in</strong>gh, K. N. <strong>and</strong> Sachan, G. C., 1992, Phenols <strong>and</strong> phenolic acids <strong>in</strong> <strong>groundnut</strong> (Arachis<br />

hypogaea) resistant to tobacco caterpillar. Indian J. Agric. Sci, 60 : 717-719.<br />

S<strong>in</strong>gh, K. N. <strong>and</strong> Sachan, G. C., 1993, Assessment <strong>of</strong> the use <strong>of</strong> sex pheromone traps <strong>in</strong> the<br />

management <strong>of</strong> Spodoptera litura F. Indian J. Pl. Protec., 21(1) : 7-13.<br />

S<strong>in</strong>gh, S., Kumar, S. <strong>and</strong> Basappa, H., 2005a, Validation <strong>of</strong> IPM Technologies for the castor<br />

crop <strong>in</strong> ra<strong>in</strong>fed agro-ecosystem. Ann.Pl. Protec. Sci., 1(13): 133-136.<br />

S<strong>in</strong>gh, S. K., S<strong>in</strong>gh. S., <strong>and</strong> Katti, P., 2005b, Evaluation <strong>of</strong> IPM Technology for <strong>groundnut</strong> <strong>and</strong><br />

sunflower based production system. Entomon, 30(3): 201-205.<br />

S<strong>in</strong>gh, T. V. K., S<strong>in</strong>gh, K. M., <strong>and</strong> S<strong>in</strong>gh, R. N., 1991, Influence <strong>of</strong> <strong>in</strong>tercropp<strong>in</strong>g on <strong>in</strong>cidence<br />

<strong>of</strong> major pests <strong>in</strong> <strong>groundnut</strong> (Arachis hypogeae). Indian J. Ent., 53(1) : 18-44.<br />

S<strong>in</strong>gh, V. J., N<strong>and</strong>agopal, V., Gor, H. K., Chikani, B. M. <strong>and</strong> Jaroli, R. K., 1993, BG2 a<br />

possible donar parent for resistance to Helicoverpa <strong>and</strong> Spodoptera. Groundnut<br />

News, 5 : 2-3.<br />

Sreenivasa, A. G., Patil, R. K., Rahman, S. M. <strong>and</strong> L<strong>in</strong>gappa, S., 1997, Development <strong>of</strong><br />

Spodoptera litura as <strong>in</strong>fluenced by <strong>groundnut</strong> <strong>genotypes</strong>. Karnataka J. Agric.<br />

Sci., 10(3) : 872-876.<br />

Sreenivasulu, B. , Naidu, V. G. <strong>and</strong> Prasad, P. R. , 2002, Integrated pest management <strong>in</strong><br />

<strong>groundnut</strong> aga<strong>in</strong>st Spodoptera litura (Fabr.) <strong>and</strong> other suck<strong>in</strong>g pests. Pest<br />

Manag. <strong>and</strong> Econ. Zool., 10(2) : 193-196.<br />

Sreenivasulu, B., Naidu, V. G. , Prasad, P. R. , 2003, Monitor<strong>in</strong>g <strong>of</strong> Spodoptera litura Fabr.<br />

through sex pheromones <strong>in</strong> <strong>groundnut</strong>. J. Appl. Zool. Res., 14(2) : 148-150.<br />

Sridhar, V. <strong>and</strong> Prasad, V. D., 1996a, Mycoses <strong>of</strong> Nomuraea rileyi <strong>in</strong> field populations <strong>of</strong><br />

Spodoptera litura <strong>in</strong> relation to four host plants. Indian J. Ent., 58 : 191-193.<br />

Sridhar, V. <strong>and</strong> Prasad, V. D., 1996b, Life-table studies on natural population <strong>of</strong> Spodoptera<br />

litura (F.) on <strong>groundnut</strong>, Arachis hypogaea L<strong>in</strong>n. Ann. Pl. Protec. Sci., 4 : 142-<br />

147.<br />

Srivastava, B. <strong>and</strong> Kushwaha, K. S., 1995, Sequential appearance <strong>and</strong> frequency <strong>of</strong> the<br />

parasites <strong>of</strong> Spodoptera litura (Fabr.) on cauliflower <strong>and</strong> cabbage at Udaipur,<br />

Rajasthan. Adv. Agric. Res. India., 3 : 130-140.<br />

Stechmann, D. H. <strong>and</strong> Semisi, S. T., 1984, Insect control <strong>in</strong> Western Samoa with particular<br />

reference to the present state <strong>of</strong> biological <strong>and</strong> <strong>in</strong>tegrated control, Anzeiger fur<br />

Schadl Pflan Unwelt, 57 : 65-70.<br />

Stevenson, P. C., Blaney, W. M., Simmonds, M. J. S. <strong>and</strong> Wightman, J. A., 1993, The<br />

identification <strong>and</strong> characterization <strong>of</strong> resistance <strong>in</strong> wild species <strong>of</strong> Arachis to<br />

Spodoptera litura (Lepidoptera : Noctuidae). Bull. Ent. Res., 83 : 421-429.<br />

Theodore, M. B. M., Samuel, K. <strong>and</strong> Gregory, C. L., 2008, Effects <strong>of</strong> <strong>groundnut</strong> <strong>genotypes</strong>,<br />

cropp<strong>in</strong>g systems <strong>and</strong> <strong>in</strong>secticides on the abundance <strong>of</strong> native arthropod<br />

predators from Ug<strong>and</strong>a <strong>and</strong> Democratic Republic <strong>of</strong> Congo. Bull. Insectology.,<br />

61(1) : 11-19.<br />

Thontadarya, T. S. <strong>and</strong> Nangia, N., 1983, Natural enemies <strong>of</strong> tobacco caterpillar <strong>in</strong>fest<strong>in</strong>g<br />

soybean. Curr. Res., 12 : 105-106.


Tiwari, S. N., Rathore, Y. S. <strong>and</strong> Bhattacharya, A. K., 1980, Notes on the survival <strong>and</strong> change<br />

<strong>in</strong> weight <strong>of</strong> larvae <strong>of</strong> Spodoptera litura (F.) feed<strong>in</strong>g on some promis<strong>in</strong>g<br />

<strong>groundnut</strong> varieties. Indian J. Ent., 42(2) : 283-285.<br />

Tiwari, S. N., Rathore, Y. S. <strong>and</strong> Bhattacharya, A. K., 1981, Intr<strong>in</strong>sic rate <strong>of</strong> <strong>in</strong>crease <strong>of</strong><br />

Spodoptera litura (F.) on different varieties <strong>of</strong> <strong>groundnut</strong>. Sci <strong>and</strong> Cult., 47(7) :<br />

261-262.<br />

Tiwari, S. N., Rathore, Y. S., Bhattacharya, A. K. <strong>and</strong> Sachan, G. C., 1989, Classification <strong>of</strong><br />

<strong>groundnut</strong> varieties based on growth reaction <strong>of</strong> Spodoptera litura (F.) <strong>and</strong><br />

mahalanabis D 2 statistics. Indian J. Ent., 50 : 202-208.<br />

Todd, J. W., Beach, B. M. <strong>and</strong> Branch, W. D., 1991, Resistance <strong>in</strong> eight peanut <strong>genotypes</strong> to<br />

foliar feed<strong>in</strong>g <strong>of</strong> fall armyworm, velvet bean caterpillar <strong>and</strong> corn earworm. Peanut<br />

Sci., 18 : 38-40.<br />

Tojo, S., Mishima, H., Kamiwada, H., Ngakan, P. O. <strong>and</strong> Kwang-Sh<strong>in</strong>g, C., 2008, Variations<br />

<strong>in</strong> the occurrence patterns <strong>of</strong> male moths <strong>of</strong> the common cutworm, Spodoptera<br />

litura (Lepidoptera : Noctuidae) among Southeastern Asian countries, as<br />

detected by sex pheromone trapp<strong>in</strong>g. Appl. Ent. <strong>and</strong> Zool., 43(4) : 569-576.<br />

Vimaladevi, P. S., 1994, Conidia production <strong>of</strong> the entomopathogenic fungus, Nomuraea rileyi<br />

<strong>and</strong> its evaluation for control <strong>of</strong> Spodoptera litura (F.) on Ric<strong>in</strong>us communis. J.<br />

Invert. Path., 63 : 145-150.<br />

Wightman, J. A. <strong>and</strong> Ranga Rao, G. V., 1994, Groundnut pests. In : The Groundnut Crop; A<br />

Scientific Basis <strong>of</strong> Improvement (Ed. Smart, J.), Chapman <strong>and</strong> Hall, London, pp.<br />

395-479.<br />

Wightman, J. A., Dick, K. M., Ranga Rao, G. V., Shanower, T. C. <strong>and</strong> Gold, C. G., 1990, In :<br />

Pests <strong>of</strong> Groundnut <strong>in</strong> Semi Arid Tropics, (Ed. S<strong>in</strong>gh, S. R. <strong>and</strong> Chichester, J.),<br />

Wiley <strong>and</strong> Sons, pp. 243-322.<br />

Xie Jia Li, 1987, Influence <strong>of</strong> Peanut Cultivars on the Development <strong>and</strong> Feed<strong>in</strong>g Activity <strong>of</strong> the<br />

Common Cut Worm Spodoptera litura (F.) College <strong>of</strong> Laguna, Philipp<strong>in</strong>es,<br />

Philipp<strong>in</strong>es University Las Banos College, Laguna, pp. 66.


APPENDIX<br />

Appendix I: Pheromone trap catches <strong>of</strong> Spodoptera litura<br />

Pheromone trap catches <strong>of</strong><br />

Number <strong>of</strong> male moths per trap<br />

Spodoptera litura Module I Module II<br />

05/08/2009<br />

121<br />

022<br />

06/08/2009<br />

198<br />

024<br />

07/08/2009<br />

199<br />

040<br />

08/08/2009<br />

358<br />

036<br />

09/08/2009<br />

373<br />

110<br />

10/08/2009<br />

432<br />

032<br />

11/08/2009<br />

451<br />

130<br />

12/08/2009<br />

135<br />

147<br />

13/08/2009<br />

114<br />

095<br />

14/08/2009<br />

202<br />

096<br />

15/08/2009<br />

112<br />

075<br />

16/08/2009<br />

029<br />

021<br />

17/08/2009<br />

032<br />

029<br />

18/08/2009<br />

013<br />

069<br />

19/08/2009<br />

040<br />

159<br />

20/08/2009<br />

062<br />

029<br />

21/08/2009<br />

060<br />

027<br />

22/08/2009<br />

027<br />

018<br />

23/08/2009<br />

031<br />

050<br />

24/08/2009<br />

019<br />

024<br />

25/08/2009<br />

035<br />

031<br />

26/08/2009<br />

047<br />

030<br />

27/08/2009<br />

031<br />

028<br />

28/08/2009<br />

027<br />

031<br />

29/08/2009<br />

050<br />

058<br />

30/08/2009<br />

039<br />

024<br />

31/08/2009<br />

021<br />

032<br />

01/09/2009<br />

019<br />

024<br />

02/09/2009<br />

031<br />

029<br />

03/09/2009<br />

028<br />

034<br />

04/09/2009<br />

021<br />

013<br />

05/09/2009<br />

018<br />

031<br />

06/09/2009<br />

023<br />

020<br />

07/09/2009<br />

031<br />

019<br />

08/09/2009<br />

028<br />

031<br />

09/09/2009<br />

061<br />

048<br />

10/09/2009<br />

053<br />

044<br />

11/09/2009<br />

029<br />

063<br />

12/09/2009<br />

040<br />

057<br />

13/09/2009<br />

034<br />

061<br />

14/09/2009<br />

075<br />

112<br />

15/09/2009<br />

035<br />

027<br />

16/09/2009<br />

039<br />

024<br />

17/09/2009<br />

015<br />

026<br />

18/09/2009<br />

028<br />

069<br />

19/09/2009<br />

031<br />

050<br />

20/09/2009<br />

027<br />

018<br />

21/09/2009<br />

062<br />

036<br />

22/09/2009<br />

052<br />

058<br />

23/09/2009<br />

034<br />

037<br />

24/09/2009<br />

028<br />

031<br />

25/09/2009<br />

019<br />

024<br />

26/09/2009<br />

021<br />

049<br />

27/09/2009<br />

037<br />

040<br />

28/09/2009<br />

021<br />

032<br />

29/09/2009<br />

027<br />

046<br />

30/09/2009<br />

018<br />

034


SCREENING ELITE GENOTYPES AND IPM OF<br />

DEFOLIATORS IN GROUNDNUT<br />

RASHMI S. YAMBHATANL 2010 Dr.R.K. PATIL<br />

Major Advisor<br />

ABSTRACT<br />

Screen<strong>in</strong>g <strong>elite</strong> <strong>genotypes</strong> <strong>and</strong> IPM <strong>of</strong> <strong>defoliators</strong> <strong>in</strong> <strong>groundnut</strong> were studied dur<strong>in</strong>g<br />

Kharif 2009, at Ma<strong>in</strong> Agricultural Research Station, UAS, Dharwad. The seven <strong>groundnut</strong><br />

<strong>genotypes</strong> were screened for Spodoptera litura (F.) resistance <strong>in</strong> the field. The <strong>genotypes</strong> viz.,<br />

Mutant-III <strong>and</strong> ICGV-86699 Tan showed 11.5 <strong>and</strong> 12.0 per cent leaf damage compared to<br />

44.0 per cent foliar damage <strong>in</strong> susceptible check, JL-24.<br />

The detailed <strong>in</strong>vestigation on biology <strong>of</strong> S. litura on these seven <strong>genotypes</strong> further<br />

confirmed with the field <strong>screen<strong>in</strong>g</strong> studied by record<strong>in</strong>g longest larval period (22.83 <strong>and</strong> 23.67<br />

days), pupal period (11.67 <strong>and</strong> 11.33 days), lowest adult longevity (9.67 <strong>and</strong> 9.33 days) <strong>and</strong><br />

fecundity (379.67 <strong>and</strong> 386.0 eggs/ female) <strong>in</strong> Mutant-III <strong>and</strong> ICGV-86699 Tan respectively.<br />

Whereas susceptible check, JL-24 has recorded shortest larval period (17.93 days), pupal<br />

period (9.83 days), higher adult longevity (11.83 days) <strong>and</strong> fecundity (592.0 eggs/ female).<br />

The resistant <strong>genotypes</strong>, Mutant-III <strong>and</strong> ICGV-86699 Tan permitted S. litura to complete its<br />

life cycle <strong>in</strong> longest period (48.92 <strong>and</strong> 49.00 days respectively) compared to susceptible<br />

varieties, JL-24 <strong>and</strong> GPBD-4 (41.02 <strong>and</strong> 41.00 days respectively). The other <strong>genotypes</strong><br />

GPBD-5, GPBD-6 <strong>and</strong> ICGV-86699 Red were <strong>in</strong>termediate. The effects <strong>of</strong> these resistant<br />

<strong>genotypes</strong> on the growth <strong>and</strong> development <strong>of</strong> S. litura could obviously be due to chemical<br />

factor i.e. antibiosis.<br />

Among different IPM modules, Module-II proved as effective IPM module <strong>in</strong> reduc<strong>in</strong>g<br />

defoliator population, enhanc<strong>in</strong>g natural enemy population <strong>and</strong> record<strong>in</strong>g higher yield (39.95<br />

q/ha) with maximum net returns (Rs.89,850/ha) <strong>and</strong> highest C:B ratio (1:5.1) followed by<br />

Module-I. Module-II compris<strong>in</strong>g <strong>of</strong> foxtail millet as <strong>in</strong>tercrop (7:1) <strong>and</strong> <strong>in</strong>secticide Emamect<strong>in</strong><br />

benzoate (0.2 ml/lit) <strong>and</strong> M-I was totally bio-<strong>in</strong>tensive module <strong>and</strong> it compris<strong>in</strong>g <strong>of</strong> sunflower<br />

as trap crop <strong>and</strong> Nomuraea rileyi spray <strong>and</strong> it was suitable for northern transitional belt.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!