19.06.2013 Views

The role of wind-evaporation-SST feedback in tropical variability

The role of wind-evaporation-SST feedback in tropical variability

The role of wind-evaporation-SST feedback in tropical variability

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> Role <strong>of</strong> the W<strong>in</strong>d-Evaporation-Sea<br />

Surface Temperature (WES) Feedback<br />

<strong>in</strong> Tropical Climate Variability<br />

R. Saravanan<br />

Department <strong>of</strong> Atmospheric Sciences,<br />

Texas A&M University, College Station<br />

Collaborators: S. Mahajan, P. Chang


W<strong>in</strong>d Evaporation <strong>SST</strong> (WES) Feedback<br />

L<br />

H<br />

+<br />

-<br />

+<br />

06-19-2008 CCSM Workshop 2008<br />

T<br />

T<br />

-<br />

Equator<br />

<strong>SST</strong><br />

+<br />

WIND<br />

EVAPORATION<br />

Positive Feedback


Role <strong>of</strong> WES Feedback<br />

<strong>The</strong> WES <strong>feedback</strong> is featured <strong>in</strong> several<br />

hypotheses to expla<strong>in</strong> the <strong>tropical</strong> mean<br />

climate and <strong>variability</strong><br />

Asymmetric ITCZ about the equator (Xie, 2004)<br />

Westward seasonal propagation <strong>of</strong> equatorial <strong>SST</strong> anomalies<br />

(Xie, 1994)<br />

Tropical Atlantic <strong>variability</strong> (“ Atlantic dipole”) (Chang et al.,<br />

1997)<br />

Equatorward propagation <strong>of</strong> high-latitude cool<strong>in</strong>g (Chiang and<br />

Bitz, 2005)<br />

06-19-2008 CCSM Workshop 2008


In previous studies, the <strong>role</strong> <strong>of</strong> the WES<br />

<strong>feedback</strong> has usually been <strong>in</strong>ferred from<br />

statistical analysis or us<strong>in</strong>g simple analytical<br />

models.<br />

Our approach: direct mechanistic tests<br />

06-19-2008 CCSM Workshop 2008


Mechanistic Experiments<br />

<strong>SST</strong><br />

CCM3-SOM:<br />

+<br />

T42 Spectral Resolution (2.8 x 2.8)<br />

18 vertical levels<br />

SOM: spatially vary<strong>in</strong>g mixed layer depth but<br />

constant <strong>in</strong> time<br />

Prescribed sea-ice<br />

Q-flux adjustment<br />

WIND<br />

EVAPORATION<br />

06-19-2008 CCSM Workshop 2008<br />

<strong>SST</strong><br />

WIND<br />

+ EVAPORATION<br />

Control Run WES <strong>of</strong>f Run


Heat Flux Bulk Formulations:<br />

LH Flux = u*(q s- q*)B<br />

SH Flux = u*(T s-T*)D<br />

Experimental Set-up<br />

<strong>SST</strong><br />

u* = reference height w <strong>in</strong>d speed<br />

q* = specific humidity at reference height<br />

qs = specific humidity at surface<br />

T* = Temperature at reference height<br />

Ts = Temperature at surface<br />

B, D: Bulk Coefficients<br />

WES <strong>of</strong>f: Prescribe u* while comput<strong>in</strong>g Fluxes<br />

06-19-2008 CCSM Workshop 2008<br />

+<br />

WIND<br />

EVAPORATION


Experimental Set-up<br />

Experiment Set 1: To understand the <strong>variability</strong><br />

associated with WES <strong>feedback</strong><br />

Control Run: 80 years<br />

WES-<strong>of</strong>f-SOM Run: 80 years<br />

Experiment Set 2: To study the Equatorial<br />

Annual Cycle<br />

WES-<strong>of</strong>f-NoANN Run: 40 years<br />

• u* prescribed as annual mean, no seasonal cycle<br />

06-19-2008 CCSM Workshop 2008


(K 2 )<br />

(mm/day) 2<br />

WES Feedback and <strong>SST</strong><br />

06-19-2008 CCSM Workshop 2008<br />

Variability<br />

Spr<strong>in</strong>g Season<br />

% Change <strong>in</strong> <strong>SST</strong> variance : Control run - WES <strong>of</strong>f ANN Run<br />

% Change


Tropical Atlantic Variability<br />

06-19-2008 CCSM Workshop 2008<br />

WES-<strong>of</strong>f-SOM<br />

CCM3-SOM


WES Feedback and <strong>SST</strong><br />

Anomaly Propagation<br />

Strong seasonal cycle <strong>in</strong> the E.Pacific because <strong>of</strong> shallow mixed<br />

layer<br />

<strong>SST</strong> anomalies propagate westward<br />

Control Run<br />

<strong>SST</strong> Anomaly<br />

Longitude Longitude<br />

06-19-2008 CCSM Workshop 2008


Annual Cycle <strong>of</strong> <strong>SST</strong> and LHFLX<br />

<strong>SST</strong><br />

Equatorial Pacific<br />

(2S-2N)<br />

LHFLX<br />

06-19-2008 Control CCSM Run Workshop 2008<br />

WES-<strong>of</strong>f-SOM Run


Equatorward propagation<br />

QuickTime and a<br />

TIFF (Uncompressed) decompressor<br />

are needed to see this picture.<br />

06-19-2008 CCSM Workshop 2008<br />

<strong>of</strong> cold anomalies<br />

Chiang and Bitz (2005)<br />

Last Glacial Maximum<br />

(LGM) sea-ice anomalies<br />

Drier and colder higher and<br />

mid-latitudes<br />

Increased easterlies lead to<br />

evaporative cool<strong>in</strong>g<br />

WES Feedback: <strong>SST</strong> front<br />

moves southwards and<br />

moves ITCZ southwards<br />

Changes <strong>in</strong> surface temperature and precipitation as<br />

compared to a control run.


Experiment Set 4:<br />

06-19-2008 CCSM Workshop 2008<br />

Experimental Set-up:<br />

Tropical Response to High<br />

Sea-ice extent January:<br />

Current conditions<br />

Prescribe Last Glacial<br />

Maximum (LGM) sea-ice<br />

anomalies <strong>in</strong> the Northern<br />

Hemisphere:<br />

• Control Run: CCM3-SOM-<br />

SICE<br />

• WES-<strong>of</strong>f Run: WES-<strong>of</strong>f-SICE<br />

Sea-ice extent January:<br />

CCM3-SOM-SICE/ LGM<br />

Latitude Cool<strong>in</strong>g


Surface Temperature Response<br />

to High Latitude Cool<strong>in</strong>g<br />

Control Case WES-<strong>of</strong>f Case<br />

06-19-2008 CCSM Workshop 2008


Tropical Response to<br />

High Latitude Cool<strong>in</strong>g<br />

Control Case WES-<strong>of</strong>f Case<br />

06-19-2008 CCSM Workshop 2008


06-19-2008 CCSM Workshop 2008<br />

SUMMARY<br />

Even though it is a boundary layer phenomenon, WES<br />

<strong>feedback</strong> can produce non-local (cross-equatorial) atmospheric<br />

response to <strong>SST</strong> anomalies<br />

Responsible for a significant portion <strong>of</strong> <strong>tropical</strong> Atlantic<br />

<strong>variability</strong>, and a smaller portion <strong>of</strong> <strong>tropical</strong> Pacific <strong>variability</strong><br />

Controls the westward propagation <strong>of</strong> annual cycle <strong>of</strong><br />

equatorial <strong>SST</strong><br />

Plays a <strong>role</strong> <strong>in</strong> shift<strong>in</strong>g ITCZ under LGM sea-ice conditions,<br />

but less so than orig<strong>in</strong>ally proposed<br />

In addition to surface <strong>w<strong>in</strong>d</strong>speed, near surface humidity is<br />

also a very important factor <strong>in</strong> controll<strong>in</strong>g <strong>tropical</strong> <strong>variability</strong>.


06-19-2008 CCSM Workshop 2008<br />

Introduction: WES<br />

<strong>The</strong>rmodynamic air-sea coupl<strong>in</strong>g<br />

Feedback<br />

Weaker than dynamic coupl<strong>in</strong>g (Bjerknes<br />

<strong>feedback</strong>)<br />

Boundary layer phenomenon<br />

Non-local effects


Spr<strong>in</strong>g Season<br />

WES Feedback and ITCZ<br />

Ra<strong>in</strong>fall: Control Run - WES <strong>of</strong>f ANN Run<br />

Ra<strong>in</strong>fall (mm/day)<br />

06-19-2008 CCSM Workshop 2008


Spr<strong>in</strong>g Season<br />

CCM3 Runs: Mean State<br />

LH Flux: Control Run - WES <strong>of</strong>f ANN Run<br />

LH Flux (W/m 2 )<br />

06-19-2008 CCSM Workshop 2008<br />

(W/m 2 )


Equatorial Annual Cycle<br />

Seasonal Cycle <strong>of</strong> zonal<br />

<strong>w<strong>in</strong>d</strong>s (U) over Equatorial<br />

Pacific (2S-2N) for<br />

Control Run and the<br />

WES-<strong>of</strong>f-Run<br />

Control Run WES-<strong>of</strong>f-SOM Run<br />

06-19-2008 CCSM Workshop 2008


Seasonal Cycle <strong>of</strong> <strong>SST</strong>,<br />

q over Equatorial<br />

Pacific (2S-2N) for<br />

Control Run and the<br />

WES-<strong>of</strong>f-Run<br />

Equatorial Annual Cycle<br />

Control Run<br />

06-19-2008 CCSM Workshop 2008<br />

WES-<strong>of</strong>f-SOM Run


Atlantic Meridional Mode<br />

Coupled Mode Variability:<br />

• SVD pattern <strong>of</strong> <strong>SST</strong> (color) and LHFLX (contours) for<br />

Control Run and the WES-<strong>of</strong>f-Run.<br />

• Regression <strong>of</strong> surface <strong>w<strong>in</strong>d</strong>s on first PC <strong>of</strong> <strong>SST</strong><br />

06-19-2008 CCSM Workshop 2008


1. ITCZ Asymmetry:<br />

Introduction: Roles<br />

Equatorial Ocean upwell<strong>in</strong>g (Xie and Philander, 1994)<br />

North-west alignment <strong>of</strong> Americas and north-west<br />

African bulge (Philander et al. 1996)<br />

Stratus cloud-<strong>SST</strong> <strong>feedback</strong> (Philander et al., 1996)<br />

WES <strong>feedback</strong> (Xie, 1996)<br />

Annual Mean Climatological <strong>SST</strong> and Ra<strong>in</strong>fall<br />

(Source: Xie 2005)<br />

06-19-2008 CCSM Workshop 2008<br />

<strong>of</strong> WES Feedback<br />

Time-Latitude section <strong>of</strong><br />

<strong>SST</strong>, <strong>w<strong>in</strong>d</strong>s and precipitation<br />

over the eastern Pacific and<br />

Atlantic (Source: Xie 2005)


Annual Mean Climatology: <strong>SST</strong> (Reynolds and<br />

Smith), precipitation (CMAP) and <strong>w<strong>in</strong>d</strong>s (SODA)<br />

(Wang et al., 2004)<br />

Introduction: Roles <strong>of</strong><br />

06-19-2008 CCSM Workshop 2008 W<br />

the WES Feedback<br />

2. Equatorial Annual Cycle:<br />

Westward Propagation<br />

Ocean Temperature: TOGA-TAO moor<strong>in</strong>g data at<br />

the equator and 110 W (Xie, 1994)<br />

H<br />

H<br />

+<br />

Equatorial Section Schematic<br />

L<br />

+<br />

L<br />

+<br />

E


PC analysis<br />

(Ruiz-Barrados<br />

et al., 2000)<br />

Introduction: Roles <strong>of</strong><br />

3. Atlantic Meridional Mode<br />

06-19-2008 CCSM Workshop 2008<br />

the WES Feedback<br />

Dipole Mode: Regression <strong>of</strong> dipole <strong>in</strong>dex<br />

onto <strong>SST</strong> for a RGO coupled to an empirical<br />

atmospheric model with no dynamic<br />

<strong>feedback</strong> but allow<strong>in</strong>g for thermodynamic<br />

<strong>feedback</strong> (Chang et al., 1997)


Introduction: Roles <strong>of</strong><br />

4. Atlantic response to ENSO<br />

06-19-2008 CCSM Workshop 2008<br />

the WES Feedback<br />

Large scale<br />

impacts <strong>of</strong> ENSO<br />

on vertical<br />

motions (Kle<strong>in</strong> et<br />

al., 1999)<br />

Correlation<br />

between<br />

Atlantic <strong>SST</strong><br />

and N<strong>in</strong>o3<br />

<strong>in</strong>dex <strong>in</strong><br />

spr<strong>in</strong>g<br />

(Saravanan<br />

and Chang,<br />

2000)<br />

Correlation between ENSO <strong>in</strong>dex and<br />

upper tropospheric humidity, cloud cover<br />

(ISCCP) and <strong>in</strong>solation (ERBE) (Kle<strong>in</strong> et<br />

al., 1999)


Traditional Approach:<br />

06-19-2008 CCSM Workshop 2008<br />

WES Feedback<br />

Stand-alone AGCM or OGCM<br />

Coupled Model<br />

• Enhanced <strong>variability</strong> <strong>of</strong> the coupled model<br />

<strong>in</strong>dicates <strong>feedback</strong> mechanisms.<br />

Our Approach: WES-<strong>of</strong>f-Experiments:<br />

CCM3 coupled to a Slab Ocean Model (SOM)<br />

Switch <strong>of</strong>f the WES <strong>feedback</strong><br />

Comparison would reveal its <strong>role</strong>


Change <strong>in</strong> the <strong>variability</strong><br />

<strong>of</strong> Latent Heat Flux, <strong>SST</strong><br />

for the spr<strong>in</strong>g season<br />

between a Control Run<br />

and the WES-<strong>of</strong>f-Run<br />

06-19-2008 CCSM Workshop 2008<br />

WES Variability


Change <strong>in</strong> the <strong>variability</strong><br />

<strong>of</strong> Precipitation, Surface<br />

W<strong>in</strong>ds for the spr<strong>in</strong>g<br />

season between a<br />

Control Run and the<br />

WES-<strong>of</strong>f-Run<br />

06-19-2008 CCSM Workshop 2008<br />

WES Variability


WES: Tropical Response<br />

to High Latitude Cool<strong>in</strong>g<br />

06-19-2008 CCSM Workshop 2008


WES: Tropical Response<br />

to High Latitude Cool<strong>in</strong>g<br />

06-19-2008 CCSM Workshop 2008


WES: Tropical Response<br />

to High Latitude Cool<strong>in</strong>g<br />

06-19-2008 CCSM Workshop 2008


WES: Tropical Response<br />

to High Latitude Cool<strong>in</strong>g<br />

06-19-2008 CCSM Workshop 2008


Experimental Set-up:<br />

Experiment Set 3:<br />

06-19-2008 CCSM Workshop 2008<br />

ENSO<br />

Forced ENSO <strong>variability</strong> over the Atlantic:<br />

• Artificial 4 year ENSO <strong>SST</strong> cycle prescribed<br />

over Tropical Pacific<br />

• EOF pattern from observations<br />

• Multiplied with a cos<strong>in</strong>e function:<br />

• Time period: 4 years<br />

• Amplitude: 1 <strong>of</strong> N<strong>in</strong>o 3 <strong>in</strong>dex<br />

• ENSO forced control run: CCM3-SOM-ENSO<br />

• ENSO forced WES-<strong>of</strong>f run: WES-<strong>of</strong>f-ENSO


WES: Atlantic Response<br />

ENSO Response: Coupled Mode Variability:<br />

• SVD pattern <strong>of</strong> <strong>SST</strong> (color) and LHFLX (contours) for<br />

CCM3-SOM-ENSO and the WES-<strong>of</strong>f-ENSO.<br />

• Regression <strong>of</strong> surface <strong>w<strong>in</strong>d</strong>s on first PC <strong>of</strong> <strong>SST</strong><br />

06-19-2008 CCSM Workshop 2008<br />

to ENSO


WES: Tropical Response<br />

to High Latitude Cool<strong>in</strong>g<br />

06-19-2008 CCSM Workshop 2008


WES: Atlantic Response<br />

Atlantic Response to ENSO:<br />

06-19-2008 CCSM Workshop 2008<br />

to ENSO<br />

• Regression <strong>of</strong> April-May-June <strong>SST</strong>(K) and January-Feb-<br />

March net surface heat flux (W/m 2 ) on January ENSO <strong>in</strong>dex<br />

for CCM3-SOM-ENSO


WES: Atlantic Response<br />

Atlantic Response to ENSO:<br />

• Partition<strong>in</strong>g <strong>of</strong> January-Feb-March<br />

net surface heat flux (W/m 2 )<br />

• Regression <strong>of</strong> LHFLX and SHFLX<br />

on January ENSO <strong>in</strong>dex for CCM3-<br />

SOM-ENSO<br />

06-19-2008 CCSM Workshop 2008<br />

to ENSO


WES: Atlantic Response<br />

Partition<strong>in</strong>g LHFLX:<br />

• LHFLX = - (u*q) L vap<br />

• LHFLX’ = - (u*’ + q’) L vap<br />

06-19-2008 CCSM Workshop 2008<br />

to ENSO


WES: Atlantic Response<br />

Role <strong>of</strong> the WES Feedback:<br />

• Reduced <strong>SST</strong> response <strong>in</strong> the WES<strong>of</strong>f-SOM<br />

run<br />

06-19-2008 CCSM Workshop 2008<br />

to ENSO<br />

CCM3-SOM-ENSO WES-<strong>of</strong>f-ENSO


WES: Atlantic Response<br />

Role <strong>of</strong> the WES Feedback:<br />

• Amplification <strong>of</strong> <strong>w<strong>in</strong>d</strong> response <strong>in</strong> the<br />

presence <strong>of</strong> WES <strong>feedback</strong><br />

06-19-2008 CCSM Workshop 2008<br />

to ENSO<br />

CCM3-SOM-ENSO WES-<strong>of</strong>f-ENSO


WES: Atlantic Response<br />

Role <strong>of</strong> the WES Feedback:<br />

• Regression <strong>of</strong> April-May-June surface specific<br />

humidity on the ENSO January <strong>in</strong>dex for CCM3-SOM-<br />

ENSO and WES-<strong>of</strong>f-ENSO runs.<br />

• Less cross-equatorial transport <strong>of</strong> moisture <strong>in</strong> the<br />

absence <strong>of</strong> WES <strong>feedback</strong><br />

06-19-2008 CCSM Workshop 2008<br />

to ENSO<br />

CCM3-SOM-ENSO WES-<strong>of</strong>f-ENSO


WES: Atlantic Response<br />

Role <strong>of</strong> the WES Feedback: ITCZ response<br />

06-19-2008 CCSM Workshop 2008<br />

to ENSO<br />

• Regression <strong>of</strong> April-May-June precipitation on the ENSO January <strong>in</strong>dex<br />

for CCM3-SOM-ENSO and WES-<strong>of</strong>f-ENSO runs.<br />

• Subsidence dur<strong>in</strong>g El-N<strong>in</strong>o events<br />

• Northward movement <strong>of</strong> the ITCZ dur<strong>in</strong>g El-N<strong>in</strong>o events only <strong>in</strong> the<br />

presence <strong>of</strong> WES <strong>feedback</strong><br />

CCM3-SOM-ENSO WES-<strong>of</strong>f-ENSO

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!