14.05.2013 Views

Muon (and electron) Anomalous Magnetic Moment

Muon (and electron) Anomalous Magnetic Moment

Muon (and electron) Anomalous Magnetic Moment

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Muon</strong> (<strong>and</strong> <strong>electron</strong>)<br />

<strong>Anomalous</strong> <strong>Magnetic</strong><br />

<strong>Moment</strong><br />

Luis Pesántez<br />

May 17 th ,2001


Why?<br />

• Explain discrepancies between<br />

theory <strong>and</strong> experiment.<br />

• Precision achieved is very high.<br />

• Very sensitive to new physics.<br />

2


• Introduction<br />

Outline<br />

– Measurement in <strong>electron</strong>s vs. muons<br />

• Radiative corrections<br />

– QED, HVP, EW<br />

• Experiments<br />

– Historical overview<br />

• E821 at Brookhaven<br />

– Achievements<br />

– Latest results<br />

• The future<br />

• Summary<br />

3


<strong>Magnetic</strong> moment<br />

• Intrinsic property of charged<br />

particles:<br />

• Pauli-Schroedinger equation predicts<br />

g s =2<br />

4


The anomaly<br />

• Early experiments show small<br />

disagreement:<br />

• Redefine g s as:<br />

Radiative corrections:<br />

5


Theory: corrections<br />

6


<strong>Muon</strong>s vs. <strong>electron</strong>s<br />

• Uncertainty in muon<br />

• But corrections go as<br />

7


<strong>Muon</strong>s vs. <strong>electron</strong>s<br />

8


Radiative corrections<br />

• Three types of contributions:<br />

– QED: photons <strong>and</strong> leptons (~100%)<br />

– HVP (~ 60 ppm)<br />

– EW: gauge bosons (~ 1.3 ppm)<br />

• Calculated both analytically <strong>and</strong><br />

numerically, also relies on<br />

experimental measurements.<br />

9


QED<br />

• C1 comes from Schwinger correction<br />

• Values computed up to 4 th order <strong>and</strong><br />

estimated 5 th order.<br />

10


• Two-loop<br />

QED: some Feynman<br />

• Three-loop<br />

(72 diagrams)<br />

diagrams<br />

11


Hadronic<br />

• Cannot be calculated from first<br />

principles.<br />

• All lowest order calculations related to:<br />

• Lattice QCD<br />

• Loops containing hadrons<br />

<strong>and</strong> leptons.<br />

12


Hadronic Vacuum Polarization<br />

13


Electroweak<br />

• Contribution is very small compared<br />

to QED <strong>and</strong> Hadronic.<br />

• Not sensitive to mass of Higgs<br />

(150 - 500 GeV).<br />

• Only one <strong>and</strong> two loop contribute,<br />

three loops in neglected O(10 -12 ).<br />

14


Electroweak<br />

15


Summary of theory<br />

16


Experimental history<br />

• 1947 anomaly observed in H<br />

hyperfine splitting (<strong>electron</strong>s).<br />

• 1948 Schwinger correction.<br />

• 1957 Nevis cyclotron: anomaly<br />

observed in muon, found to be<br />

~equal to anomaly in <strong>electron</strong>.<br />

17


CERN experiments<br />

• 1962: sensitive to order .<br />

• 1968: sensitive to order .<br />

• 1979: sensitive to order + had.<br />

18


E821 at Brookhaven<br />

19


E821 at Brookhaven<br />

• 1984: reach 0.35 ppm, test EW.<br />

• <strong>Muon</strong>s are stored in a ring (very<br />

uniform <strong>and</strong> stable Bfield).<br />

• Count number of <strong>electron</strong>s product<br />

of muon decay.<br />

20


Experimental idea<br />

21


<strong>Muon</strong> decay<br />

• <strong>Muon</strong>s produced from<br />

π decay are polarized<br />

(weak decay).<br />

• <strong>Muon</strong> spin precesses<br />

faster than<br />

momentum.<br />

22


Slow <strong>electron</strong><br />

Fast <strong>electron</strong><br />

<strong>Muon</strong> decay<br />

• Fast <strong>electron</strong>s are emitted with<br />

their momentum anti-parallel to<br />

muon spin.<br />

23


What is measured?<br />

• Spin precession frequency<br />

(interaction with Bfield):<br />

• Cyclotron frequency:<br />

• Anomaly:<br />

if<br />

24


Magic momentum<br />

• Electrostatic focusing changes the<br />

frequency:<br />

• Easy!<br />

25


Magic momentum<br />

• Electrostatic focusing changes the<br />

frequency:<br />

• Magic momentum:<br />

26


Detection<br />

• 24 electromagnetic calorimeters<br />

• Detect <strong>electron</strong>s above E th = 1.8 GeV.<br />

– Remember, we want fast <strong>electron</strong><br />

• We get more events depending on<br />

direction of muon spin.<br />

27


Determination of<br />

28


Calculating anomaly<br />

• B field determined with NMR (proton<br />

Larmor frequency)<br />

• And with λ measured from muonium<br />

hfs:<br />

• The anomaly is then:<br />

29


Dealing with errors<br />

• Different teams determining <strong>and</strong><br />

.<br />

• Blind data analysis.<br />

30


E821 results<br />

14 times more accurate than CERN<br />

experiment.<br />

Test of CPT in muons<br />

31


E821 results<br />

32


Current status<br />

33


Theoretical challenge<br />

• Find alternatives to explain<br />

discrepancy:<br />

– Leptons substructure<br />

– Supersymmetry<br />

34


Future experiments<br />

• E989 @ Fermilab<br />

– Reduce uncertainty to 0.16 ppm:<br />

5 - 6σ deviation.<br />

– Factor of 20 increase in statistics.<br />

– Significant reduction on systematic<br />

uncertainties.<br />

35


Future experiments<br />

36


What to remember<br />

• <strong>Muon</strong>s are “better” than <strong>electron</strong>s.<br />

• Precise test of SM.<br />

• All the physics is present in one<br />

number.<br />

• discrepancy, new physics?<br />

37


Light-by-light scattering<br />

39


Setup<br />

40


Electron anomaly<br />

41


Electron anomaly<br />

42


Electron anomaly<br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!