15.05.2013 Views

Chonggang Xu - CESM

Chonggang Xu - CESM

Chonggang Xu - CESM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Toward a mechanistic modeling of<br />

nitrogen limitation on vegetation<br />

dynamics<br />

<strong>Chonggang</strong> <strong>Xu</strong> 1 , Rosie Fisher 2 , Cathy<br />

J. Wilson 1 , Stan D. Wullschleger 3 ,<br />

Michael Cai 1 , Nate G. McDowell 1<br />

1: Division of Earth and Environmental Sciences, Los Alamos National<br />

Laboratory, Los Alamos, NM; 2: National Center for Atmospheric Research,<br />

Boulder, CO; 3:Environmental Sciences Division, Oak Ridge National<br />

Laboratory, Oak Ridge, TN


Soil layers for heat<br />

transfer<br />

cohort2<br />

cohort2<br />

Soil layers for heat<br />

transfer<br />

Sunlit leaf<br />

shaded leaf<br />

cohort1<br />

Cohort2<br />

3 3 3 3<br />

4 4<br />

Litter and soil organic<br />

matter decomposition<br />

based on temperature,<br />

carbon quality, moisture<br />

Leaf layers<br />

cohort1<br />

cohort2<br />

Litter and soil organic<br />

matter decomposition<br />

based on temperature,<br />

Canopy layer 1<br />

Canopy layer 2<br />

CLM-CN<br />

CLM-ED


Farquhar Photosynthesis Model for C3 plants<br />

Photosynthesis rate<br />

Rubisco-limited<br />

carboxylation rate<br />

Light-limited<br />

carboxylation rate<br />

Triose phosphate utilization(TPU)limited<br />

rate<br />

Farquhar, G. D., S. Caemmerer, et al. (1980). Planta 149: 78-90.<br />

Harley & Sharkey. (1991).Photosynthesis Research 27: 169-178.


Approaches for simulating nitrogen<br />

limitation on photosynthesis<br />

1.Down-regulation of NPP by nitrogen supply<br />

and demand;<br />

2. Fixed relationship between Vc,max and leaf<br />

nitrogen content (LNC a), without consideration<br />

differences in light, CO 2 and temperature<br />

conditions.<br />

Vc,max=a + b LNC a<br />

3.Simplified electron transport limitation;<br />

J= uPAR (photosynthetic active radiation)


Vcmax25(umol CO2/m<br />

0 10 20 30 40<br />

Environmental conditions on Vc,max-<br />

Leaf nitrogen relationship change<br />

0.6 1.0 1.4<br />

Leaf nitrogen (g/


Optimal functional nitrogen allocation model<br />

Nitrogen in proteins<br />

of chlorophyll,<br />

Photosystems I, II<br />

Light harvesting<br />

rate<br />

Nitrogen in Rubisco<br />

=<br />

Functional nitrogen=total<br />

nitrogen-structural nitrogen<br />

Nitrogen in<br />

electron transport<br />

enzymes<br />

Electron transport<br />

rate<br />

Electron transport<br />

limited<br />

carboxlation rate<br />

=<br />

Rubisco limited<br />

carboxlation rate<br />

Storage nitrogen<br />

D ns-Days that storage nitrogen<br />

could support the current rate of<br />

growth (i.e., the production of new<br />

plant tissues and metabolic<br />

enzymes) if nitrogen uptake were<br />

to cease altogether.<br />

Gross<br />

photosynthesis<br />

rate<br />

Respiration rate<br />

Respiratory nitrogen<br />

in mitochondrial<br />

enzymes


Leaf-mass-based functional<br />

nitrogen availability<br />

(FNA m)=Total plant functional<br />

nitrogen/total leaf biomass<br />

FNAm, leaf layer 1<br />

FNAm, leaf layer 2<br />

FNAm, leaf layer n<br />

FNA a (1)=LMA(1)*FNAm (1)<br />

FNA a (2)=LMA(2)*FNAm (2)<br />

FNA a (n)=LMA(n)*FNAm (n)<br />

Leaf-area-based functional<br />

nitrogen availability (FNA a)=<br />

FNA m*Leaf mass per area (LMA)<br />

FNAa (1), leaf layer 1<br />

FNAa(2), leaf layer 2<br />

FNAa(2), leaf layer n


Mechanistic<br />

nitrogen<br />

allocation<br />

model<br />

Tuning parameters:<br />

D ns-Days that storage nitrogen could support the<br />

current rate of growth (i.e., the production of new<br />

plant tissues and metabolic enzymes) if nitrogen<br />

uptake were to cease altogether.<br />

fs-Proportion of storage nitrogen allocated to leaf.<br />

Main input parameters:<br />

Radiation; CO 2 (ppm); Daytime<br />

hours; Day T ( o C); Night T ( o C);<br />

Relative humidity; Leaf Mass per<br />

Area (LMA; g/m2); Proportion of<br />

net carbon assimilation allocated<br />

to leaf


Nitrogen investment parameters<br />

Ntrogen use efficiency (NUE; umol CO2/ g N/ s).<br />

Niinemets and<br />

Tenhunen<br />

(1997).Plant Cell and<br />

Environment 20:<br />

845-866;<br />

Evans (1989<br />

Oecologia 78(1): 9-<br />

19.<br />

Leaf nitrogen content<br />

(LNCa; g/m2)<br />

estimation from FNC a


Vcmax25(umol CO2/m<br />

0 10 20 30 40<br />

Test case 1 [D ns=85; fs=0.86 ]<br />

0.6 1.0 1.4<br />

Leaf nitrogen (g/m


Measured Vcmax (umol CO2/m2/<br />

0 50 100 150<br />

Model evaluations<br />

Test case one<br />

Test case two<br />

Test case three<br />

0 50 100 150<br />

Predicted Vcmax(umo<br />

Measured Jmax (umol CO2/m2/s<br />

R 2 =0.953 R 2 =0.943<br />

0 50 100 150 200 250 300<br />

Test case one<br />

Test case two<br />

Test case three<br />

0 50 150 250<br />

Predicted Jmax(umol


Leaf-mass-based functional<br />

nitrogen availability<br />

(FNAm)=Total plant functional<br />

nitrogen/total leaf biomass<br />

FNAm, leaf layer 1<br />

FNAm, leaf layer 2<br />

FNAm, leaf layer n<br />

FNA a (1)=LMA(1)*FNAm (1)<br />

FNA a (2)=LMA(2)*FNAm (2)<br />

FNA a (n)=LMA(n)*FNAm (n)<br />

Leaf-area-based functional<br />

nitrogen availability (FNA a)=<br />

FNA m*Leaf mass per area (LMA)<br />

FNAa (1), leaf layer 1<br />

FNAa(2), leaf layer 2<br />

FNAa(2), leaf layer n


Leaf mass per area(g leaf/m2)<br />

0 100 200 300 400<br />

Leaf nitrogen content<br />

0.01 0.03 0.05<br />

Leaf nitrogen conte<br />

Leaf nitrogen content(g N/m2)<br />

2.00 2.05 2.10 2.15 2.20 2.25<br />

0.00 0.02 0.04<br />

Leaf nitrogen conte<br />

Wright, I. J., P. B. Reich, et al. (2004). Nature 428(6985): 821-827.<br />

Assumption: Leaf mass per area<br />

(LMA) is always adjusted for optimal<br />

leaf-area-based nitrogen content


FNAm=Total functional<br />

nitrogen/total leaf mass<br />

FNAm<br />

FNAm<br />

FNAm<br />

LMA(1)=FNA a (1)/FNAm<br />

LMA(2)=FNA a (2)/FNAm<br />

LMA(n)=FNA a (n)/FNAm<br />

Optimal FNAa(1)<br />

Optimal FNAa(2)<br />

Optimal FNAa(n)


Optimal functional nitrogen availability model<br />

Growing season CO 2,<br />

light and temperature<br />

conditions<br />

Nitrogen allocation model<br />

Nitrogen allocated to light harvesting,<br />

electron transport and carboxylation<br />

Maximum Electron transport rate (Jmax)<br />

Maximum Rubisco-limited rate (Vc,max)<br />

Given functional<br />

nitrogen availability<br />

(FNAa)<br />

Farquhar photosynthesis model & Ball-Berry' model<br />

NPP=smooth_min(Wc, Wj, Wp)-Respiration;<br />

NUE=NPP/(FNAa+ total structural nitrogen in leaf, sapwood and roots) ;<br />

Maximize<br />

W p = 2.0*Rc0*Vc,max0


Net photosynthesis rate(g biomass/m2/d<br />

2 4 6 8<br />

[Dns=50; fs=0.5 ] Vcmax= 42<br />

Wp =33<br />

1 2 3 4 5<br />

Functional nitrogen avail<br />

1 2 3 4 5<br />

Optimum LNCa=1.52 g N/m2<br />

Betula nana (Toolik lake)<br />

Observed=1.57 g N/m2<br />

Leaf area/sapwood area=0.15 m2 /cm2; height=0.5m<br />

Nitrogen use efficiency (g biomass/day/g<br />

1.4 1.5 1.6 1.7 1.8<br />

Functional nitrogen avai<br />

Limbach, et al. (1982). Holarctic Ecology 5(2): 150-157; Shaver, et al. (2001). Ecology 82(11): 3163-3181.


Net photosynthesis rate(g biomass/m2/d<br />

2 4 6 8 10<br />

[Dns=70; fs=0.8 ] Vcmax= 52<br />

Wp =41.6<br />

1 2 3 4 5 6 7<br />

Functional nitrogen avail<br />

Nitrogen use efficiency (g biomass/day/g<br />

1.0 1.1 1.2 1.3 1.4 1.5 1.6<br />

1 2 3 4 5 6 7<br />

Functional nitrogen avai<br />

Optimal LNCa=3.06 g N/m2<br />

Ledum palustre (Toolik lake)<br />

Observed=3.12 g N/m2<br />

Leaf area/sapwood area=0.15 m2 /cm2; height=0.5m<br />

Limbach, et al. (1982). Holarctic Ecology 5(2): 150-157; Shaver, et al. (2001). Ecology 82(11): 3163-3181.


Test ED-N model against nitrogen fertilization observations in the<br />

arctic<br />

Fertilized<br />

Nitrogen Control Fertilized<br />

Inorganic nitrogen 4.0 1 7.6 3<br />

Organic nitrogen 3.0 2 3.0<br />

Soil nitrogen concentration (umol/L) for<br />

control and fertilized plot<br />

Ratio of root biomass to leaf<br />

biomass: 1.5 for deciduous and 0.8<br />

for evergreen.<br />

Deciduous shrub [D ns=50; fs=0.5 ]<br />

Evergreen shrub [D ns=70; fs=0.8 ]<br />

Limbach, et al. (1982). Holarctic Ecology 5(2): 150-157; Shaver, et al. (2001). Ecology 82(11): 3163-3181.


Summary & Next Step<br />

• A dynamic nitrogen allocation model is developed for<br />

ED model to predict the light capture rate, Jmax and<br />

Vc,max change under different environmental<br />

conditions;<br />

• An optimal plant nitrogen model is developed for ED to<br />

predict optimal level of nitrogen under different light,<br />

temperature, CO 2 and soil nitrogen availability<br />

conditions;<br />

• The developed model will be linked with Rosie Fisher’s<br />

leaf optimization model to have more robust<br />

predictions of leaf area index.<br />

• Model limitations: acclimation time and acclimation<br />

ability.


Acknowledgements<br />

This work is funded by Department of<br />

Energy, Office of Science, Biological and<br />

Environmental Research (BER) and Los<br />

Alamos National Lab (LANL) Laboratory<br />

Directed Research and Development<br />

(LDRD) Program. This work is under<br />

public release number: LA-UR-11-<br />

12108.


Test case 2 [D ns=50; fs=0.5 ]<br />

Radiation >0.8 canopy top radiation; Radiation


Vcmax25 (umol CO2/m<br />

50 100 150<br />

1.0 1.5 2.0 2.5 3.0<br />

Test case 3 [D ns=4; fs=0.5 ]<br />

Leaf nitrogen (g/m


Leaf area index optimization<br />

Optimal functional nitrogen<br />

availability, leaf area based (1)<br />

Optimal functional nitrogen<br />

availability, leaf area based (2)<br />

Net Carbon Balance=Yearly NPPconstruction<br />

cost-yearly<br />

respiration(n)<br />

If Net Carbon Balance


CO 2 enrichment effects on V c,max and J max<br />

CROUS et al (2008). Tree Physiology 28, 607–614.


Jmax (umol O 2/m2/s)<br />

Irradiance effect on J max and Chlorophyll<br />

Leaf nitrogen (mmol/m2)<br />

Evans 1989. Oecologia, 78: 9-19<br />

Chlorophyll (mmol/m2)<br />

1.0<br />

0.2<br />

Leaf nitrogen (mmol/m2)


Temperature effects on Vc,max<br />

Vcmax25 (umol CO2/m2/s)<br />

50 100 150<br />

1.0 1.5 2.0 2.5 3.0<br />

Leaf nitrogen (g/m2)


Poplar<br />

(Populus<br />

tremula)<br />

Evaluation of the model<br />

Predicted leaf mass per area (g/m2)<br />

Predicted LMA (g/m 2 )<br />

40 60 80 100 120 140<br />

80 90 100 110 120 130<br />

Observed LMA (g/m 2 )<br />

Observed leaf mass per area


‘storage nitrogen’<br />

• An ideal definition of storage nitrogen would be<br />

the nitrogen stored in plant tissues that is not<br />

involved in any metabolic processes or structural<br />

components (i.e., cell wall and DNA); however, it<br />

would be extremely difficult to quantify the<br />

nitrogen investment for all metabolic processes.<br />

Therefore, to facilitate the development of a<br />

relatively simple nitrogen allocation model, in this<br />

study, ‘storage nitrogen’ is defined as the total<br />

plant nitrogen pool minus the amount of nitrogen<br />

used in structural components, photosynthetic<br />

and respiratory enzymes.


Fn = 2MFNCm/(FNCm+MFNCm)<br />

Dynamic root change<br />

Root to leaf allocations<br />

0.7 0.8 0.9 1.0 1.1 1.2 1.3<br />

0.010 0.015 0.020 0.025 0.030 0.035 0.040<br />

MFNCm<br />

FNCm

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!