28.12.2013 Views

Digital Image Processing in Radiography

Digital Image Processing in Radiography

Digital Image Processing in Radiography

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Outl<strong>in</strong>e<br />

<strong>Digital</strong> <strong>Image</strong> <strong>Process<strong>in</strong>g</strong> <strong>in</strong><br />

<strong>Radiography</strong><br />

Xiaohui Wang, PhD<br />

David H. Foos, MS<br />

Health Group Research Laboratory<br />

Eastman Kodak Company<br />

• Display <strong>Process<strong>in</strong>g</strong><br />

– Data preprocess<strong>in</strong>g<br />

– ROI segmentation and analysis<br />

– Tonal render<strong>in</strong>g<br />

– Signal equalization<br />

– Edge restoration<br />

– Noise suppression<br />

– Collimation mask<strong>in</strong>g<br />

– Display compensation<br />

• <strong>Image</strong> <strong>Process<strong>in</strong>g</strong> Features<br />

– Stationary grid detection and suppression<br />

– Long-length imag<strong>in</strong>g<br />

– Dual energy imag<strong>in</strong>g<br />

– Mammography<br />

– Oncology process<strong>in</strong>g<br />

– Quality control test<strong>in</strong>g<br />

1<br />

2<br />

“Analog” <strong>Image</strong> <strong>Process<strong>in</strong>g</strong>…<br />

3<br />

Screen/Film <strong>Radiography</strong> (S/F)<br />

Display <strong>Process<strong>in</strong>g</strong><br />

Density<br />

2<br />

1.0<br />

1<br />

0.8<br />

0.6<br />

0<br />

4 5 6 7<br />

Log Exposure<br />

0.4<br />

Modulation Transfer<br />

Low Speed Screens<br />

Film Speed & Contrast<br />

Screen Speed & MTF<br />

0.2 High Speed Screens<br />

0<br />

0 1 2 3 4 5<br />

Spatial Frequency (mm -1 )<br />

3<br />

4<br />

1


<strong>Digital</strong> <strong>Image</strong> <strong>Process<strong>in</strong>g</strong><br />

Why <strong>Image</strong> <strong>Process<strong>in</strong>g</strong>?<br />

<strong>Digital</strong> <strong>Image</strong> Acquisition<br />

<strong>Digital</strong> <strong>Image</strong> <strong>Process<strong>in</strong>g</strong><br />

• Ma<strong>in</strong>ta<strong>in</strong> the familiar characteristics of S/F<br />

– Provide a similar tonal render<strong>in</strong>g<br />

– Restore desired sharpness<br />

• Beyond the familiar<br />

– Automatically adjust for errors <strong>in</strong> exposure<br />

– Automatically accommodate changes <strong>in</strong> latitude<br />

– Increase the range of exposures visualized<br />

– Enhance selected spatial frequencies<br />

– Highlight regions of <strong>in</strong>terest (ROI)<br />

– Assist the radiologist to f<strong>in</strong>d features of <strong>in</strong>terest<br />

<strong>Digital</strong> <strong>Image</strong> Display<br />

5<br />

6<br />

Display <strong>Process<strong>in</strong>g</strong><br />

• Transform digital radiography raw data to display values for presentation<br />

us<strong>in</strong>g a workstation or film pr<strong>in</strong>ter, automatically, robustly, and<br />

consistently.<br />

• Components of <strong>Image</strong> Quality<br />

– Latitude<br />

– Contrast<br />

– Brightness<br />

– Sharpness<br />

– Noise<br />

Orig<strong>in</strong>al <strong>Image</strong><br />

Tone Scale<br />

Edge Restoration<br />

Signal Equalization<br />

Collimation Mask<strong>in</strong>g<br />

PSP plate<br />

Relative <strong>in</strong>tensity of PSL<br />

10,000<br />

1,000<br />

100<br />

10<br />

Film-screen<br />

(400 speed)<br />

Overexposed<br />

Correctly exposed<br />

Underexposed<br />

4<br />

3<br />

2<br />

1<br />

Film Optical Density<br />

7<br />

1<br />

0.01 0.1 1 10 100<br />

Incident exposure, mR<br />

0<br />

8<br />

2


Schematic Flow Chart of Display <strong>Process<strong>in</strong>g</strong><br />

Orig<strong>in</strong>al <strong>Image</strong><br />

Tone Scale<br />

<strong>Image</strong><br />

Capture<br />

Data<br />

Preprocess<strong>in</strong>g<br />

ROI<br />

Segmentation<br />

& Analysis<br />

Tone-Scale<br />

Generation<br />

Edge Restoration<br />

Signal Equalization<br />

Collimation Mask<strong>in</strong>g<br />

Edge<br />

Restoration<br />

Signal<br />

Equalization<br />

Tonal<br />

Render<strong>in</strong>g<br />

Collimation<br />

Mask<strong>in</strong>g<br />

Display<br />

Compensation<br />

PACS<br />

& Pr<strong>in</strong>t<br />

Noise<br />

Suppression<br />

Multi-Frequency <strong>Process<strong>in</strong>g</strong><br />

9<br />

10<br />

Data Preprocess<strong>in</strong>g<br />

Data Preprocess<strong>in</strong>g (cont.)<br />

• <strong>Image</strong> reformation<br />

– Composition (dual-side CR read<strong>in</strong>g)<br />

– Decomposition (dual energy)<br />

– Resize<br />

• Signal filter<strong>in</strong>g<br />

– Ga<strong>in</strong>, offset, and bad pixel correction (DR)<br />

– Noise reduction<br />

– Stationary grid artifact suppression<br />

• Data space conversion<br />

– L<strong>in</strong>ear to logarithmic (const. object contrast vs. pixel value)<br />

– L<strong>in</strong>ear to square root (const. quantum noise vs. pixel value)<br />

L<strong>in</strong>ear-to-log conversion<br />

Shape of image histogram <strong>in</strong>variant to exposure<br />

I 0<br />

f (x)<br />

I<br />

I<br />

I<br />

0<br />

e<br />

f ( x)<br />

1<br />

1<br />

f ( x)<br />

log( I / I ) ~<br />

0<br />

log( I ) const.<br />

Basel<strong>in</strong>e<br />

4x over exposure<br />

4x under-ex posure<br />

0 1000 2000 3000 4000 5000<br />

11<br />

12<br />

3


ROI Segmentation & Analysis<br />

• Extract diagnostically relevant ROIs<br />

• Analyze ROI characteristics<br />

• Derive the optimal display-render<strong>in</strong>g parameters<br />

• Include four basic steps<br />

– Detect collimation mask<br />

Direct<br />

– Detect direct exposure<br />

Exposure<br />

– Extract anatomy regions<br />

– Calculate key image descriptors<br />

Collimation<br />

Segmentation – Collimation Mask<br />

• Conf<strong>in</strong>e exposure regions<br />

• Mask applied to collimated regions to reduce view<strong>in</strong>g flare<br />

Anatomy<br />

13<br />

14<br />

“Method for recogniz<strong>in</strong>g multiple radiation fields <strong>in</strong> computed radiography,” X. Wang, J. Luo, R. Senn, and D. Foos,<br />

Proc SPIE 3661, 1625-36, 1999.<br />

Segmentation – Collimation Mask (cont.)<br />

• Collimation boundary pixels<br />

– Edge profile analysis<br />

– Transition segments classification<br />

• Candidate collimation blades<br />

– Edge del<strong>in</strong>eation<br />

– FOM analysis<br />

• straightness<br />

• connectedness…<br />

• Candidate configurations<br />

• Select “best” configuration<br />

– Parallelism, convexity, orthogonality, etc.<br />

Segmentation – Collimation Mask (cont.)<br />

• Multiple radiation field mask<strong>in</strong>g<br />

– Optimal <strong>in</strong>dividual image process<strong>in</strong>g<br />

– Exam workflow improvement<br />

15<br />

J. Luo and R. Senn, “Collimation detection for digital radiography," Proc. SPIE 3034, 74-85 (1997).<br />

16<br />

“Method for recogniz<strong>in</strong>g multiple radiation fields <strong>in</strong> computed radiography,” X. Wang, J. Luo, R. Senn, and D. Foos, Proc SPIE<br />

3661, 1625-36, 1999.<br />

4


Segmentation – Collimation Mask (cont.)<br />

Segmentation - Direct Exposure<br />

Detection<br />

Aggressive<br />

Failure<br />

Conservative<br />

Failure<br />

Exclude non-anatomical regions<br />

with<strong>in</strong> the collimation.<br />

• Compensate<br />

– Radiation field non-uniformity<br />

– X-ray scatter<br />

– Multiple exposures<br />

• Transition segment analysis<br />

– L<strong>in</strong>e profile analysis<br />

– Background transitions characterized by slope and extent<br />

– Background pixel histogram analysis<br />

– Spatial correlation of exposure variations<br />

L. Barski and R. Senn “Determ<strong>in</strong>ation of direct x-ray exposure regions <strong>in</strong> digital medical imag<strong>in</strong>g,” U.S. Patent 5,606,587 (1997).<br />

17<br />

18<br />

Segmentation – Anatomy Extraction<br />

ROI Analysis - Key <strong>Image</strong><br />

Descriptors<br />

Lateral Lumbar Sp<strong>in</strong>e ROI Selection<br />

1<br />

0.9<br />

Normalized Frequency<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

act hist<br />

cv. hist<br />

Anatomy<br />

Anatomy<br />

0.2<br />

0.1<br />

0<br />

Left pt<br />

Far left pt<br />

Right pt<br />

Far right pt<br />

19<br />

“Automatic and exam-type <strong>in</strong>dependent algorithm for the segmentation and extraction of foreground, background, and<br />

anatomy regions <strong>in</strong> digital radiographic images,” X. Wang, H. Luo, Proc. SPIE 5370, 1427-1434, 2004.<br />

20<br />

5


4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

shift = -0.5<br />

shift = 0<br />

shift = 0.5<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500<br />

Code Value In<br />

Tone-Scale Generation<br />

• Render image with proper brightness and contrast<br />

– Calculate average exposure with<strong>in</strong> ROI<br />

– Automatically adjust for errors <strong>in</strong> exposure<br />

• Sigmoid curve shape <strong>in</strong> general<br />

– Curve shift (brightness adjustment)<br />

– Curve rotation (contrast adjustment)<br />

– Toe & shoulder adjustment<br />

• Bear different names<br />

– Kodak: PTS (Perceptual Tone Scale)<br />

– Fuji: Gradation <strong>Process<strong>in</strong>g</strong><br />

–…<br />

Brightness Adjustment<br />

Code Value Out<br />

Effect of Density Shift Pa rameter<br />

21<br />

22<br />

Contrast Adjustment<br />

Code Value Out<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Effect of Contrast Parameter<br />

c = 0.8<br />

c = 1.3<br />

c = 1.8<br />

Toe & Shoulder<br />

Adjustment<br />

Code Value Out<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

Effect of Toe and Shoulder Parameters<br />

T=0, S=0<br />

T=0.3, S=0.7<br />

0<br />

500<br />

T=0.6, S=1.4<br />

0 1000 2000 3000 4000 5000<br />

Code Value In<br />

0<br />

0 1000 2000 3000 4000 5000<br />

Code V alue In<br />

c<br />

23<br />

24<br />

6


Visually Optimized Tone Scale<br />

Perceptual L<strong>in</strong>earity -<br />

Visually Optimized Tone Scale (cont.)<br />

Radiologists prefer S/F systems with perceptually l<strong>in</strong>ear<br />

sensitometric response.<br />

Render ROI such that… equal physical contrast be<strong>in</strong>g<br />

perceived as equal brightness by the observer across the full<br />

brightness range<br />

X-rays<br />

2<br />

3<br />

Kodak Insight Thoracic<br />

Imag<strong>in</strong>g System<br />

Kodak Insight HC Thoracic<br />

Imag<strong>in</strong>g System<br />

25<br />

26<br />

Perceptual Tone Scale<br />

Perceptual Tone Scale (cont.)<br />

Density – Lum<strong>in</strong>ance<br />

(Physics)<br />

dmax<br />

flp<br />

dm<strong>in</strong><br />

lp<br />

rp<br />

frp<br />

Perceptually<br />

L<strong>in</strong>earity<br />

Tone Scale<br />

Equal Log (E)<br />

Daly’s Global Cone Model<br />

B = B m L n<br />

L n + L 0<br />

n<br />

Equal Brightness<br />

B = perceived brightness<br />

L = lum<strong>in</strong>ance of the image area<br />

B m = scale factor<br />

n = 0.7<br />

Visual Perception<br />

Model<br />

Perception<br />

L<strong>in</strong>earity<br />

L 0 = 12.6*(0.2*L w ) 0.63 + 1.083*10 -5<br />

L w = lum<strong>in</strong>ance of the reference white<br />

H. Lee, S. Daly, and R. Van Metter, “Visual optimization of radiographic tone scale,” Proc. SPIE 3036, 118-129, 1996.<br />

27<br />

28<br />

7


Tone Scale Failures<br />

Signal Equalization<br />

4000<br />

Effect of Contrast Parameter<br />

3500<br />

3000<br />

Balance between<br />

contrast vs. latitude<br />

Code Value Out<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Bone<br />

Soft<br />

c = 0.8<br />

c = 1.3<br />

Tissue<br />

c = 1.8<br />

0<br />

0 1000 2000 3000 4000 5000<br />

Code Value In<br />

29<br />

Too Bright Too Dark Too Much<br />

Contrast<br />

Too Less<br />

Contrast<br />

30<br />

Good Soft Tissue Contrast<br />

Signal Equalization<br />

Good Bone Contrast<br />

31<br />

Signal Equalization (cont.)<br />

• Automatically accommodate changes <strong>in</strong> latitude<br />

– Compress the image-signal dynamic range such that all<br />

<strong>in</strong>formation with<strong>in</strong> ROI can be rendered with optimal<br />

contrast<br />

• Increase the range of exposures visualized<br />

• Reduce exposure re-take and improve workflow<br />

• Signal equalization process<strong>in</strong>g is<br />

– 2D spatial process<strong>in</strong>g<br />

– <strong>Digital</strong> wedge filter<br />

– Bear<strong>in</strong>g different names:<br />

• EVP - Enhanced Visualization <strong>Process<strong>in</strong>g</strong> (Kodak)<br />

• DRC - Dynamic Range Compression (Fuji)<br />

• Latitude Reduction (AGFA)<br />

• Tissue Equalization <strong>Process<strong>in</strong>g</strong> (GE)<br />

• … 32<br />

Signal Equalization (Kodak EVP)<br />

Input <strong>Image</strong> &<br />

PTONE LUT<br />

Orig<strong>in</strong>al<br />

<strong>Image</strong><br />

EVP<br />

KERNEL SIZE<br />

PTONE<br />

LUT<br />

Blurred<br />

<strong>Image</strong><br />

EVP GAIN<br />

NEW<br />

PTONE LUT<br />

EVP GAIN and EVP DENSITY<br />

E’(i,j) = { E(i,j) K } + ( 1 - ) E mid + { E(i,j) - ( E(i,j) K ) }<br />

D(i,j) = [ E’(i,j) ].<br />

-<br />

Output <strong>Image</strong> &<br />

PTONE LUT<br />

“Enhanced latitude for digital projection radiography,” R. Van Metter and D. Foos, Proc. SPIE 3658, 468-483, 1999.<br />

8


Signal Equalization (cont.)<br />

Signal Equalization (cont.)<br />

Increas<strong>in</strong>g<br />

Contrast,<br />

…Decreas<strong>in</strong>g<br />

Latitude<br />

11-11<br />

8-8<br />

5-5<br />

Increas<strong>in</strong>g<br />

Contrast,<br />

…Constant<br />

Latitude<br />

11-11<br />

8-11<br />

5-11<br />

33<br />

34<br />

RSNA 2001 Education Exhibit<br />

Observer “render<strong>in</strong>g preferences” established<br />

through collaborative studies with university hospitals<br />

(…to set default parameters for automatic process<strong>in</strong>g)<br />

High<br />

Contrast<br />

Low<br />

Detail Latitude<br />

Contrast LogE<br />

D/ LogE => 0.35 0.47 0.56 0.78 0.92 1.09 1.46 1.75 2.06<br />

1.4 1.8 2.2 3.0 3.6 4.2 5.6 6.8 7.9<br />

6.75<br />

5.75 1.5 1.9 2.6 3.0 3.6 4.8 5.8 6.8<br />

5 1.0 1.3 1.6 2.2 2.6 3.1 4.2 5.0 5.9<br />

3.75 1.0 1.2 1.7 2.0 2.3 3.1 3.8 4.4<br />

3.1 1.0 1.4 1.6 1.9 2.6 3.1 3.6<br />

2.25 1.0 1.2 1.4 1.9 2.3 2.6<br />

1.9 1.0 1.2 1.6 1.9 2.2<br />

1.6 1.0 1.3 1.6 1.9<br />

1.2 1.0 1.2 1.4<br />

1 1.0 1.2<br />

0.85 1.0<br />

Latitude<br />

rel. to<br />

Ref. 0.38 0.51 0.61 0.84 1.00 1.19 1.58 1.90 2.24<br />

Narrow<br />

Latitude<br />

Wide<br />

“Optimal display process<strong>in</strong>g for digital radiography,” M. Flynn, M. Couwenhoven, W. Eyler, B. Whit<strong>in</strong>g, E. Samei, D. Foos, R. Slone,<br />

and E. Marom, Proc. SPIE 4319-36, 2001.<br />

35<br />

36<br />

9


Signal Equalization (cont.)<br />

Optimal PA<br />

View<br />

Kodak T-Mat G<br />

Film detail<br />

contrast with 2X<br />

extended latitude<br />

Equalization <strong>Process<strong>in</strong>g</strong> Artifact<br />

Properly Processed<br />

Halo<br />

Artifact<br />

Overprocessed<br />

37<br />

38<br />

Edge Restoration<br />

Edge Restoration (cont.)<br />

MTF<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Modulation Transfer Function<br />

CR Hi-Res Screen<br />

CR Std Screen<br />

CsI DR<br />

Selenium DR<br />

Selectively<br />

boost high<br />

frequency<br />

0 1 2 3 4 5<br />

Spatial Frequency (cycles/mm)<br />

High-frequency<br />

signal is<br />

suppressed by<br />

system MTF.<br />

• Selectively boost high-frequency signals based on<br />

– Exam type<br />

– Brightness<br />

– Exposure<br />

– Diagnostic features<br />

– Capture device characteristics<br />

• Multi-frequency process<strong>in</strong>g (2D spatial)<br />

– Kodak: EVP & USM (Enhanced Visualization <strong>Process<strong>in</strong>g</strong> & UnSharp Mask)<br />

– AGFA: MUSICA (MUlti-Scale <strong>Image</strong> Contrast Amplification)<br />

– Konica: Hybrid (Mutil-Resolution Hybrid <strong>Process<strong>in</strong>g</strong>)<br />

– Fuji: USM & MFP (Multi-Objective Frequency <strong>Process<strong>in</strong>g</strong>)<br />

– Philips: UNIQUE (UNified <strong>Image</strong> QUality Enhancement)<br />

39<br />

40<br />

10


Edge Restoration (cont.)<br />

Edge Restoration (cont.)<br />

Unsharp Mask <strong>Process<strong>in</strong>g</strong><br />

USM Ga<strong>in</strong><br />

1 .2<br />

1<br />

M o d u la tio n T ra n s fe r F u n c tio n<br />

K = 5, g = 1.2<br />

B a e li n e<br />

U S M 1<br />

U S M 2<br />

Orig<strong>in</strong>al<br />

<strong>Image</strong><br />

-<br />

+<br />

High-Freq.<br />

<strong>Image</strong><br />

Output<br />

<strong>Image</strong><br />

MTF<br />

0 .8<br />

0 .6<br />

0 .4<br />

0 .2<br />

K = 3, g = 1.5<br />

USM<br />

Kernel Size<br />

Blurred<br />

<strong>Image</strong><br />

0<br />

0 1 2 3 4 5<br />

S p a tia l F re q u e n c y (c y c le s /m m )<br />

41<br />

42<br />

Edge Restoration (cont.)<br />

Multi-Frequency<br />

<strong>Process<strong>in</strong>g</strong><br />

1<br />

Edge Restoration (cont.)<br />

<strong>Process<strong>in</strong>g</strong> Artifact<br />

Halo<br />

Artifact<br />

2<br />

3<br />

+<br />

Orig<strong>in</strong>al<br />

<strong>Image</strong><br />

…<br />

n<br />

Edge-Enhanced<br />

<strong>Image</strong><br />

n+1<br />

Properly Processed<br />

Overprocessed<br />

43<br />

44<br />

11


Edge Restoration (cont.)<br />

Noise Suppression<br />

<strong>Process<strong>in</strong>g</strong> Artifact<br />

Properly Processed<br />

Overprocessed<br />

Halo<br />

Artifact<br />

• It is desired to drive toward lower x-ray exposures to reduce<br />

patient dose<br />

• The appearance of noise <strong>in</strong>creases as exposure level is decreased<br />

• A predom<strong>in</strong>ant source of noise <strong>in</strong> digital radiography is generally<br />

the quantum noise.<br />

• Noise suppression should be signal dependent, it should be<br />

applied only to areas of the image that have a low SNR.<br />

• A noise suppression algorithm needs to reduce the appearance of<br />

noise while preserv<strong>in</strong>g diagnostic detail.<br />

“Observer study of a noise suppression algorithm for computed radiography images,” M. Couwenhoven et al, Proc. SPIE 5749, 318-327, 2005.<br />

45<br />

46<br />

Noise Suppression (cont.)<br />

Suppress the noise <strong>in</strong> low<br />

signal areas and phase out<br />

suppression <strong>in</strong> high signal<br />

areas<br />

High Signal Areas / Less<br />

Dense Anatomy<br />

Low Signal Areas / More<br />

Dense Anatomy<br />

Noise Suppression (cont.)<br />

Noise Suppression<br />

• 2D spatial process<strong>in</strong>g<br />

• Applies to high freq. signals<br />

• Signal dependent<br />

• Balance between sharpness &<br />

noise<br />

47<br />

48<br />

12


Display Compensation<br />

Display Compensation (cont.)<br />

• <strong>Image</strong> pixel values can be mapped for different output devices<br />

– Film pr<strong>in</strong>ter (monochrome 1)<br />

– Softcopy display (monochrome 2)<br />

• Both capture and output devices need to be configured properly<br />

• Output device calibration is critical to optimal image display<br />

– Different dynamic range and response<br />

– CRT vs. flat-panel<br />

– <strong>Image</strong>s from multi-vendors viewed at same PACS workstation<br />

– Archived images<br />

• DICOM Part 14 specifies grayscale display standard function<br />

(GSDF)<br />

• AAPM TG-18 specifies display QA & QC test<strong>in</strong>g<br />

Lum<strong>in</strong>ance<br />

Workstation Calibration Check<br />

100.00<br />

10.00<br />

1.00<br />

Aim Lum<strong>in</strong>ance<br />

Measured Lum<strong>in</strong>ance<br />

0.10<br />

0% 20% 40% 60% 80% 100%<br />

SMPTE Patch<br />

<strong>Image</strong> looks darker<br />

throughout the dark regions<br />

49<br />

50<br />

Reference<br />

Non-calibrated Display<br />

Display Compensation (cont.)<br />

Monitor Responses<br />

Monitor Response Examples<br />

1000<br />

Lum<strong>in</strong>ance<br />

100<br />

10<br />

CRT<br />

Flat-Panel<br />

1<br />

0 1024 2048 3072 4096<br />

<strong>Image</strong> displayed at CRT<br />

looks brighter<br />

<strong>Image</strong> <strong>Process<strong>in</strong>g</strong> Features<br />

0.1<br />

DDL<br />

51<br />

Reference (flat-panel)<br />

CRT<br />

52<br />

13


Stationary Grid Suppression<br />

Automatic Grid L<strong>in</strong>e Detection & Suppression<br />

Moiré Pattern<br />

A B C<br />

(A) CR chest image m<strong>in</strong>ified by a factor of 0.2 show<strong>in</strong>g a grid-caused Moiré pattern<br />

(B) Filtered image fragment without Moiré pattern<br />

(C) Difference image<br />

“Antiscatter stationary grid artifacts automated detection and removal <strong>in</strong> projection radiography imagery,”<br />

I. Belykh and C. Cornelius, Proc. SPIE 2000.<br />

53<br />

54<br />

Long-Length Imag<strong>in</strong>g<br />

Screen Film Systems<br />

35cm x130cm<br />

and<br />

35cm x 90cm<br />

Cassettes<br />

Computed <strong>Radiography</strong><br />

Currently Limited to<br />

35cm x 43cm<br />

Long-Length Imag<strong>in</strong>g with CR<br />

• Multiple 35cm x 43cm CR screens arranged <strong>in</strong><br />

alternat<strong>in</strong>g and partially overlapp<strong>in</strong>g fashion for patient<br />

imag<strong>in</strong>g<br />

• Storage phosphor screens scanned <strong>in</strong>dividually<br />

• <strong>Image</strong> process<strong>in</strong>g software used to automatically<br />

– Determ<strong>in</strong>e CR screen sequence and orientation<br />

– Correct for magnification, translation, and rotation<br />

among <strong>in</strong>dividual screens<br />

– Remove redundant image data <strong>in</strong> the overlap region<br />

– Construct (stitch) a large geometrically accurate<br />

composite<br />

– Elim<strong>in</strong>ate the seam l<strong>in</strong>es <strong>in</strong> the composite image<br />

• Composite image stored to PACS for <strong>in</strong>terpretation<br />

55<br />

56<br />

14


Scan Individually<br />

Storage Phosphor<br />

Screens<br />

Long-Length Imag<strong>in</strong>g (cont.)<br />

<strong>Image</strong> <strong>Process<strong>in</strong>g</strong><br />

to Construct<br />

Large Composite<br />

57<br />

58<br />

“Fully automatic and reference-marker-free image stitch<strong>in</strong>g method for<br />

full-sp<strong>in</strong>e and full-leg imag<strong>in</strong>g with computed radiography,” X. Wang, D.<br />

H. Foos, J. Doran, and M. K. Rogers, Proc. SPIE 5368, p361-369, 2004.<br />

Long-Length Imag<strong>in</strong>g (cont.)<br />

• Measurements from CR equivalent to screen-film<br />

– Angular<br />

– Absolute distance<br />

• Visual quality of CR superior to S/F<br />

– Wide exposure latitude of CR<br />

– Equalization process<strong>in</strong>g<br />

• 35% retake rate with S/F reduced to 0% retake rate with CR<br />

– 43 cm width<br />

– Equalization process<strong>in</strong>g<br />

Dual-Energy Imag<strong>in</strong>g<br />

High kVp Radiograph Tissue-Only Bone-Only<br />

<strong>Image</strong>s acquired at high and low energies are processed<br />

to selectively cancel overly<strong>in</strong>g tissues<br />

59<br />

60<br />

<strong>Image</strong>s courtesy of Dr. Jeff Siewerdsen at the Ontario Cancer Institute, Pr<strong>in</strong>cess Margaret Hospital<br />

and University of Toronto.”<br />

15


Mammography <strong>Process<strong>in</strong>g</strong><br />

S/F: A large dynamic range is needed to detect and display all<br />

parts of the breast with good contrast<br />

Mammography <strong>Process<strong>in</strong>g</strong> (cont.)<br />

Recent advances <strong>in</strong> s/f mammography<br />

M<strong>in</strong>-R EV 150 system vs. M<strong>in</strong> -R 2000 system<br />

M<strong>in</strong>-R EV 150 vs M<strong>in</strong> -R 2000 System<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

4.5<br />

4.0 Higher contrast<br />

2.5<br />

Better 3.5<br />

2.0 visualization Density of<br />

breast 3.0<br />

1.5 parenchyma<br />

Sharp toe<br />

High Dmax and shoulder contrast<br />

Results <strong>in</strong> greater overexposure latitude due to<br />

higher upper scale contrast<br />

1.0<br />

Results <strong>in</strong> “whiter whites”, more “sparkle”,<br />

improved visibility of microcalci fications<br />

0.5<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

Log E<br />

X-ray Sensitometry<br />

61<br />

62<br />

KODAK MIN -R EV/<br />

EV 150 Screen<br />

KODAK MIN -R<br />

2000/2000 Screen<br />

Mammography <strong>Process<strong>in</strong>g</strong><br />

Oncology <strong>Process<strong>in</strong>g</strong><br />

<strong>Digital</strong> Mammography<br />

• Wide dynamic range (> 1000:1) captures all the image <strong>in</strong>formation<br />

• Edge restoration enhances image details of different sizes<br />

• Equalization process<strong>in</strong>g compresses image latitude while<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g contrast<br />

Simulation<br />

Localization<br />

Verification<br />

Black surround<br />

Signal Equalization<br />

S/F look<br />

Edge<br />

Enhanced<br />

Equalized<br />

look<br />

“Method for contrast-enhancement of digital portal images,” S. Young, W. E. Moore, D. H. Foos, US Patent US6836570 B2<br />

63<br />

64<br />

16


Quality Control Test<strong>in</strong>g<br />

Test Phantom for Kodak DIRECTVIEW<br />

Total Quality Tool<br />

0.5 mm Cu<br />

1.0 mm Al<br />

180 cm<br />

10.0 0.2 mR<br />

@ 80 kVp<br />

18 x 24 cm<br />

24 x 30 cm<br />

35 x 43 cm<br />

65<br />

66<br />

KODAK TQT User Interface<br />

Test Result Details<br />

MTF (slow scan)<br />

29.5%<br />

67<br />

68<br />

17


Quality Control Test<strong>in</strong>g (cont.)<br />

Automated <strong>Image</strong> Quality Control Tool<br />

Precise and accurate quality control test<strong>in</strong>g<br />

Highly reproducible quantitative results<br />

Detects sub-visible changes <strong>in</strong> CR image quality<br />

performance to <strong>in</strong>itiate timely preventive<br />

ma<strong>in</strong>tenance<br />

Avoids hours of tedious and labor-<strong>in</strong>tensive effort<br />

with a highly automated procedure<br />

Full data report<strong>in</strong>g <strong>in</strong> Excel format<br />

Summary<br />

• Tone scale process<strong>in</strong>g establishes the overall image brightness and<br />

global contrast<br />

• Edge restoration enhances detail contrast<br />

• Signal equalization extends the latitude that can be visualized while<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g detail contrast<br />

• Edge restoration, signal equalization, and noise suppression are 2D<br />

spatial process<strong>in</strong>g<br />

• Multi-frequency has been widely adopted, yet users should be aware<br />

of process<strong>in</strong>g artifacts<br />

• Display process<strong>in</strong>g are becom<strong>in</strong>g easier and more <strong>in</strong>tuitive to use<br />

• <strong>Image</strong> process<strong>in</strong>g provides many new features unique to digital<br />

capture<br />

• <strong>Image</strong> process<strong>in</strong>g can provide many automations to improve work<br />

efficiency<br />

69<br />

70<br />

Acknowledgements<br />

• Richard VanMetter<br />

• Lori L. Barski<br />

• William J. Sehnert<br />

• Lynn M. Fletcher-Heath<br />

71<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!