10.02.2013 Views

Dosimetry for IMRT

Dosimetry for IMRT

Dosimetry for IMRT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Dosimetry</strong> <strong>for</strong> <strong>IMRT</strong><br />

Thomas Rockwell Mackie<br />

Department of Medical Physics<br />

University y of Wisconsin<br />

Madison WI<br />

trmackie@wisc.edu


Financial Disclosure<br />

I am a founder and Chairman of TomoTherapy<br />

Inc. (Madison, ( , WI) ) which is participating p p g in the<br />

commercial development of helical tomotherapy.


Outline<br />

• <strong>Dosimetry</strong> Issues Relevant to <strong>IMRT</strong><br />

• Charged Particle Equilibrium<br />

• Temporal Non-Constancy<br />

• Partial Volume Effects<br />

• Non-Standard Fields<br />

• <strong>IMRT</strong> as a Large Collection of Small Non-Standard Fields<br />

• IAEA Calibration Initiative <strong>for</strong> Non-Standard Non Standard Fields<br />

• Patient-Specific Methods To Verify Delivery of <strong>IMRT</strong><br />

• Independent Calculations<br />

• Delivery of Individual Radiation Fields<br />

• Delivery of All Fields into a Phantom<br />

• Metrics <strong>for</strong> Patient-Specific Patient Specific <strong>Dosimetry</strong> QA


<strong>Dosimetry</strong> Issues<br />

Relevant to <strong>IMRT</strong><br />

• Charged particle equilibrium<br />

– Different spectrum <strong>for</strong> collection of small fields<br />

– NNon-uni<strong>for</strong>m if dose d<br />

• Temporal non-constancy<br />

– A very small effect <strong>for</strong> ion chambers<br />

– May not be true <strong>for</strong> other dosimeters<br />

• Partial volume effect<br />

– Most important effect especially when measuring<br />

output p<br />

factors <strong>for</strong> small fields


Non-Uni<strong>for</strong>m Intensity Changes the<br />

Energy gy Spectrum p<br />

Photon<br />

Photon<br />

Beamlet<br />

Beamlet<br />

More High<br />

Energy gy<br />

Electrons<br />

More Low<br />

Energy<br />

Electrons


Change in Stopping Power Ratio<br />

Comparison of Spencer-Attix (∆=10 keV) restricted mass collisional stopping<br />

powers ratios (water/air) at 5 cm depth in water <strong>for</strong> various 6 MV beams with<br />

stereotactic and MLC beams.<br />

6 MV beams Beam quality,<br />

TPR(20,10)<br />

Andreo,<br />

(1994)<br />

Sánchez-<br />

Doblado,<br />

(2003)<br />

El Elekta kt SL-18 SL 18<br />

10 x 10 cm<br />

0 690 1 1187 1 1188 1 000<br />

2<br />

0.690 1.1187 1.1188 1.000<br />

1.0 cm diameter<br />

stereo field<br />

0.3 cm diameter<br />

stereo field<br />

Siemens Primus<br />

10 x 10 cm 2<br />

2 x 2 cm 2 irregular<br />

on-axis beamlet<br />

2 x 2 cm 2 irregular<br />

8 cm off-axis<br />

1.1155 0.997<br />

1.1153 0.997<br />

0.677 1.1213 1.1221 1.001<br />

1.1203 0.999<br />

1.1250 1.003<br />

Column4/Column3


Signal (fC)<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

-2000<br />

0.16 0<br />

Temporal Delivery of <strong>IMRT</strong><br />

46.9 46<br />

93.7 93<br />

Delivery of Dose to a Single Voxel<br />

141 1<br />

188 1<br />

235 2<br />

282 2<br />

329 3<br />

376 3<br />

423 4<br />

<strong>IMRT</strong> Delivery Signatures<br />

470 4<br />

517 5<br />

Step & Shoot HIART<br />

564 5<br />

613 6<br />

658 6<br />

702 7<br />

747 7<br />

Elapsed Time (sec)<br />

From Tim Holmes, St. Agnes Baltimore<br />

792 7<br />

836 8<br />

881 8<br />

926 9<br />

971 9<br />

10015<br />

10060<br />

11105<br />

11149<br />

11194<br />

12239


Cumulative<br />

Dose<br />

Normalized<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

04 0.4<br />

0.3<br />

0.2<br />

01 0.1<br />

0<br />

Temporal Delivery of <strong>IMRT</strong><br />

DDelivery li of f DDose tto a Si Single l Voxel V l<br />

5 %<br />

90 %<br />

5 %<br />

Step and Shoot Helical Tomo<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21<br />

Elapsed Time (minutes)<br />

From Tim Holmes, St. Agnes Baltimore


Outpuut<br />

Factorr<br />

0.9<br />

0.8<br />

00.7<br />

0.6<br />

05 0.5<br />

0.4<br />

03 0.3<br />

Partial Volume Effect<br />

Dose to Water For Small Fields<br />

MMonte t CCarlo l<br />

Diamond<br />

Diode<br />

LAC+film<br />

Film<br />

PTW 31014 (Pinpoint)<br />

PTW 31010 (Semiflex)<br />

PTW 30006 (Farmer)<br />

0.2<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

Side of Square Field (cm)<br />

From Roberto Capote, IAEA


output o factor<br />

rel to 4x4<br />

1.10<br />

100 1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

Partial Volume Effect<br />

output factors relative to 4 cm x 4 cm<br />

standard data<br />

photon diode<br />

di diamond d<br />

pinpoint<br />

0.125 cc chamber<br />

electron diode<br />

0 1 2 3 4 5 6 7 8 9 10<br />

equivalent field lenght (cm)<br />

From Karen Rosser, Royal Marsden


High Uncertainty in Output Factors<br />

EExample: l St Statistics ti ti of f 45 OOutput t t Factors F t <strong>for</strong> f 6 mm and d 18 mm square fi fields ld<br />

(Novalis, SSD = 1000 mm, depth = 50 mm, various detectors)<br />

Factor of Two in<br />

Beam Calibration!<br />

From Wolfgang Ullrich, BrainLab


Reasons <strong>for</strong> Drop in Output<br />

with Small Field Size<br />

• Backscatter into monitor unit from<br />

beam defining jaws<br />

• Reduced scatter (phantom and head)<br />

• Electronic disequilibrium<br />

• Obscuration of the source


Problems with Conventional Output<br />

Factors<br />

Standard Reference<br />

Conditions<br />

Small Field<br />

Conditions<br />

• Small field<br />

openings p g obscure<br />

the source which is<br />

difficult to measure<br />

and error prone.<br />

• Amount of phantom<br />

scatter changes as<br />

well as lateral<br />

disequilibrium<br />

disequilibrium.<br />

• Partial volume<br />

effects can mask<br />

machine output<br />

factor.


Scan Phantom Across a Narrow Beam<br />

Jaw field width (FW)<br />

• If the source were a point source, source the<br />

measured primary dose would be<br />

directly proportional to the jaw field<br />

width and inversely proportional to the<br />

scan speed.<br />

• Nearly equal phantom scatter conditions<br />

<strong>for</strong> all jaw settings.<br />

• No partial volume effects once scanning<br />

is complete.<br />

Beam’s eye view


Animation of Scanning Path<br />

From the Point of View of the Phantom<br />

The fan beam<br />

field 10 cm long<br />

by FW wide<br />

FW is i the fan f beam be width idth<br />

bbegins i at one<br />

Th The ffan bbeam<br />

side of the field<br />

field is always<br />

and is scanned<br />

scanned the<br />

across the<br />

same distance<br />

phantom. FW is<br />

(10 cm) at the<br />

defined by the<br />

50% to 50%<br />

same speed. speed<br />

dose.<br />

Beam’s eye view


Scanning at Velocity v<br />

Assume that the source is a point source<br />

Jaw field width (FW)<br />

� �<br />

( r)<br />

Dr ( )<br />

10 cm


Animation of Scanning Path<br />

From the Point of View of the Phantom<br />

The fan beam<br />

field 10 cm long<br />

by FW wide<br />

FW is i the fan f beam be width idth<br />

bbegins i at one<br />

Th The ffan bbeam<br />

side of the field<br />

field is always<br />

and is scanned<br />

scanned the<br />

across the<br />

same distance<br />

phantom. FW is<br />

(10 cm) at the<br />

defined by the<br />

50% to 50%<br />

same speed. speed<br />

dose.<br />

Beam’s eye view


Scanning at Velocity v<br />

Jaw field width (FW)<br />

� ( r)<br />

Dr ( )<br />

10 cm<br />

D ��<br />

FW<br />

v


Dose D Ratio<br />

Dosse<br />

Impact of Source Occlusion <strong>for</strong> Variable<br />

Jaw Widths<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Dashed line is<br />

expected<br />

result <strong>for</strong> a<br />

point source<br />

t dWater Tank Dose Ratios<br />

0 1 2 3 4 5<br />

Measured Field Width, FW (cm)<br />

Measured Field Width, FW (cm)<br />

Mainly Due to Source Obscuration<br />

• Only the field<br />

width, FW <strong>for</strong><br />

each<br />

measurement<br />

was altered.<br />

• The scan distance<br />

(10 cm) and scan<br />

velocity were<br />

identical.


Dose Ratio<br />

Dose<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Dose and Dose/FW as a<br />

Function of Field Width (FW)<br />

Divide by Field Width and Normalize<br />

Water Tank Dose Ratios<br />

Normalized<br />

Doose/FW<br />

Dose/FWW<br />

Ratio<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Water Tank Dose/FW Ratios<br />

Plot of dose D(FW) Plot of D/FW<br />

Basically a measure<br />

of the clipping the<br />

photon source so rce seen<br />

<strong>for</strong> the smaller field<br />

widths.<br />

0<br />

0<br />

0 1 2 3 4 5<br />

0 1 2 3 4 5<br />

Measured Measured Field Field Width, FW FW (cm) (cm) Measured Field Width, FW (cm)<br />

Measured Field Width, FW (cm)<br />

From Brian Hundertmark


No Difference Between Water and<br />

Solid Water<br />

From Brian Hundertmark


Little Difference With Depth<br />

From Brian Hundertmark


Small Vs. Farmer Chambers<br />

A1SL: 0.057 0 057 cc<br />

PTW: 0.6 cc<br />

From Brian Hundertmark


Helical Delivery<br />

From Brian Hundertmark


The Same Technique Could Be Applied <strong>for</strong><br />

Other Small Beams<br />

Now <strong>for</strong> a point source, the measured primary dose<br />

would be proportional to the area of the beam and<br />

inversely proportional to the scan velocity.<br />

A circular beam<br />

is scanned in a<br />

raster pattern to<br />

create a broad<br />

beam using the<br />

same overall<br />

irradiation time.<br />

Beam’s eye view<br />

You would<br />

actually scan the<br />

phantom<br />

instead of<br />

scanning the<br />

beam.


Avoids Problems with<br />

Measuring Output Factors <strong>for</strong><br />

Small Fields<br />

•Charged g particle p equilibrium q<br />

– Nearly same charged particle spectrum<br />

• Temporal non-constancy<br />

non constancy<br />

– Deliberately uses temporal non-constancy<br />

– Mimics how composite small fields become<br />

larger irradiated fields<br />

• Partial volume effect<br />

– No partial volume effects


Measurements Would Benchmark Source Model<br />

Model the source<br />

distribution<br />

Calculate a delivery to a<br />

large area using a<br />

superposition of small<br />

beams<br />

Measure the dose in the<br />

center of the field<br />

Repeat <strong>for</strong> another set of<br />

small ll beams b until til a range of f<br />

beam sizes are done.<br />

no<br />

Enough?<br />

no<br />

yes<br />

Agreement<br />

between calculation and<br />

measurement? yes<br />

Done


<strong>IMRT</strong> Is Far from Reference Conditions<br />

0.05 0.30 0.55 0.80<br />

0.10 0.35 0.60<br />

0.15 0.40 0.65<br />

0.20 0.45 0.70 0.95<br />

0.25 0.50 0.75 1.00<br />

From Art Boyer, Stan<strong>for</strong>d<br />

0.85<br />

0.90


Audit <strong>for</strong> TRS 398 Reference <strong>Dosimetry</strong><br />

Relative<br />

Deviatio D on (%)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-66<br />

-8<br />

-10<br />

CASE NUMBER<br />

Farmer<br />

Semiflex<br />

PinPoint<br />

1 2 3 4 5 6 7<br />

From Roberto Capote, IAEA


Relative R e deviaation<br />

(% %)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-22<br />

-4<br />

-6<br />

-8<br />

-10<br />

<strong>IMRT</strong> Audit<br />

Farmer Semiflex PinPoint<br />

Step-and-shoot<br />

Dynamic<br />

1 2 3 4 5 6 7 8 9 10 11 12 13<br />

CASE NUMBER<br />

Sánchez-Doblado F, Hartmann G., Pena J., Capote R. et al<br />

IJROBP 68 (2007) 301-310


<strong>IMRT</strong> Is About Using Small Fields<br />

Intensity pattern<br />

possibly p y unconstrained<br />

intensity levels<br />

Intensity limited to a few<br />

discrete intensity y levels<br />

What is delivered<br />

Adapted from Michael Sharpe, U. of Toronto


Leaf Penumbra is Important<br />

Central<br />

Axis<br />

Lines Defining<br />

One Half Value<br />

Layer of Beam<br />

Attenuation<br />

Lines Defining<br />

Light Field<br />

Boundary<br />

• It is important to have an accurate model of<br />

the curved leaf ends. ends<br />

• More important <strong>for</strong> summation of small fields.


Meeting <strong>for</strong> the <strong>Dosimetry</strong> Code of Practice:<br />

Small Fields and Novel Beams 3-5/12/07<br />

Outside Participants<br />

• Jan Seuntjens j<br />

• Hugo Palmans<br />

• Karen Rosser<br />

• Saiful Huq<br />

• Wolfgang Ullrich<br />

• Warren Kilby<br />

• Rock Mackie<br />

IAEA<br />

• Pedro Andreo<br />

• Ken R. Shortt<br />

• Stanislav Vatnitskiyy<br />

• Roberto Capote<br />

• Joanna Joa a Izewska e s a<br />

• Ahmed Meghzifene<br />

• Rodolfo Alfonso


• My Pictures\IAEA_2008\IAEA_2008<br />

006.jpg jpg


Examples of Small<br />

and Novel Fields<br />

• GammaKnife (1 (1.8 8 cm diameter collimator is the<br />

largest collimator – intrinsically composite field –<br />

not 100 cm SSD)<br />

• Linac SRS beams (extrapolate to small field<br />

conditions)<br />

• Accuray (6 cm diameter di collimator lli is i the h largest l<br />

collimator)<br />

• TomoTherapy (5 cm is the largest slice width –<br />

no field flattening filter)<br />

• <strong>IMRT</strong> (made up of numerous small fields)


Static Field Calibration<br />

Uses a machine-specific reference field, fmsr<br />

Q Co�60<br />

w D,w Q Q<br />

D msr � M �N �k �k<br />

k<br />

(D/ M)<br />

Q<br />

�<br />

w<br />

Qmsr (D/ M)<br />

Q<br />

w<br />

msr<br />

D<br />

Q<br />

w<br />

msr<br />

msr<br />

fmsr<br />

Corrects <strong>for</strong> the differences between the conditions of field size,<br />

geometry, g y, and beam quality q y of the conventional reference field<br />

and the machine-specific reference field.


Calculate Using MC<br />

Using method of Sempau et al 2004 PMB PMB 49;4427-44<br />

Dw<br />

D<br />

D Dw<br />

a<br />

k<br />

�<br />

( D / D )<br />

w a<br />

Q<br />

msr<br />

Qmsr ( D / D )<br />

Q<br />

w a<br />

is the dose at the reference point in water<br />

is the average dose in the ion chamber<br />

Adapted from Edmond Sterpin<br />

Da


Composite p Field Calibration<br />

Uses a plan-class specific reference field, fpcsr<br />

Q Co�60<br />

w D,w Q Q<br />

D<br />

pcsr<br />

� M �N �k �k<br />

k<br />

pcsr<br />

�<br />

(D/ M)<br />

Q<br />

pcsr<br />

w<br />

Q Q<br />

(D/ M) w<br />

pcsr<br />

fpcsr<br />

Corrects <strong>for</strong> the differences between the conditions of field size,<br />

geometry, t and d bbeam quality lit of f the th conventional ti l reference f field fi ld<br />

and the plan-class specific reference field.


Dose Calibration Correction Factor to<br />

GGet t DDose iin a Cli Clinical i l Field Fi ld<br />

M<br />

D<br />

Qclin � D<br />

Qmsr�� Qclin � D<br />

Qmsr�<br />

Qclin<br />

�k<br />

k<br />

w w Q w Q<br />

�<br />

(D/ M)<br />

Q<br />

w<br />

Q Q<br />

(D/ M) w<br />

clin<br />

clin msr<br />

msr M<br />

clin<br />

Q Qmsr<br />

In principle, the dose calibration correction factor would be<br />

different <strong>for</strong> each clinical measurement. Eventually, Monte Carlo<br />

treatment planning systems could compute kQ<br />

<strong>for</strong> both the<br />

clin<br />

patient and a QA phantom.


Overview of Static Field <strong>Dosimetry</strong><br />

REFERENCE DOSIMETRY<br />

D � M � N �k �k<br />

Qmsr Co�<br />

60 Qclin QmsrQclin D � D ��<br />

w D ,w Q Q<br />

w w Q<br />

msr<br />

msr<br />

10 cm x 10 cm<br />

Reference Field<br />

N � k<br />

Co�<br />

60<br />

D,w Q<br />

k Qmsr<br />

Hypothetical 10 cm x 10 cm<br />

Reference Field<br />

Ion Chamber =<br />

k<br />

Q Qmsr<br />

Linac Stereotactic Field<br />

BrainLab MiniMLC<br />

(10 cm x 10 cm)<br />

CyberKnife (6 cm Diameter)<br />

TomoTherapy<br />

(5 cm x 10 cm )<br />

� clin Q<br />

Q msr


“Effective kQ” <strong>for</strong> Tomo<br />

1. Determine the %dd(10)x[HT ( ) [ Ref] ] <strong>for</strong> a tomotherapy pyunit<br />

<strong>for</strong> a 5 cm x 10<br />

cm field at 85 cm SSD.<br />

2. Using the graph at the right look up the value of %dd(10)x[HT TG-51].<br />

3. Using the graph on the left and the derived value %dd(10)x[HT TG-51]<br />

determine the abscissa and this effective kQ value is then called k � k Q Qmsr<br />

in<br />

the IAEA protocol.<br />

Thomas et al (2005)


Static and Composite Field<br />

CCalculations l l ti <strong>for</strong> f Tomo T<br />

Static Field Calibration<br />

Composite Field Calibration<br />

(Section III.A.1)<br />

(Section III.A.2)<br />

Jeraj et al 2005 Duane et al 2006<br />

k<br />

Q<br />

msr<br />

5 cm x 10 cm 0.997 Unmodulated Helical Delivery<br />

5 cm Slice Width<br />

2 cm x 10 cm 0.993 Unmodulated Helical Delivery<br />

2.5 cm Slice Width<br />

k<br />

Q<br />

pcsr<br />

1.000<br />

1.000<br />

2 cm x 2 cm 0.990 Unmodulated Helical Delivery 0.997<br />

1 cm Slice Width


ICRU Committee on <strong>IMRT</strong><br />

Sponsors<br />

• André Wambersie MD, PhD, Brussels, Belgium<br />

• Paul DeLuca PhD, Madison, USA<br />

• RReinhard i h d Gahbaue G hb MD, MD Ph.D, Ph D Cleveland, Cl l d USA<br />

• Gordon Whitmore Ph.D, Toronto, Canada<br />

Chairmen<br />

• Vi Vincent t Grégoire G é i MD PhD, PhD Brussels, B l Belgium B l i<br />

• T. Rock Mackie PhD, Madison, USA<br />

Members<br />

• Wilfried De Neve MD PhD PhD, Gent Gent, Belgium<br />

• Mary Gospodarowicz MD, Toronto, Canada<br />

• Andrzej Niemierko PhD, Boston, USA<br />

• James A. Purdy y PhD, Davis, USA<br />

• Marcel van Herk PhD, Amsterdam, The Netherla<br />

• Nilendu Gupta PhD, Colombus, USA<br />

Consultants<br />

• Anders Ahnesjö PhD, Uppsala, Sweden<br />

• Michael Goiten PhD, Windisch, Switzerland


Supplement to ICRU-50 and ICRU-62<br />

• More emphasis on statistics.<br />

• Prescription and reporting with dose-volume<br />

specifications.<br />

p<br />

• No longer use ICRU-Reference Point.<br />

• Want median dose D50% reported.<br />

• Use model-based dose calculations.<br />

• Include the effect of tissue heterogeneities.<br />

R t d t ll f t t d<br />

• Report dose to small mass of water, not dose<br />

to tissue.


QA <strong>for</strong> <strong>IMRT</strong><br />

• Appropriate QQA of f TPS S and delivery<br />

equipment<br />

• Patient-specific QA:<br />

• Delivery of individual fields into a<br />

dosimeter<br />

• DDelivery li of f all ll of f the th fields fi ld into i t a phantom h t<br />

• Independent dose calculation algorithms<br />

with similar of better dose calculation<br />

accuracy<br />

• In-vivo dosimetry not limited to a single<br />

point.


% Dose D errror<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

Gap Error<br />

GGap error Dose D error<br />

0.2<br />

Range of gap width<br />

0.5<br />

1.0<br />

Gap error (mm)<br />

2.0<br />

0 1 2 3 4 5<br />

Nominal gap g p (cm) ( )<br />

From Tom Losasso, Memorial Sloan Kettering


1 mm Bands<br />

Leaf Positioning Errors<br />

Errors Introduced<br />

� -0.5 mm<br />

� -0.2 mm<br />

� + 0.2 mm<br />

� + 0.5 mm


Mechanical Alignment g of<br />

Static MLC Approach<br />

No offset 0.6 mm offset 1.0 mm offset<br />

From Jatinder Palta, University of Florida


Radiation Field Edge Offset<br />

0.7mm offset 0.6mm offset<br />

0.5mm offset<br />

0.3mm offset


Segmental Multileaf Collimator<br />

MLC*<br />

(SMLC) Delivery D li System S t<br />

TTolerance l AAction ti<br />

Limit Level<br />

Leaf position accuracy<br />

1 mm 2 mm<br />

Leaf position reproducibility 0.2 mm 0.5 mm<br />

Gap width reproducibility 02mm 0.2 mm 05mm 0.5 mm<br />

* Measured at all four cardinal gantry angles<br />

Gantry, MLC, and Table<br />

0.75 mm 1.00 mm<br />

Isocenter radius di radius di<br />

Beam Stability<br />

Low MU Output (


Dynamic Multileaf Collimator<br />

MLC<br />

(DMLC) Delivery System<br />

Tolerance Action<br />

Li Limit it LLevell Leaf position accuracy<br />

05 0.5 mm 1 mm<br />

Leaf position reproducibility 0.2 mm 0.5 mm<br />

Gap width reproducibility<br />

0.2 mm 0.5 mm<br />

Leaf speed �0.1 mm/s �0.2 mm/s<br />

Gantry, MLC, and Table<br />

Isocenter<br />

0.75 mm 1.00 mm<br />

Isocenter radius radius<br />

Beam Stability<br />

Low MU Output p ( (


Fail Fail Fail<br />

Pass<br />

Leaf opening time<br />

Leaf #<br />

Leaf open time histograms (15 sec gantry)<br />

Leaf Usage<br />

Higher Avg. Leaf<br />

Opening Time


TomoTherapy py Leaf Latencyy<br />

• TomoTherapy py uses<br />

linear fit of<br />

measured data to<br />

model leaf latenc latency<br />

• Based on small<br />

lead opening times<br />

we expect leaf<br />

latency as the<br />

cause


patient 1<br />

patient 2<br />

patient 3<br />

PTV 70<br />

PTV 64<br />

PTV 54<br />

PTV 50<br />

larynx<br />

brainstem<br />

r. parotid<br />

PTV 54<br />

esophagus p g<br />

lungs<br />

cord<br />

l. ventricle<br />

PTV 60<br />

PTV 50<br />

esophagus<br />

larynx<br />

cord<br />

r. parotid<br />

bbrainstem i t<br />

original plan<br />

replanned<br />

pitch = 0.143 pitch = 0.287<br />

pitch = 0.215<br />

pitch = 0.215<br />

pitch = 0.287<br />

pitch = 0.287


End-to-End QA


“Cheese”<br />

Phantom<br />

used df<strong>for</strong> QQA<br />

measurements<br />

Film Plane<br />

Phantom can be rotated<br />

or turned to acquire any<br />

orthogonal plane<br />

QA Measurements<br />

Measure<br />

plane and<br />

point dose<br />

at the same<br />

time


Dose (GGy)<br />

On and Off-Axis Results<br />

Film and Ion Chamber Absolute Dose<br />

Delivered Dose: 22.5cm 5cm Treatment Beam<br />

2.5<br />

On-Axis Tumor Off-Axis Tumor<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Distance (cm)


QA <strong>for</strong> All<br />

of the<br />

Fields<br />

Tomotherapy<br />

py<br />

Example


Delivery QA Panel


Delivery QA Panel


NNote t th the<br />

High<br />

Gradients<br />

Comparison of Phantom Plan and Verification Film<br />

Film<br />

Plan<br />

Plan<br />

Film<br />

From Chet Ramsey, Thompson Cancer Survival Center


QA Q of Individual Fields<br />

External diode/ion-chamber arrays<br />

• MapCheck<br />

• PTW Octavius phantom<br />

• IBA Matrix<br />

Integrated detector systems<br />

• EPID portal p dosimetry y


Independent Calculation


Dose<br />

Computed<br />

Dose Accuracy and Distance to<br />

Agreement<br />

Dose accuracy <strong>for</strong> low gradients<br />

� �<br />

� ( , ) � ( ) � ( ) /<br />

r r Dr Dr D m c m c 50%<br />

Measured<br />

rr ( , r)�r � r<br />

m c m c<br />

Low gradients < 20%/cm<br />

Distance to agreement<br />

<strong>for</strong> high gradients<br />

Radius


Gamma Function<br />

� ( r , r ) �{[ �( r , r )/ �D ] �[<br />

r( r , r )/ �d<br />

] }<br />

2 2 1/ 2<br />

m c m c M m c M<br />

Dose accuracy axis<br />

� ( r , r )<br />

m c<br />

�D<br />

rr ( , r)<br />

m c<br />

M<br />

��<br />

d<br />

M<br />

Pass<br />

Distance to<br />

agreement<br />

axis


Gamma Function<br />

� ( r , r ) �{[ �( r , r )/ �D ] �[<br />

r( r , r )/ �d<br />

] }<br />

2 2 1/ 2<br />

m c m c M m c M<br />

Dose accuracy axis<br />

� ( r , r )<br />

m c<br />

�D<br />

M<br />

rr ( , r)<br />

m c<br />

��<br />

d<br />

M<br />

Fail<br />

Distance to<br />

agreement<br />

axis


Molineu et al IJROBP 2005<br />

Ibott et al Tech in Ca RT 2006<br />

Followill et al Med Phys 2007<br />

<strong>IMRT</strong> Evaluation using<br />

Anthropomorphic Phantoms<br />

For H&N, using a criteria of 5% or 4mm, the<br />

passing i rate t drops d f from 75% t to 58%<br />

Courtesy Ibott, RPC


� Point 1: Isocenter<br />

� PPoint i t 22: SSpinal i l cord d iisocenter t<br />

� Point 3: Spinal cord cranial<br />

� Point 4: PTV T R<br />

� Point 5: PTV T R cranial<br />

� Point 6: PTV N L<br />

� Point 7: PTV N L caudal<br />

Gortec <strong>IMRT</strong> Test Phantom<br />

TLDs are placed at seven locations.<br />

Courtesy M. Tomsej,<br />

Brussels


Dm/Dc<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

Audit Results<br />

D m/D c=f(CENTER) per meas. pt<br />

Sample Result<br />

0.8<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

CENTER<br />

isocenter<br />

spinal cord iso<br />

spinal i lcord dcranial i l<br />

PTV T D<br />

PTV T D cranial<br />

PTV N G<br />

PTV N G caudal


Sample Tomotherapy Results


Frequency<br />

Inter-Institution Dose Accuracy<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Accuracy Distribution<br />

0<br />

0.885 0.905 0.925 0.945 0.965 0.985 1.005 1.025 1.045 1.065 1.085 1.105 1.125<br />

Measured Dose/Computed Dose<br />

Number of Measurements = 2679<br />

Mean = 0.995<br />

Standard Deviation = 00.025 025<br />

(Updated from Zefkili et al 2004)


Intra-Institution Dose Accuracy<br />

Frequency<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Accuracy Distribution<br />

-10 -8 -6 -4 -2 0 2 4 6 8 10<br />

Relative Difference Between Measured and Calculated Dose (%)<br />

Number of Measurements = 1591<br />

Mean = 0.45%<br />

Standard Deviation = 2.5%<br />

(Updated from Dong et al 2003)


QA Accuracy y <strong>for</strong> <strong>IMRT</strong><br />

• Previous ICRU 5% point-dose accuracy<br />

specification ifi ti replaced l d bby a volumetric l t i ddose<br />

accuracy specification.<br />

• Proposed new ICRU volumetric dose<br />

accuracy specification:<br />

- High gradient (≥ 20%/cm): 85% of points<br />

within 5 mm (3.5 mm SD),<br />

- Low gradient (< 20%/cm): 85% of points<br />

within 5% of predicted dose normalized to<br />

the prescribed dose (3.5% SD).


Monitor Units Calculations <strong>for</strong><br />

MModel-Based d l B d DDose CCalculation l l ti<br />

D � 0 D<br />

( Ar , ) � ( Ar , ) ( Ar , )(1 �bA<br />

( ))<br />

MU MU �<br />

d A<br />

P<br />

Beam<br />

Output<br />

0<br />

Computed<br />

Directly<br />

�1<br />

Correction to<br />

Account <strong>for</strong><br />

Backscatter<br />

Into Monitor<br />

Chamber


Monitor Units Calculations <strong>for</strong><br />

MModel-Based d l B d DDose CCalculation l l ti<br />

�� D ��<br />

( Acal , dcal<br />

)<br />

� �<br />

0 M �<br />

Measured<br />

�<br />

� �<br />

(1 �bA<br />

( cal )) dcal<br />

MUU �� D ��<br />

� ( Acal , dcal<br />

)<br />

�<br />

�<br />

� 0 �Calculated Ref<br />

Not including the effect of backscatter into the<br />

monitor it chamber h b will ill result lt in i about b t a 2% error at t<br />

worst.<br />

A


Backscatter into Monitor Chamber<br />

The effect is due to backscattered photons<br />

entering the monitor and resulting in feedback<br />

to the linac to lower its output<br />

Liu et al.,<br />

Med. Phys 2000;27:737-744<br />

Varian 2100 – 10 MV. Results<br />

with other jaw completely open


Monitor Backscatter <strong>for</strong> Square<br />

On On-Axis Axis Fields<br />

Varian 2100 – 10 MV<br />

Liu et al., Med. Phys 2000;27:737-744


Conclusion<br />

• <strong>IMRT</strong> uses complex field boundaries and many small<br />

fields to achieve more con<strong>for</strong>mal dose distributions.<br />

• Partial volume effects can result in severe error<br />

especially when measuring the dose in high gradients.<br />

• A new method <strong>for</strong> determining the effect of field<br />

obscuring g is pproposed p to eliminate ppartial<br />

volume<br />

effects.<br />

• <strong>IMRT</strong> deliveries are far from the measurement<br />

conditions of calibration.<br />

• IAEA has developed a <strong>for</strong>malism to account <strong>for</strong> small<br />

and novel beams.<br />

• Independent calculations or measurements <strong>for</strong> patient patientspecific<br />

QA are required <strong>for</strong> <strong>IMRT</strong>.<br />

• IAEA will recommend that 85% of measurement values<br />

(dose or distance to agreement) are within 5%.<br />

• Model-based monitor unit calculations are simple but<br />

should include scatter into monitor chamber.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!