12.02.2013 Views

WACCM: The High-Top Model - CESM - UCAR

WACCM: The High-Top Model - CESM - UCAR

WACCM: The High-Top Model - CESM - UCAR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>WACCM</strong>: <strong>The</strong><br />

<strong>High</strong>-<strong>Top</strong> <strong>Model</strong><br />

<strong>WACCM</strong> top<br />

Michael Mills<br />

<strong>WACCM</strong> Liaison<br />

mmills@ucar.edu<br />

(303) 497-1425<br />

http://bb.cgd.ucar.edu/<br />

CAM top 40 km<br />

Ozone Layer<br />

Jarvis, “Bridging the<br />

Atmospheric Divide”,<br />

Science, 293, 2218, 2001


<strong>WACCM</strong> Additions to CAM<br />

• Extends from surface to 5.1x10 -6 hPa (~150 km), with 66 vertical levels<br />

• Detailed neutral chemistry model for the middle atmosphere,<br />

• catalytic cycles affecting ozone<br />

• heterogeneous chemistry on PSCs and sulfate aerosol<br />

• heating due to chemical reactions<br />

• <strong>Model</strong> of ion chemistry in the mesosphere/lower thermosphere (MLT), ion drag,<br />

auroral processes, and solar proton events<br />

• EUV and non-LTE longwave radiation parameterizations<br />

• Imposed QBO, based on cyclic, fixed-phase, or observed winds<br />

• Volcanic aerosol heating calculated explicitly<br />

• Gravity wave drag deposition from vertically propagating GWs generated by<br />

orography, fronts, and convection<br />

• Molecular diffusion and constituent separation<br />

• <strong>The</strong>rmosphere extension (<strong>WACCM</strong>-X) to ~500 km


<strong>WACCM</strong> Motivation<br />

Roble, Geophysical Monograph, v. 123, p. 53, 2000<br />

• Coupling between atmospheric layers:<br />

• Waves transport energy and momentum from the lower<br />

atmosphere to drive the QBO, SAO, sudden warmings,<br />

mean meridional circulation<br />

• Solar inputs, e.g. auroral production of NO in the mesosphere and<br />

downward transport to the stratosphere<br />

• Stratosphere-troposphere exchange<br />

• Climate Variability and Climate Change:<br />

• What is the impact of the stratosphere on tropospheric variability?<br />

• How important is coupling among radiation, chemistry, and circulation?<br />

(e.g., in the response to O3 depletion or CO2 increase)<br />

• Response to solar variability: impacts mediated by chemistry?<br />

• Interpretation of Satellite Observations


<strong>CESM</strong>-<strong>WACCM</strong> component configurations<br />

CAM<br />

specified chemistry<br />

free-running<br />

specified dynamics<br />

free-running<br />

atmosphere ocean<br />

<strong>WACCM</strong><br />

static<br />

(pre-industrial or<br />

present-day)<br />

transient<br />

free-running<br />

data<br />

observations<br />

climatology<br />

land sea ice<br />

data<br />

observations<br />

climatology<br />

freerunning<br />

data<br />

observations<br />

climatology


50N<br />

EQ<br />

50S<br />

Stratospheric Sulfate Surface Area Density Climatology<br />

50N<br />

EQ<br />

50S<br />

El Chichón<br />

17°N, 93°W<br />

Agung<br />

8°S, 115°E<br />

Sulfate Surface Area Density, 43 hPa<br />

Mt Pinatubo:<br />

15°N, 120°E<br />

1960 1970 1980 1990 2000 2010<br />

Krakatau:<br />

6°S, 105°E,<br />

27-28 Aug 1883<br />

1880 1885 1890 1895 1900 1905 1910<br />

Santa<br />

Maria:<br />

14°N,<br />

91°W,<br />

24 Oct.<br />

1902<br />

• Observations<br />

used: SAGE I,<br />

SAGE II, SAM II,<br />

and SME<br />

instruments.<br />

• Non-volcanic<br />

periods filled<br />

with monthly<br />

mean of<br />

1998-2002<br />

values.<br />

• Used Pinatubo<br />

aerosol for<br />

Krakatau and<br />

Santa Maria.


Krakatoa 1883<br />

Krakatoa 1883<br />

Santa Maria 1902<br />

Santa Maria 1902<br />

Agung 1963<br />

Agung 1963<br />

Pinatubo 1991<br />

Chichón 1982<br />

Chichón 1982<br />

Pinatubo 1991<br />

Surface Temperature Anomalies<br />

normalized to 1961-90<br />

—CCSM-CAM4 1deg<br />

—<strong>WACCM</strong>4 Pre-Indusrtrial<br />

—<strong>WACCM</strong>4 20th Century<br />

—<strong>WACCM</strong>4 1955-2005<br />

—Observations (HadCRUT3)<br />

Krakatoa 1883<br />

Santa Maria 1902<br />

Agung 1963<br />

Chichón 1982<br />

Pinatubo 1991


Volcanic heating in <strong>WACCM</strong><br />

2°N<br />

Surface Area (cm 2 cm -3 )<br />

Sulfate Mass (µg m -3 )<br />

Multiple aerosol independent<br />

parameters derived from<br />

observations used as inputs.<br />

2°N 2°N<br />

Effective Radius (cm)


D12305 TILMES ET AL.: IMPACT OF THE GEOENGINEERED AEROSOLS D12305<br />

Volcanic heating in <strong>WACCM</strong><br />

D12305 TILMES ET AL.: IMPACT OF THE 30 GEOENGINEERED hPa occurred after AEROSOLS 1991 for both the differencesD12305 in the<br />

simulations (black line) and radiosonde anomalies (grey<br />

30 line) hPa (Figure occurred 1). For afterall 1991 three forpressure both thelevels, differences temperature in the<br />

simulations anomalies<br />

Temperature<br />

agree (blackwell line) between and radiosonde model<br />

anomalies<br />

and anomalies observations. (grey<br />

line) <strong>The</strong>refore, (Figurewe 1). expect For alla three reliable pressure response levels, of temperature the aerosol<br />

anomalies heating in the agree model well runbetween when using model geoengineered and observations. volcanic-<br />

<strong>The</strong>refore, sized aerosols. we expect a reliable response of the aerosol<br />

heating in the model run when using geoengineered volcanicsized<br />

2.2. aerosols. Setup of the Future Control and Geoengineering<br />

<strong>Model</strong> Runs<br />

pressures in the lower<br />

2.2. [14] Setup We performed of the Future two simulations Control and to analyze Geoengineering the impact<br />

<strong>Model</strong> of geoengineered Runs aerosols on the tropospheric and stratospheric<br />

[14] We dynamics, performed andtwo stratospheric simulations chemistry. to analyze<strong>The</strong> thecontrol, impact<br />

of or ‘‘baseline’’ geoengineered model aerosols run, is on initialized the tropospheric as a REF2 and model strato- run,<br />

spheric following dynamics, the CCMVal and stratospheric definition [Eyring chemistry. et al., <strong>The</strong> 2006],and control,<br />

or covers ‘‘baseline’’ the period modelbetween run, is initialized 2010 and as a2050. REF2 model Increasing run,<br />

following greenhousethe gases, CCMVal baseddefinition on the IPCC [Eyring A1Betscenario al., 2006],and [IPCC,<br />

covers 2007], are theincluded period in between this simulation, 2010 and as well 2050. as Increasing changes in<br />

greenhouse anthropogenic gases, halogen basedemissions. on the IPCC Initialized A1B scenario SAD and [IPCC, the<br />

2007], resulting areHincluded 2SO4 mass in this in the simulation, model are as prescribed well as changes usingina anthropogenic climatology for halogen a nonvolcanic emissions. Initialized period from SADSAGE and the II<br />

resulting [Thomason H et al.,<br />

2SO4 mass 1997]. in the model are prescribed using a<br />

climatology [15] <strong>The</strong> geoengineering for a nonvolcanic model run period is set from up identically SAGE to II<br />

[Thomason the baselineet run al., between 1997]. 2010 and 2020. However, starting<br />

in[15] the year <strong>The</strong> geoengineering 2020, the SAD model is increased run isfrom set upbackground identically to to<br />

the an enhanced, baseline run fixed between SAD2010 distribution. and 2020. This However, SAD isstarting calcu-<br />

in lated the from year 2020, the SO the4 SAD distribution is increased derived frominbackground the study of to<br />

an Rasch enhanced, et al. [2008b]. fixed SAD Rasch distribution. et al. [2008b] Thisused SADtheisNCAR calculated<br />

CAM from model thetoSO derive<br />

4 distribution aerosol distributions derived in the for study different of<br />

Rasch scenarios, et al. with [2008b]. varying Rasch amounts et al. of [2008b] sulfur used injection the NCAR in the<br />

CAM tropics,<br />

Figure model two<br />

1.<br />

different-sized toTemperature derive aerosol aerosol<br />

difference distributions types,<br />

between<br />

and two forthe different<br />

REF1.3v<br />

Pinatubo 1991<br />

Pinatubo 1991<br />

calculated with <strong>WACCM</strong> (black<br />

lines) and observed (grey lines) at<br />

stratosphere (Tilmes et al., 2009)<br />

Pinatubo 1991<br />

<strong>Model</strong> Run<br />

[14] We p<br />

of geoengin<br />

spheric dyn<br />

or ‘‘baseline<br />

following th<br />

covers the<br />

greenhouse<br />

2007], are i<br />

anthropogen<br />

resulting H 2<br />

climatology<br />

[Thomason<br />

[15] <strong>The</strong> g<br />

the baseline<br />

in the year 2<br />

an enhance<br />

lated from<br />

Rasch et al.<br />

CAM mode<br />

scenarios, w<br />

tropics, two<br />

CO 2 conditi<br />

al. [2008b],<br />

into a prese<br />

sols are assu<br />

astandardd<br />

effective rad<br />

[16] <strong>The</strong><br />

is an appro<br />

size spectru<br />

ulation time<br />

scheme (in<br />

aerosols alr<br />

by Rasch et<br />

distribution<br />

considered<br />

Tilmes et a


Grading of Chemistry in CCMs: Chapter 6 of the<br />

SPaRC CCMVal<br />

• CCMs were evaluated on<br />

their ability to represent longlived<br />

constituents<br />

(precursors) and short-lived<br />

substances (radicals).<br />

• <strong>WACCM</strong> graded out high in<br />

all categories (i.e., grade of 1<br />

is the highest possible).<br />

• This is a reflection of the:<br />

1) completeness of the<br />

chemical processes<br />

included<br />

2) accuracy of photolysis<br />

rates (J’s)<br />

3) and accuracy of the<br />

numerical solution<br />

approach.<br />

SPARC CCMVal, Report on the Evaluation of Chemistry-Climate <strong>Model</strong>s, V.Eyring, T. G. Shepherd, D. W. Waugh<br />

(EDs.), SPARC Reprot No.4, WCRP-X, WMO/TD-No. X, http://www.atmosp.physics.utoronto.ca/SPARC, 2010.


Temperature<br />

<strong>WACCM</strong> Heterogeneous Chemistry Module<br />

>200 K<br />

188 K<br />

(T sat)<br />

185 K<br />

(T nuc)<br />

Sulfate Aerosols (H 2O, H 2SO 4) - LBS<br />

k=1/4*V*SAD*γ (SAD from SAGEII)<br />

Sulfate Aerosols (H 2O, HNO 3, H 2SO 4) - STS<br />

<strong>The</strong>rmo. <strong>Model</strong> (Tabazadeh)<br />

Nitric Acid Hydrate (H 2O, HNO 3) – NAT<br />

R NAT = ƒ {Log Normal Size; # particles cc;<br />

width distribution; condensed phase HNO 3}<br />

ICE (H 2O, with NAT Coating)<br />

R ice= 10-30 μm<br />

?<br />

R lbs = 0.1 μm<br />

R sts = 0.5 μm


<strong>WACCM</strong> Ozone Trend: CCMVal and WMO<br />

Antarctic Spring <strong>WACCM</strong><br />

Redrawn from: Austin, J., et al., J. Geophys. Res., in press., 2010.<br />

does better<br />

than most<br />

models at<br />

calculating<br />

the evolution<br />

of the ozone<br />

hole.


Antarctic sea-ice extent<br />

CCSM4 (CAM4)<br />

-- Pre-Industrial<br />

— 1979-2005<br />

<strong>WACCM</strong>4<br />

-- Pre-Industrial<br />

— 1979-2005<br />

Observed 1979-2005 ave<br />

-- ice-ocean hindcast<br />

— Satellite<br />

CCSM4 (CAM)<br />

dashed lines:<br />

(1960-1979 ave) - PI<br />

solid lines:<br />

(1979-2005 ave) - PI<br />

<strong>WACCM</strong>4<br />

<strong>The</strong> more realistic ozone loss in <strong>WACCM</strong> drives changes in winds that enhance<br />

sea-ice loss, producing sea-ice extent closer to modern observations.


Acceleration of the Brewer–Dobson Circulation due to Increases in Greenhouse Gases<br />

L OF THE ATMOSPHERIC SCIENCES VOLUME<br />

Garcia and Randel, J. Atmos. Sci., vol. 65 (8), pp. 2731-2739, 2008.<br />

65<br />

and lower stratopper<br />

stratosphere<br />

sphere to enhanced and therere<br />

were made at<br />

5° longitude. <strong>The</strong><br />

idation activity of<br />

Role subtropics in Climate<br />

scribed in detail<br />

(specifically for<br />

• faster circulation in<br />

greenhouse world due<br />

propagation of wave<br />

activity into the lower<br />

stratosphere and its<br />

dissipation in the<br />

• changes in meridional<br />

temperature gradient<br />

affect zonal winds,<br />

which change the<br />

regions where waves<br />

dissipate, increasing<br />

momentum deposition<br />

of three ensemble<br />

rst, or reference<br />

ive” simulation of<br />

with sea surface<br />

HG and halogen<br />

<strong>The</strong> second simu-<br />

20th<br />

Century<br />

Age of Air (y),<br />

~10 hPa, tropics<br />

Future,<br />

increasing GHGs<br />

Future,<br />

fixed GHGs


Impact of geoengineered aerosols on the troposphere and stratosphere<br />

Tilmes et al., J. Geophys. Res., vol. 114, pp. 12305, 2009.<br />

• ~5 years for adjustment of temperatures<br />

• Constant temperature offset<br />

Annual mean, zonally averaged global temperature difference between present day (2010–<br />

uture (2040–2050) for (a) the baseline run and (b) the geoengineering run. (c) Annual mean,<br />

raged global temperature difference between geoengineering and baseline runs for future<br />

) conditions. Hatched areas are not significant at 95% level based on Student’s t test.<br />

of geoengineered aerosols is constant.<br />

d in the case of geoengineering would<br />

elmed by increasing greenhouse gases<br />

ission scenario, unless the content of<br />

tosphere were adjusted. In our case,<br />

ys global warming by approximately<br />

appreciated from Figure 4. <strong>The</strong>refore,<br />

of 2 Tg S per year of volcanic-sized<br />

Temperature:<br />

Geoengineering - Baseline<br />

• <strong>The</strong> fixed amount of sulfur cools the Earth’s<br />

surface by ~0.9 K (Tropics), ~1.2 K (Global)<br />

aerosols is shown to counteract global warming through<br />

about 2050 with respect to the situation in 2010.<br />

• Delay of global warming by ~ 40 years<br />

• Dependence on continuous injection of sulfur<br />

4. Impact of Geoengineered Aerosols on Surface<br />

Temperatures and Climate<br />

[28] Increasing greenhouse gases result in increasing<br />

tropospheric and decreasing stratospheric temperatures.<br />

T anomaly (K) Baseline / Geoengineering<br />

40 km<br />

year 2020 2030 2040 2050<br />

30 km<br />

year 2020 2030 2040 2050<br />

10 km<br />

year 2020 2030 2040 2050<br />

surface<br />

year 2020 2030 2040 2050


Altitude (km)<br />

Impact of geoengineered aerosols on the troposphere and stratosphere<br />

Tilmes et al., J. Geophys. Res., vol. 114, pp. 12305, 2009.<br />

Impacts of geoengineering on ozone<br />

in the lower stratosphere compared to<br />

arcia and Randel, 2008]. Further, the<br />

D12305 TILMES ET AL.: IMPACT OF THE GEOENGINEERED AEROSO<br />

Baseline –Geoengineering<br />

Latitude<br />

Difference of annual mean zonally averaged global ozone values between present day (2010–<br />

future (2040–2050) for (a) the baseline run and (b) the geoengineering run. (c) Difference of<br />

n zonally averaged global ozone values between geoengineering and baseline runs for future<br />

0) conditions. Hatched areas are not significant at 95% level based on Student’s t test.<br />

tion is discussed below for the tropics, midlatitudes and<br />

polar regions.<br />

Impact of geoengineering


Massive global ozone loss predicted following regional nuclear conflict<br />

Mills et al., PNAS, vol. 105, pp. 5307, 2008<br />

• <strong>WACCM</strong> input: new<br />

estimates of smoke<br />

produced by fires in<br />

contemporary cities<br />

following a regional<br />

nuclear war between<br />

India and Pakistan<br />

• Solar radiation heats<br />

the soot, lofting it to<br />

the stratopause,<br />

heating the the entire<br />

stratosphere for 10<br />

years, altering<br />

reaction rates<br />

affecting ozone.<br />

• Calculated ozone losses exceed 20% globally, 25-45% at midlatitudes, and 50-70% at northern high<br />

latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone<br />

amounts remain below that which defines the Antarctic ozone hole everywhere outside of the tropics.


Nuclear winter in <strong>WACCM</strong>4<br />

Black Carbon Input<br />

150-300 hPa<br />

GISS <strong>Model</strong>E<br />

(Robock et al., 1997)<br />

Year<br />

<strong>WACCM</strong>4<br />

GISS <strong>Model</strong>E<br />

Year<br />

<strong>WACCM</strong>4<br />

GISS <strong>Model</strong>E<br />

<strong>WACCM</strong>4


<strong>WACCM</strong> and CAM-Chem Customer Support<br />

CGD Forum: http://bb.cgd.ucar.edu/<br />

Mike Mills<br />

<strong>WACCM</strong> Liaison<br />

mmills@ucar.edu<br />

(303) 497-1425<br />

Simone Tilmes<br />

CAM-Chem Liaison<br />

tilmes@ucar.edu<br />

(303) 497-1425

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!