07.05.2013 Views

Biological/Clinical Outcome Models in RT Planning

Biological/Clinical Outcome Models in RT Planning

Biological/Clinical Outcome Models in RT Planning

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biological</strong>/<strong>Cl<strong>in</strong>ical</strong> <strong>Outcome</strong><br />

<strong>Models</strong> <strong>in</strong> <strong>RT</strong> Plann<strong>in</strong>g<br />

Randy Ten Haken<br />

Ken Jee<br />

University of Michigan<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Why consider use of models?<br />

• Are there problems that use of<br />

outcomes models could help resolve?<br />

• Would their use make th<strong>in</strong>gs easier or<br />

more consistent?<br />

• Is this relevant today?<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


3D C<strong>RT</strong> – PTV covered!<br />

Volume (%)<br />

100<br />

50<br />

0<br />

0<br />

Target dose must be<br />

uniform to +/- 5%<br />

Dose (%)<br />

-5% + 5%<br />

Desired<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


<strong>RT</strong>OG IM<strong>RT</strong> target criteria<br />

• The prescription dose is the isodose<br />

which encompasses at least 95% of<br />

the PTV.<br />

• No more than 20% of any PTV will<br />

receive >110% of its prescribed dose.<br />

• No more than 1% of any PTV will<br />

receive


Irregular Target Volume DVHs<br />

% Volume<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Modality 1<br />

Modality 2<br />

Modality 3<br />

0 20 40 60 80 100 120 140 160 180 200<br />

% Dose (m<strong>in</strong> PTV dose = 100%)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Dose normalized to 95% of PTV<br />

% Volume<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Plan 1<br />

Plan 2<br />

Plan 3<br />

50 60 70 80 90 100 110 120<br />

% Dose<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Dose normalized to 95% of PTV<br />

% Volume<br />

100<br />

95<br />

90<br />

85<br />

Plan 1<br />

Plan 2<br />

Plan 3<br />

50 60 70 80 90 100<br />

% Dose<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Target volume issues<br />

• Are target volume hot spots beneficial?<br />

• Are target volume cold spots<br />

detrimental?<br />

• How do cold spots and hot spots play<br />

off aga<strong>in</strong>st each other?<br />

• Use of TCP or EUD models could<br />

help us make rational decisions<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Volume (%)<br />

DVH Comparison - normal tissue<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Plan 1<br />

Plan 2<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

Dose (Gy)<br />

Easy!<br />

Plan 2 is less toxic<br />

Volume (%)<br />

0<br />

0 10 20 30 40 50 60 70 80<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Plan 1<br />

Plan 2<br />

Dose (Gy)<br />

Who knows?<br />

Depends on tissue type


<strong>RT</strong>OG normal tissue dose criteria<br />

• Small bowel < 30% to receive ≥ 40 Gy<br />

+ m<strong>in</strong>or deviation 30% to 40 Gy<br />

• Rectum < 60% to receive ≥ 30 Gy<br />

+ m<strong>in</strong>or deviation 35% to 50 Gy<br />

• Bladder < 35% to receive ≥ 45 Gy<br />

+ m<strong>in</strong>or deviation 35% to 50 Gy<br />

• Femoral head ≤ 15% to receive ≥ 30 Gy<br />

+ m<strong>in</strong>or deviation 20% to 30 Gy<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Normal Tissue (Max Dose Constra<strong>in</strong>t)<br />

% Volume<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 10 20 30 40 50 60<br />

Dose (Gy)<br />

Sp<strong>in</strong>al Cord<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Normal Tissue (S<strong>in</strong>gle Po<strong>in</strong>t Constra<strong>in</strong>t)<br />

% Volume<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 10 20 30 40 50 60<br />

Dose (Gy)<br />

Normal Tissue<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Normal Tissue (S<strong>in</strong>gle Po<strong>in</strong>t Constra<strong>in</strong>t)<br />

% Volume<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Plan 1<br />

Plan 2<br />

Plan 3<br />

0 10 20 30 40 50 60 70 80<br />

Dose (Gy)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Normal tissue issues<br />

• The applicability of dose/volume<br />

criteria alone is dependent on:<br />

+ Tissue type<br />

+ Standardization of technique<br />

• Use of models could assimilate effects<br />

of irregular dose distribution across<br />

the entire normal tissue/organ under<br />

consideration.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Overall Plan Evaluation<br />

• Optimization of IM<strong>RT</strong> is an <strong>in</strong>herently<br />

multicriteria problem as it <strong>in</strong>volves<br />

multiple plann<strong>in</strong>g goals for target<br />

volumes and their neighbor<strong>in</strong>g critical<br />

tissue structures.<br />

• Successful achievement of one<br />

plann<strong>in</strong>g goal often competes<br />

with those of other plann<strong>in</strong>g<br />

goals.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Overall plan evaluation?<br />

Volume (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Target Plan 1<br />

Target Plan 2<br />

Normal Plan 1<br />

Normal Plan 2<br />

0 25 50 75 100<br />

Dose (% of prescription)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


<strong>Models</strong> could make th<strong>in</strong>gs easier<br />

• Thanks to the prevalence of 3D C<strong>RT</strong>,<br />

considerable data exist relat<strong>in</strong>g tumor<br />

and normal tissue outcomes with<br />

planned dose distributions.<br />

• From the purely technical perspective,<br />

such <strong>in</strong>formation could supplement or<br />

replace simple dose-volume criteria for<br />

<strong>in</strong>verse plann<strong>in</strong>g and/or treatment plan<br />

evaluation.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Outl<strong>in</strong>e<br />

• Normal Tissue Complication<br />

Probability (NTCP) models<br />

• Tumor Control Probability (TCP)<br />

models<br />

• Equivalent Uniform Dose (EUD) for<br />

tumors and normal tissues<br />

• <strong>Cl<strong>in</strong>ical</strong> Response Model<strong>in</strong>g<br />

+ Maximum likelihood analysis<br />

+ Confound<strong>in</strong>g variables and problems<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Why use an NTCP model?<br />

• We would like to be able to fully describe<br />

complications as a function of any dose to<br />

any volume.<br />

• Most cl<strong>in</strong>ical trials will only sample the low<br />

portion of any normal tissue complication<br />

probability (NTCP) frequency distribution.<br />

• Start with a model based on normal<br />

statistical distributions<br />

+ Try to parameterize the model for future use<br />

us<strong>in</strong>g a limited amount of <strong>in</strong>formation<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


The Lyman NTCP Model<br />

Lyman JT: Complication probability – as assessed from dosevolume<br />

histograms. Radiat Res 104:S13-S19, 1985.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


The Lyman NTCP Model<br />

• The Lyman NTCP model attempts to<br />

mathematically describe complications<br />

associated with uniform partial organ<br />

irradiation.<br />

• This implies:<br />

+ A fractional volume, V, of the organ<br />

receives a s<strong>in</strong>gle uniform dose, D.<br />

+ The rest of the organ, (1 – V ), receives<br />

zero dose.<br />

+ i.e., a s<strong>in</strong>gle step DVH, {D , V }<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


NTCP vs Dose for a fixed volume<br />

For each uniformly irradiated<br />

fractional volume (v i ), the<br />

Lyman model assumes that the<br />

distribution of complications as<br />

a function of Dose (D ) can be<br />

described by a normal<br />

distribution<br />

+ with mean TD 50 (v i )<br />

+ standard deviation m • TD 50 (v i )<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

Fractional Volume (v )<br />

Fraction of Complication seen<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

20<br />

40<br />

60<br />

Dose (Gy)<br />

80<br />

40 60 80<br />

Dose (Gy)<br />

100


NTCP vs Dose for a fixed volume<br />

The NTCP as a function<br />

of dose, D , to that<br />

uniformly irradiated<br />

volume, v i , can then be<br />

described by the <strong>in</strong>tegral<br />

probability:<br />

NTCP = (2π) -1/2 -∞ ∫ t<br />

exp(-x 2 /2) dx<br />

where;<br />

t = (D - TD 50 (v i )) / (m • TD 50 (v i ))<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

NTCP (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Dose (Gy)<br />

100<br />

120<br />

140


NTCP vs Dose for a different volume<br />

Similarly for a different<br />

uniformly irradiated<br />

fractional volume (v j ):<br />

NTCP = (2π) -1/2 -∞ ∫ t<br />

exp(-x 2 /2) dx<br />

where;<br />

t = (D - TD 50 (v j )) / (m • TD 50 (v j ))<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

Fractional Volume (v )<br />

NTCP (%)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

20<br />

20<br />

40<br />

40<br />

60<br />

Dose (Gy)<br />

60<br />

80<br />

Dose (Gy)<br />

80<br />

100<br />

120<br />

100<br />

140


Lyman NTCP description<br />

The f<strong>in</strong>al step:<br />

+ assume that the mean dose, TD 50 (v ), for<br />

the distribution of complications for each<br />

uniformly irradiated fractional volume v ,<br />

+ is related to the mean dose for the<br />

distribution of complications for uniform<br />

irradiation of the whole organ volume,<br />

TD 50 (1),<br />

+ through a power law “volume effect”<br />

relationship:<br />

TD 50(v ) = TD 50(1) • v -n<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


The Lyman NTCP Description<br />

NTCP = (2π) -1/2 -∞ ∫ t<br />

where;<br />

and;<br />

exp(-x 2 / 2) dx,<br />

t = (D - TD 50 (v )) / (m • TD 50 (v )),<br />

TD 50 (v ) = TD 50 (1) • v -n<br />

Lyman JT: Complication probability – as assessed from dosevolume<br />

histograms. Radiat Res 104:S13-S19, 1985.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Lyman Model dose-volume-response surface<br />

Volume<br />

Dose<br />

Response<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


with a large volume effect (n = 0.80, m = 0.15, TD 50 = 35 Gy)<br />

100<br />

80<br />

60<br />

40<br />

NTCP Dose-volume-response contours for a tissue<br />

20<br />

0<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

Dose (Gy)<br />

120<br />

V = 1.0<br />

V = .75<br />

V = .50<br />

V = .25<br />

140<br />

Fractional Volume<br />

0.0<br />

0<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

20<br />

40<br />

60<br />

80<br />

100<br />

Dose (Gy)<br />

120<br />

1%<br />

5%<br />

20%<br />

50%<br />

80%<br />

95%<br />

99%<br />

140


Volume Effect (partial volume contours)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Volume Effect (partial volume contours)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Volume Effect (Iso-NTCP contours)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Volume Effect (Iso-NTCP contours)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Us<strong>in</strong>g the Lyman NTCP description<br />

• The Lyman NTCP description attempts<br />

to describe uniform partial organ<br />

irradiation.<br />

• This implies:<br />

+ A fractional volume, V, of the organ<br />

receives a s<strong>in</strong>gle uniform dose, D.<br />

+ The rest of the organ, (1 - V), receives<br />

zero dose.<br />

+ i.e., a s<strong>in</strong>gle step DVH, {D , V}<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


DVH reduction schemes<br />

• For non-uniform irradiation, the 3D dose<br />

volume distribution (or DVH) must be<br />

reduced to a s<strong>in</strong>gle step DVH that could be<br />

expected to produce an identical NTCP.<br />

+ Wolbarst & Lyman schemes reduce DVHs to<br />

uniform irradiation of entire organ (V=1) to<br />

some reduced effective dose, D eff .<br />

+ Kutcher & Burman scheme reduces a DVH to<br />

uniform irradiation of an effective fraction of<br />

the organ, V eff , to some reference dose, D ref .<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Effective Volume DVH reduction scheme<br />

V eff = Σ { v i • (D i / D ref) 1/n }<br />

Partial<br />

Volume<br />

D i<br />

ΔV i<br />

D ref<br />

} ΔVeff Dose<br />

Partial<br />

Volume<br />

V eff<br />

Dose<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

D ref


S<strong>in</strong>gle step {D ref , V eff } DVHs<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Direct DVH<br />

V eff<br />

D ref<br />

0 20 40 60 80 100<br />

Dose (Gy)<br />

100<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

75<br />

50<br />

25<br />

0<br />

Cumulative DVH<br />

V eff<br />

Dref 0 20 40 60 80 100<br />

Dose (Gy)


V eff DVH reduction → NTCP evaluation<br />

100<br />

75<br />

50<br />

Cumulative DVH<br />

V eff<br />

25<br />

0<br />

Dref 0 20 40 60 80 100<br />

Dose (Gy)<br />

Fractional Volume<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0<br />

V eff<br />

20<br />

40<br />

60<br />

D ref<br />

80<br />

100<br />

Dose (Gy)<br />

120<br />

1%<br />

5%<br />

20%<br />

50%<br />

80%<br />

95%<br />

99%<br />

140


Local Radiation Response -<br />

Organ Functional Reserve <strong>Models</strong><br />

• Offer the potential for a more direct<br />

visualization of the relationship between<br />

the DVH and radiation damage<br />

• May (ultimately) offer the possibility of<br />

l<strong>in</strong>k<strong>in</strong>g cellular and organ subunit<br />

radiobiology to the prediction of radiation<br />

complications.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Local Radiation Response -<br />

Organ Functional Reserve <strong>Models</strong><br />

• Jackson A, Kutcher GJ, Yorke E. Med<br />

Phys 20:613-525, 1993.<br />

• Niemierko A, Goite<strong>in</strong> M. Int J Radiat<br />

Oncol Biol Phys 25:135-145, 1993.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Local Damage Function<br />

Fraction (f) of a macroscopic volume<br />

element <strong>in</strong>capacitated by a dose D can be<br />

described by a simple response function:<br />

1<br />

f = ––––––––––––––<br />

( 1 + (D 50 / D) k )<br />

where D 50 is the dose which <strong>in</strong>capacitates<br />

half the volume and “k” describes the<br />

steepness of the “local damage” function.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Local Damage Function<br />

Volume ( %)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

1<br />

0 1 2 3 4 5 6 7 8 9<br />

7<br />

Dose (Gy)<br />

25<br />

37<br />

75<br />

50<br />

25<br />

0<br />

Fx Incapacitated


Total Estimated Damage<br />

Total fraction (F ) of the organ that<br />

is <strong>in</strong>capacitated is equal to the sum<br />

of the fractions of the <strong>in</strong>dividual<br />

macroscopic volume elements<br />

destroyed.<br />

F = Σ f i<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Organ Injury Function<br />

NTCP = (2π) -1/2 -∞<br />

where<br />

F 50 is the fraction of the total organ damaged<br />

which would produce a 50% complication<br />

rate,<br />

σ ν describes the steepness of the “organ”<br />

response function<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

∫ t<br />

t = (F - F 50 ) / σ ν<br />

exp (-x 2 / 2) dx,


Organ Injury Function<br />

NTCP (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Cumulative Functional Reserve<br />

(F50 = 0.40; σ = 0.077)<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Fraction Damaged (%)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Tumor Control Probability (TCP)<br />

Calculations<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


TCP Calculation Assumptions<br />

• An <strong>in</strong>homogeneously irradiated tumor<br />

volume is composed of smaller volume<br />

elements,<br />

+ each with uniform dose,<br />

+ each respond<strong>in</strong>g <strong>in</strong>dependently to<br />

radiation.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Basic TCP <strong>Models</strong><br />

• “Tumorlet” model (Goite<strong>in</strong>, Brahme...<br />

• Survival of clonogenic cells (Webb,<br />

Nahum, ...<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


“Tumorlet” TCP Model<br />

• Tumorlet radiosensitivity estimated<br />

from the dose-response assumed for<br />

the entire tumor.<br />

• Overall TCP predicted by product of<br />

the TCPs for each tumorlet.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


“Tumorlet” TCP Assumptions<br />

TCP of uniformly irradiated “tumorlet” with partial<br />

fractional volume V i is estimated from the dose<br />

response assumed for uniform irradiation of the<br />

entire tumor to the same dose D i :<br />

us<strong>in</strong>g:<br />

TCP ( D i ,1) = 1 / {1 + ( D 50 / D i ) k }<br />

TCP ( D i ,V i ) = [TCP ( D i ,1)] Vi<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Tumorlet TCPs<br />

Volume ( %)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

10<br />

50<br />

80<br />

0 1 2 3 4 5 6 7 8 9<br />

Dose (Gy)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

TCP (%)


“Tumorlet” TCP Assumptions<br />

Overall TCP predicted by product of<br />

the TCPs for each tumorlet.<br />

TCP total = Π i TCP ( D i ,V i )<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Clonogenic Cells TCP Model<br />

• Number of surviv<strong>in</strong>g clonogenic cells<br />

estimated for each dose level and<br />

summed to obta<strong>in</strong> total number of<br />

surviv<strong>in</strong>g cells<br />

• Overall TCP related to total number of<br />

surviv<strong>in</strong>g clonogenic cells<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Surviv<strong>in</strong>g Clonogenic Cells TCP<br />

Calculation<br />

For uniform <strong>in</strong>itial clonogenic cell density ρ,<br />

and uniform radiosensitivity α, the number<br />

of surviv<strong>in</strong>g clonogenic cells for each b<strong>in</strong> of<br />

the DVH {V j (cm 3 ), D j (Gy)} is estimated as:<br />

N s, j = ρV j exp (- α D j)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Surviv<strong>in</strong>g Clonogenic Cells TCP<br />

Calculation<br />

The total number of surviv<strong>in</strong>g clonogenic<br />

cells is then the sum over all b<strong>in</strong>s of the<br />

DVH:<br />

N s, tot = Σ j ρ V j exp (- α D j),<br />

from which the TCP is estimated:<br />

TCP = exp (- N s, tot )<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Equivalent Uniform Dose<br />

• Uniform dose distribution that if<br />

delivered over the same number of<br />

fractions would yield the same<br />

radiobiological or cl<strong>in</strong>ical effect.<br />

+ Niemierko 1996<br />

+ Brahme 1991<br />

+ Niemierko 1999 (abstract) gEUD<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Equivalent Uniform Dose for Target Volume<br />

EUD = 2 • ln { Σ v i (SF 2 ) Di/2 } / ln (SF 2 )<br />

SF 2 = Fx of clonogens surviv<strong>in</strong>g<br />

s<strong>in</strong>gle 2 Gy dose<br />

v i<br />

= fractional volume<br />

D i = uniform dose to v i<br />

Volume<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

Dose


Generalized Equivalent Uniform Dose (gEUD)<br />

ROI with N dose po<strong>in</strong>ts d i<br />

gEUD<br />

⎛<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

Volume<br />

Volume (cc)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Dose (Gy)<br />

Dose (Gy)<br />

1 / a<br />

N<br />

∑<br />

a<br />

d i<br />

1 / a<br />

⎛<br />

i<br />

a ⎞<br />

= 1 ≡ ⎜ v d ⎟ i i<br />

N ⎝ i ⎠<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

≡ ∑<br />

DVH (fractional volume v i receives dose d i )


gEUD<br />

gEUD<br />

⎛<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

1 / a<br />

N<br />

∑<br />

a<br />

d i<br />

1 / a<br />

⎛<br />

i<br />

a ⎞<br />

= 1 ≡ ⎜ v d ⎟ i i<br />

N ⎝ i ⎠<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

≡ ∑<br />

Tumors: a is a negative number<br />

Normal Tissues: a is a positive number<br />

For a = 1, gEUD = mean dose<br />

For a = 2, gEUD = rms dose<br />

For a = - ∞, gEUD = m<strong>in</strong>imum dose<br />

For a = +∞, gEUD = maximum dose<br />

(discont<strong>in</strong>uous at a = 0)


Volume (%)<br />

25<br />

20<br />

15<br />

10<br />

⎛ a ⎞<br />

gEUD ≡ ⎜∑v<br />

id i ⎟<br />

⎝ i ⎠<br />

5<br />

0<br />

1 2 3 4 5 6 7 40 8 45 9 10 50 11 55 12 60 13 65 14 70 15 75 16 17<br />

Dose (Gy)<br />

1 / a<br />

Tumors: a is negative<br />

aggressive a = -20<br />

non a = -5<br />

Normal Tissues: a is positive<br />

LKB Model a = 1/n<br />

For a = 1, gEUD = mean dose<br />

For a = 2, gEUD = rms dose<br />

For a = - ∞, gEUD = m<strong>in</strong>imum dose<br />

For a = + ∞, gEUD = maximum dose<br />

(discont<strong>in</strong>uous at a = 0)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

gEUD (Gy)<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

-100 -80 -60 -40 -20 0 20 40 60 80 100<br />

"a"


EUD NTCP description<br />

For uniform irradiation of<br />

the whole organ, assumes<br />

that the distribution of<br />

complications as a function<br />

of dose can be described<br />

by a normal distribution<br />

+ with mean TD 50<br />

+ standard deviation m •TD 50<br />

40 60<br />

Dose (Gy)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

Volume<br />

Fraction of Complication seen<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

20<br />

80<br />

40 60 80<br />

Dose (Gy)<br />

100


The EUD NTCP description<br />

The NTCP as a function<br />

of uniform dose, EUD , to<br />

the whole volume can<br />

then be described by the<br />

<strong>in</strong>tegral probability:<br />

NTCP = (2π) -1/2 -∞ ∫ t<br />

exp(-x 2 /2) dx<br />

where;<br />

t = (EUD - EUD 50) / (m • EUD 50)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

NTCP (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Dose (Gy)<br />

100<br />

120<br />

140


Local response function<br />

• Required to change non-uniformly irradiated<br />

volume to equivalent uniform dose EUD<br />

• gEUD is one very general form of this<br />

function (their can be many others):<br />

+ Seppenwoolde Y, Lebesque JV, de Jaeger K,<br />

Belderbos JS, Boersma LJ, Schilstra C, Henn<strong>in</strong>g<br />

GT, Hayman JA, Martel MK, Ten Haken RK:<br />

Compar<strong>in</strong>g different NTCP models that predict<br />

the <strong>in</strong>cidence of radiation pneumonitis. Int J<br />

Radiat Oncol Biol Phys 55:724-735, 2003.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


2 parameters<br />

EUD=MLD<br />

NTCP =<br />

t<br />

=<br />

1<br />

2π<br />

t − x<br />

2<br />

∫ e<br />

−∞<br />

EUD − EUD<br />

m ⋅ EUD<br />

2<br />

dx<br />

50<br />

3 parameters<br />

n = 1 D50 = ∞<br />

EUDLKB NTCP<br />

n<br />

EUD 50 , m<br />

EUD model<br />

4 parameters<br />

D 50 , k<br />

EUD Logistic<br />

rdV<br />

m ⋅ rdV<br />

rdV= F D<br />

rdV<br />

50<br />

50<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

t<br />

=<br />

NTCP =<br />

1<br />

2π<br />

−<br />

2<br />

t − x<br />

2<br />

∫ e<br />

−∞<br />

NTCP<br />

50<br />

dx<br />

V Dth50 , m<br />

3 parameters<br />

k = ∞<br />

V Dth<br />

V Dth<br />

V Dth


cast of thousands here...<br />

would you believe 100’s??<br />

...maybe tens?<br />

NTCP/TCP model<strong>in</strong>g<br />

We’ve come a long way.....<br />

But.......<br />

OK, beware! mostly<br />

personal op<strong>in</strong>ion<br />

may follow<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Conceptually Simple<br />

• Pick a Model<br />

• Look at some Patients<br />

+ Have 3-D Dose Distributions<br />

+ Have 3-D Volumes<br />

+ Have <strong>Outcome</strong>s<br />

• Use patient data to parameterize<br />

and/or test model<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


¿No Problemo?<br />

3-D<br />

DVH<br />

Functional<br />

Reserve<br />

Veff<br />

NTCP<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Well........<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


The <strong>Models</strong><br />

Biologists and Physicists and Physicians<br />

Agree the <strong>Models</strong> are:<br />

Too simple or naive (papa bear)<br />

+ Biology is more complex than this<br />

+ Not enough parameters<br />

Too complex (mama bear)<br />

+ Too many parameters<br />

+ Is this still biology?<br />

Still look<strong>in</strong>g for baby bear’s model<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Model<strong>in</strong>g<br />

• Model vs. Theory<br />

+ <strong>Models</strong> <strong>in</strong>terpolate<br />

+ Theories extrapolate<br />

• Mathematics vs. Biology<br />

+ K.I.S.S.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


<strong>Models</strong>?<br />

• Probably best to say that at this po<strong>in</strong>t<br />

much of this is still phenomenological<br />

and “descriptive” rather than<br />

predictive.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Model Fitt<strong>in</strong>g<br />

• Generally not enough solid data po<strong>in</strong>ts<br />

(complications) to yield quantitative<br />

results<br />

• Large confidence limits on model<br />

parameters<br />

• No effective means of determ<strong>in</strong><strong>in</strong>g<br />

“goodness of fit”<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Model Fitt<strong>in</strong>g (the good news!)<br />

• We now have collaborations with<br />

genu<strong>in</strong>e bio-statisticians who are<br />

apply<strong>in</strong>g valid statistical methods to<br />

the data analyses and the new<br />

protocol designs.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Input Data: Dose<br />

• Calculational algorithms are better<br />

• Can compute 3-D distributions<br />

• Dose distributions are complex<br />

+ Non-uniform<br />

+ Daily variations not easily <strong>in</strong>cluded<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Input Data: Volume<br />

• 3-D yields Volumes<br />

+ Physical Volume (size and shape)<br />

+ Position<br />

• How accurate are the <strong>in</strong>put data?<br />

+ For first treatment?<br />

+ As a basis for the whole treatment?<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Input Data: Dose-Volume<br />

• Difficult to track which volume<br />

receives what dose<br />

+ Time factors often ignored<br />

• Changes not easily accommodated<br />

+ Tumor shr<strong>in</strong>kage<br />

+ Inter and Intra treatment changes and<br />

processes<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Model<strong>in</strong>g Summary<br />

• Careful studies of the partial organ<br />

tolerance of normal tissues to<br />

therapeutic ioniz<strong>in</strong>g radiation are<br />

emerg<strong>in</strong>g, as are attempts to model<br />

these data.<br />

• We should be encouraged by the<br />

progress <strong>in</strong> this area.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Model<strong>in</strong>g Summary<br />

• However, the ability to use the NTCP<br />

models themselves reliably, and <strong>in</strong> a<br />

predictive way is still an area of active<br />

research and should be approached<br />

with great caution <strong>in</strong> a cl<strong>in</strong>ical sett<strong>in</strong>g.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


“All models are wrong,<br />

but some are useful.”<br />

G.E.P. Box, 1979 *<br />

*”Robustness <strong>in</strong> the Strategy of Scientific Model Build<strong>in</strong>g." IN: Robustness <strong>in</strong> Statistics. 201-<br />

236. R. L. Launer and G. N. Wilk<strong>in</strong>son, eds. Academic Press, NY. 1979<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


A cl<strong>in</strong>ical example<br />

• Patients at our <strong>in</strong>stitution with tumors<br />

<strong>in</strong> the liver or lung have been treated<br />

accord<strong>in</strong>g to IRB approved protocols<br />

that seek to escalate homogeneous<br />

dose (+7%, -5%) to the PTV at a<br />

fixed normal liver/lung iso-NTCP.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Difficulties <strong>in</strong> implementation<br />

• Frequently the risk to other OARs<br />

(e.g., stomach-duodenum /<br />

esophagus) limits the tumor dose to<br />

below that which could be justified<br />

based solely on liver/lung NTCP,<br />

+ especially when there is an overlap<br />

between the PTV and an external (to<br />

the liver/lung) OAR.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Liver tumor PTV-OAR overlap<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Lung tumor PTV- OAR overlap<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Can we do better?<br />

• Optimized beamlet IM<strong>RT</strong> may benefit<br />

these patients.<br />

• However, even with IM<strong>RT</strong>, <strong>in</strong> order to<br />

<strong>in</strong>crease the mean PTV dose above<br />

the maximum tolerated dose of one of<br />

these OARs, it is necessary to relax<br />

PTV homogeneity constra<strong>in</strong>ts.<br />

• But, how does one do this <strong>in</strong> a logical<br />

–mean<strong>in</strong>gful way?<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Use of models <strong>in</strong> optimization<br />

• <strong>Models</strong> for target and normal tissues<br />

could aid <strong>in</strong> plann<strong>in</strong>g, as their use would<br />

<strong>in</strong>tegrate the contribut<strong>in</strong>g effects of all<br />

parts of target and normal tissues dose<br />

distributions.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Use of models <strong>in</strong> optimization<br />

• We explored IM<strong>RT</strong> optimization utiliz<strong>in</strong>g:<br />

+ gEUD costlets for the PTVs to<br />

maximize anti-tumor effects,<br />

+ NTCP costlets to ma<strong>in</strong>ta<strong>in</strong> OAR doses<br />

with<strong>in</strong> protocol limits.<br />

Thomas E, Chapet O, Kessler ML, Lawrence TS, Ten Haken RK: The benefit of us<strong>in</strong>g<br />

biological parameters (EUD and NTCP) <strong>in</strong> IM<strong>RT</strong> optimization for the treatment of<br />

<strong>in</strong>trahepatic tumors. Int J Radiat Oncol Biol Phys 62:571-578, 2005.<br />

Chapet O, Thomas E, Kessler ML, Fraass BA, Ten Haken RK: Esophagus spar<strong>in</strong>g with IM<strong>RT</strong><br />

<strong>in</strong> lung tumor irradiation, an EUD-based optimization technique. Int J Radiat Oncol Biol<br />

Phys 63:179-187, 2005.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Non-uniform liver PTV irradiation<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


PTV DVHs for liver patient<br />

VOLUME (%)<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

DOSE (Gy)<br />

CONFORMAL<br />

IM<strong>RT</strong> ORIG ANG<br />

IM<strong>RT</strong> 7 FLD<br />

IM<strong>RT</strong> STAND ANG<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Heterogeneous PTV dose assessment<br />

Patient<br />

number<br />

gEUD a =-<br />

20 C<strong>RT</strong> (Gy)<br />

gEUD a =-20<br />

IM<strong>RT</strong> (Gy)<br />

gEUD a =-5<br />

C<strong>RT</strong> (Gy)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

gEUD a =-5<br />

IM<strong>RT</strong> (Gy)<br />

1 59.2 63.8 60.7 69.3<br />

2 66.5 75.7 66.6 82.0<br />

3 56.0 69.0 57.3 71.1<br />

4 55.5 64.1 57.3 73.7<br />

5 55.6 66.8 58.3 68.6<br />

6 66.6 73.1 67.0 78.1<br />

7 73.9 96.8 75.3 117.7<br />

8 60.5 73.3 66.9 92.7<br />

mean 61.7 72.8 63.7 81.7<br />

t test p=0.001 p=0.003


IM<strong>RT</strong> optimization conclusions<br />

• We suggest that the use of biological<br />

parameters directly as costlets with<strong>in</strong><br />

the optimiz<strong>in</strong>g process should be able<br />

to produce IM<strong>RT</strong> plans that:<br />

+ utilize heterogeneous PTV coverage to<br />

maximize tumor gEUD,<br />

+ while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g NTCP limits for dose<br />

limit<strong>in</strong>g normal tissues and other OARs.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Implementation<br />

• Issues related to implement<strong>in</strong>g and<br />

us<strong>in</strong>g the biological models with<strong>in</strong><br />

optimization systems<br />

• Short survey of exist<strong>in</strong>g software tools<br />

that utilize the biological models<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


General optimization problem<br />

Opt. Variables<br />

m<strong>in</strong> n<br />

x∈R<br />

( x)<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

f<br />

⎧ci<br />

( x)<br />

=<br />

subject to ⎨<br />

⎩ci<br />

( x)<br />

≥<br />

0,<br />

0,<br />

Constra<strong>in</strong>ts<br />

Objective Function<br />

i ∈ε<br />

,<br />

i ∈ I.


IM<strong>RT</strong> Optimization problem<br />

1.Beamlet <strong>in</strong>tensities, x<br />

Opt. variables (100s ~ 1000s)<br />

Dose-to-Po<strong>in</strong>t calculations<br />

(L<strong>in</strong>ear)<br />

2. Dose distributions, d i (x)<br />

<strong>Biological</strong> <strong>Models</strong><br />

(Nonl<strong>in</strong>ear)<br />

3. Obj. & Constra<strong>in</strong>t functions ,<br />

f(d i ), c(d i )<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Example functions to m<strong>in</strong>imize<br />

• Physical Dose<br />

∑<br />

i∈PTV<br />

w<br />

PTV<br />

( d<br />

i<br />

i∈OAR<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

2<br />

− d ) + ∑<br />

PTV w<br />

• <strong>Biological</strong> <strong>Models</strong><br />

∏<br />

OAR<br />

PTV<br />

NTCP −TCP<br />

OAR<br />

( d<br />

i<br />

PTV<br />

−<br />

d<br />

OAR<br />

)<br />

2<br />

+ K


M<strong>in</strong>ima are not necessary<br />

Global m<strong>in</strong>imum.<br />

f(d i )<br />

A B Convex f()<br />

Local M<strong>in</strong>imum<br />

Global M<strong>in</strong>imum<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Are biological models convex?<br />

gEUD(d;a) concave −∞ ≤ a ≤ 0<br />

convex 0 ≤ a ≤∞<br />

Choi B. and Deasy J. 2002 Phys. Med. Biol. 47 3579-89<br />

EUD(d;α) concave 0 ≤α<br />

Romeijn H. 2004 Phys. Med. Biol. 49 1991-2013<br />

NTCP-Lyman quasi-convex<br />

Börgers C 1997 Proceed<strong>in</strong>gs of IMA Workshop<br />

TCP-Possion locally concave at high dose regions<br />

ln(TCP-Possion) strictly concave<br />

Choi B. and Deasy J. 2002 Phys. Med. Biol. 47 3579-89<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


But a little can be said about the<br />

obj. function itself…<br />

P = TCP − NTCP + δ ( 1−<br />

TCP)<br />

f<br />

+<br />

∏<br />

i<br />

Brahme A. 1993 Med. Phys. 20 1201-10<br />

⎡<br />

= ⎢1+<br />

⎢⎣<br />

⎛<br />

⎜<br />

⎝<br />

EUD<br />

n<br />

−1<br />

t,<br />

0<br />

1<br />

EUD<br />

t<br />

⎞<br />

⎟<br />

⎠<br />

∏<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

i<br />

⎤<br />

⎥<br />

⎥⎦<br />

∏<br />

i<br />

⎡<br />

⎢<br />

⎢⎣<br />

+<br />

⎛<br />

⎜<br />

⎝<br />

i<br />

EUD<br />

OAR,<br />

i<br />

Wu Q. 2002 Int. J. Rad. Onc. Biol. Phys. 52 224-235<br />

NTCP<br />

i<br />

EUD<br />

non-convex<br />

OAR,<br />

0,<br />

i<br />

⎞<br />

⎟<br />

⎠<br />

n<br />

⎤<br />

⎥<br />

⎥⎦<br />

non-convex<br />

−1


Most TPS solves nonl<strong>in</strong>early<br />

constra<strong>in</strong>ed optimization problem<br />

http://www-fp.mcs.anl.gov/otc/GUIDE/OptWeb/<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


What we do..<br />

Preemptive NL-Goal programm<strong>in</strong>g<br />

• Multicriteria optimization strategies<br />

based on soft-constra<strong>in</strong>ts with priority<br />

• Solves a sequence of nonl<strong>in</strong>early<br />

constra<strong>in</strong>ed optimization sub-problems<br />

(SQP)<br />

• Ma<strong>in</strong>ta<strong>in</strong>s convexity at least locally…<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Soft-constra<strong>in</strong>t example<br />

Make the heart NTCP less than 5 %<br />

f<br />

0<br />

f<br />

[ ( ) ] 2<br />

0, − 5<br />

= Max NTCP<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

5<br />

heart<br />

NTCP heart


Soft-constra<strong>in</strong>t example<br />

Make the PTV EUD greater than 80 Gy<br />

f<br />

0<br />

f =<br />

Max −<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

80<br />

[ ( ) ] 2<br />

0, 80 EUD<br />

PTV<br />

EUD PTV


NSCLC Example<br />

Priority 1: Protect Critical Tissues<br />

NTCP Lung < 15%<br />

NTCP Heart < 5%<br />

NTCP Esophagus < 5%<br />

Max Cord < 45 Gy<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

Volume (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

NTCP Lung (12.5%)<br />

NTCP Heart (0%)<br />

NTCP Esophagus (4.8%)<br />

Max Cord (43 Gy)<br />

0 20 40 60 80 100<br />

Dose (Gy)


NSCLC Example<br />

Priority 2: Achieve Target Dose<br />

EUD PTV > 80 Gy<br />

NTCP Lung = 8.3%<br />

NTCP Heart = 0%<br />

NTCP Esophagus = 3.2%<br />

Max Cord = 44.3 Gy<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07<br />

Volume (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

EUD PTV (80 Gy)<br />

0 20 40 60 80 100<br />

Dose (Gy)


Plan Evaluation Software<br />

• Adelaide Bioeffect Plann<strong>in</strong>g System (Wigg D)<br />

• Bioplan<br />

(Sanchez-Nieto B, Nahum A at Royal Marsden)<br />

• TCP_NTCP_CALC module<br />

(Warkent<strong>in</strong> B, Fallone B at U of Alberta)<br />

• Albireo<br />

(Wals A at Regional U. Carlos Haya Hospital)<br />

• DREES (Naqa I, Deasy J at Wash<strong>in</strong>gton U.)<br />

• EUCLID (Gayou O, Mifften M at Drexel U.)<br />

and probably more..<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


Bioplan<br />

TCP_NTCP_CALC module<br />

Albireo<br />

Inputs:<br />

formatted text or<br />

TPS exported plans<br />

Outputs:<br />

fx size normalized dose,<br />

Seriality, Critical Volume,<br />

Poisson NTCP & TCP<br />

Model parameter database<br />

Sanchez-Nieto B. Medical Dosimetry,<br />

Vol. 25, No. 2, pp. 71–76, 2000<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


DREES, radium.wustl.edu/drees<br />

EUCLID<br />

<strong>Outcome</strong> Model Build<strong>in</strong>g Tools<br />

• Multivariate regression<br />

• Fitt<strong>in</strong>g to NTCP/TCP<br />

• Uncerta<strong>in</strong>ty Estimation<br />

Naqa I. Phys. Med. Biol. 51 (2006) 5719–5735<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07


IM<strong>RT</strong> optimization conclusions<br />

• It appears that the direct use of<br />

“outcome” cost functions for both target<br />

and normal tissues should allow:<br />

+ significant (i.e., multi-fraction) <strong>in</strong>creases<br />

<strong>in</strong> the calculated gEUD for the PTV,<br />

+ <strong>in</strong> a much more <strong>in</strong>tuitive (and efficient)<br />

manner than might be realized us<strong>in</strong>g<br />

multiple dose/volume based optimization<br />

sessions.<br />

NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology: RK Ten Haken , K-W Jee, 2002-07

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!