17.05.2013 Views

structure of quasicrystals and related phases - iitk.ac.in

structure of quasicrystals and related phases - iitk.ac.in

structure of quasicrystals and related phases - iitk.ac.in

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

STRUCTURE OF QUASICRYSTALS AND<br />

RELATED PHASES<br />

ANANDH SUBRAMANIAM<br />

Guest Scientist (Alex<strong>and</strong>er Von Humboldt Fellow)<br />

Electron Microscopy Group<br />

Max-Planck-Institut für Metallforschung<br />

STUTTGART<br />

Ph: (+49) (0711) 689 3683, Fax: (+49) (0711) 689 3522<br />

an<strong>and</strong>h@mf.mpg.de<br />

http://www.geocities.com/an<strong>and</strong>h4444/<br />

November 2004


OVERVIEW<br />

DEFINITION<br />

DISCUSSION<br />

OUTLINE<br />

PROJECTION FORMALISM<br />

CLUSTER BASED CONSTRUCTION<br />

Mg-Zn Mg Zn-(Y, (Y, La) SYSTEMS<br />

“Babuji” 1899-1983


HYPERBOLIC<br />

EUCLIDEAN<br />

SPHERICAL<br />

METAL<br />

SEMI-METAL<br />

SEMI-CONDUCTOR<br />

INSULATOR<br />

AMORPHOUS<br />

GAS<br />

SPACE<br />

nD + t<br />

BAND STRUCTURE<br />

QUASICRYSTALS<br />

SIZE<br />

UNIVERSE<br />

PARTICLES<br />

ATOMIC<br />

ENERGY<br />

STATE / VISCOSITY<br />

SOLID LIQUID<br />

STRUCTURE<br />

RATIONAL<br />

APPROXIMANTS<br />

NANO-QUASICRYSTALS NANOCRYSTALS<br />

STRONG<br />

WEAK<br />

ELECTROMAGNETIC<br />

GRAVITY<br />

FIELDS<br />

NON-ATOMIC<br />

CRYSTALS<br />

LIQUID<br />

CRYSTALS


VARIOUS SPACES INVOLVED<br />

1D, 2D, 3D 4D, 5D, 6D 7D, ....., ND<br />

PHYSICAL<br />

SPACES<br />

PARALLEL SPACE<br />

QC<br />

HYPERSPACES<br />

GENERALIZED<br />

HYPERSPACES<br />

(E || ) PERPENDICULAR<br />

SPACE (E) REAL SPACE RECIPROCAL SPACE


QUASICRYSTALS (QC)<br />

ORDERED PERIODIC QC ARE<br />

ORDERED<br />

STRUCTURES<br />

WHICH ARE<br />

NOT<br />

PERIODIC<br />

CRYSTALS <br />

QC <br />

AMORPHOUS <br />

CRYSTALS<br />

(XAL)<br />

<br />

MODULATED<br />

STRUCTURES<br />

(MS)<br />

<br />

INCOMMENSURATELY<br />

MODULATED STRUCTURES<br />

(IMS)<br />

QC Can be thought <strong>of</strong> as IMS which cannot be constructed with a s<strong>in</strong>gle “unit cell” <br />

but can be thought <strong>of</strong> as cover<strong>in</strong>g with a s<strong>in</strong>gle prototile


SYMMETRY<br />

XAL QC<br />

t <br />

R C R CQ<br />

t translation<br />

<strong>in</strong>flation<br />

RC rotation 2, crystallographic<br />

3, 4, 6<br />

RCQ RC + 5, other 8, 10, 12<br />

DIMENSION OF QUASIPERIODICITY (QP)<br />

QP<br />

HIGHER DIMENSIONS<br />

QP/P<br />

QP/P<br />

QC can be thought <strong>of</strong> as crystals <strong>in</strong> higher<br />

dimensions<br />

(which are projected on to lower<br />

dimensions)<br />

QC can have quasiperiodicity<br />

along 1,2 or 3 dimensions<br />

QP XAL<br />

1 4<br />

2 5<br />

3 6<br />

QC are char<strong>ac</strong>terized<br />

by <strong>in</strong>flationary<br />

symmetry <strong>and</strong> can<br />

have disallowed<br />

crystallographic<br />

symmetries


THE FIBONACCI SEQUENCE<br />

Fibon<strong>ac</strong>ci 1 1 2 3 5 8 13 21 34 ... <br />

Ratio 1/1 2/1 3/2 5/3 8/5 13/8 21/13 34/21 ... <br />

Ratio<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

Convergence <strong>of</strong> Fibon<strong>ac</strong>ci Ratios<br />

1 2 3 4 5 6 7 8 9 10<br />

n<br />

= ( 1+5)/2<br />

WHERE IS THE ROOT OF THE EQUATION x2 –x –1 = 0


Rational<br />

Approximants<br />

A<br />

B<br />

B A<br />

B A B<br />

B A B B A<br />

B A B B A B A B<br />

B A B B A B A B B A B B A<br />

1-D QC<br />

Schematic diagram show<strong>in</strong>g the structural analogue <strong>of</strong><br />

the Fibon<strong>ac</strong>ci sequence lead<strong>in</strong>g to a 1-D QC<br />

Deflated<br />

sequence<br />

<br />

Penrose til<strong>in</strong>g<br />

a<br />

b<br />

ba<br />

bab<br />

babba


LIST OF QC.ppt


[1] I.R. Fisher et al., Phil Mag B 77 (1998) 1601<br />

FOUND!<br />

THE MISSING PLATONIC SOLID<br />

[2] Rüdiger diger Appel, Appel http://www.3quarks.com/GIF-Animations/PlatonicSolids/<br />

[1]<br />

[2]<br />

Mg-Zn-Ho


DISCUSSION


STRUCTURE OF QUASICRYSTALS<br />

QUASILATTICE APPROACH<br />

(Construction <strong>of</strong> a quasilattice followed by the decoration<strong>of</strong> the lattice by atoms)<br />

PROJECTION FORMALISM<br />

TILINGS AND COVERINGS<br />

CLUSTER BASED CONSTRUCTION<br />

(local symmetry <strong>and</strong> stagewise construction are given importance)<br />

<br />

<br />

TRIACONTAHEDRON (45 Atoms)<br />

MACKAY ICOSAHEDRON (55 Atoms)<br />

BERGMAN CLUSTER (105 Atoms)


E2<br />

HIGHER DIMENSIONS ARE NEAT<br />

REGULAR<br />

PENTAGONS<br />

GAPS<br />

S2 <br />

E3<br />

SPACE FILLING


PROJECTION METHOD<br />

QC considered a crystal <strong>in</strong> higher dimension<br />

Additional basis vectors needed to <strong>in</strong>dex the diffr<strong>ac</strong>tion pattern<br />

2D 1D<br />

E W<strong>in</strong>dow<br />

Slope = Tan ()<br />

<br />

e 2<br />

Irrational QC<br />

e 1<br />

Rational RA (XAL)<br />

E ||


Projection<br />

Plane <br />

KINDS OF STRUCTURES OBTAINED BY<br />

PROJECTION FORMALISM<br />

Irrational Tiles Irrational dimensions<br />

Strip<br />

Irrational Rational<br />

Arrangement Quasiperiodic<br />

Quasicrystal (QC)<br />

Rational Tiles Rational dimensions<br />

Arrangement Quasiperiodic<br />

Quasiperiodic Superlattice<br />

(QPSL)<br />

Tiles Irrational dimensions<br />

Arrangement Periodic<br />

QC Approximant<br />

Tiles Rational dimensions<br />

Arrangement periodic<br />

QPSL Approximant


Real Sp<strong>ac</strong>e Reciprocal Sp<strong>ac</strong>e<br />

1. Rational Lengths L <strong>and</strong> S arranged<br />

periodically<br />

2. Rational lengths L <strong>and</strong> S arranged <strong>in</strong> a<br />

Fibon<strong>ac</strong>ci cha<strong>in</strong><br />

3. Irrational length L <strong>and</strong> S arranged<br />

periodically<br />

4. Irrational length L <strong>and</strong> S arranged <strong>in</strong> a<br />

Fibon<strong>ac</strong>ci cha<strong>in</strong><br />

Periodic<br />

Periodic with satellites<br />

Peak positions periodic<br />

Intensities aperiodic<br />

Aperiodic<br />

Diffr<strong>ac</strong>tion properties <strong>of</strong> various distributions <strong>of</strong><br />

scatterers.


Progressive lower<strong>in</strong>g <strong>of</strong> dimension start<strong>in</strong>g with an<br />

N-fold fold symmetry <strong>in</strong> ND sp<strong>ac</strong>e<br />

N-fold symmetry<br />

Hypercubic Lattice viewed<br />

along [111....1]N 1s<br />

<br />

N-D<br />

Quasiperiodic til<strong>in</strong>g 2D RA<br />

<br />

Sequence <strong>of</strong> numbers<br />

Sequence <strong>of</strong> ‘a’s <strong>and</strong> ‘b’s<br />

Polynomial Equation<br />

<br />

Convergence <strong>of</strong> sequence<br />

Length <strong>of</strong> ‘a’/length <strong>of</strong> ‘b’<br />

Root <strong>of</strong> Polynomial Eq.<br />

1D<br />

0D<br />

Approximants<br />

<br />

Repeat<strong>in</strong>g<br />

Sequence<br />

Rational<br />

Number


ND-0D.ppt


GENERALIZED PROJECTION METHOD<br />

[A] a1, a2, a3, ..., aN : a set <strong>of</strong> vectors <strong>in</strong> E||<br />

[B] b1, b2, b3, ..., bN : a set <strong>of</strong> vectors <strong>in</strong> E<br />

W : the <strong>ac</strong>ceptance region or w<strong>in</strong>dow <strong>in</strong> E<br />

{n1, n2, n3, ..., nN} are a set <strong>of</strong> <strong>in</strong>tegers <strong>in</strong> N dimensional sp<strong>ac</strong>e such that<br />

n1a1 + n2a2 + n3a3 + ... + nNaN is <strong>ac</strong>cepted as a po<strong>in</strong>t <strong>in</strong> E|| if <strong>and</strong> only if:<br />

n1b1 + n2b2 + n3b3 + ... + nNbN W<br />

L<strong>in</strong>ear deformations <strong>of</strong> E do not affect the pattern produced <strong>in</strong> E||,<br />

i.e. if E is m dimensional <strong>and</strong> T is a non s<strong>in</strong>gular m m matrix, then:<br />

n1(Tb1) + n2(Tb2) + ... + nN(TbN) TW,<br />

if <strong>and</strong> only if n1b1 + n2b2 + ... + nNbN W<br />

The pattern <strong>in</strong> E|| will have a period n1a1 + n2a2 + n3a3 + ... + nNaN<br />

for any {n1, n2, n3, ..., nN} such that n1b1 + n2b2 + n3b3 + ... + nNbN = 0


2D AND 3D<br />

QUASILATTICS<br />

AND THEIR<br />

APPROXIMANTS<br />

(QC & RA)


RATIONAL APPROXIMANTS TO THE PENROSE TILING WITH<br />

ORTHOGONAL BASIS VECTORS<br />

Fourier transform <strong>of</strong> the lattice a set <strong>of</strong><br />

10-fold spots are marked with circles.<br />

{1/1 1/1} RA to the<br />

Penrose til<strong>in</strong>g<br />

Lattice with rectangular<br />

unit cell ABCD


RA to the<br />

Penrose til<strong>in</strong>g<br />

{1/1 2/1} {3/2 1/1}<br />

{ 2/1}


RATIONAL APPROXIMANTS WITH APPROXIMATIONS ALONG<br />

BASIS VECTORS 72 APART<br />

Fourier transform <strong>of</strong> the lattice with remnant<br />

<strong>of</strong> the 10-fold symmetry marked by circles.<br />

{1/1 1/1}e RA to the<br />

Penrose til<strong>in</strong>g<br />

Lattice with rectangular unit cell ABCD<br />

<strong>and</strong> parallelogram cell EFGH


5-fold [1 <br />

0]<br />

ICOSAHEDRAL QUASILATTICE<br />

3-fold [2+1 <br />

0]<br />

2-fold [+1 1]


{1/1 } P PENTAGONAL QUASILATTICE<br />

B’[p/q, , ]<br />

E ||<br />

5<br />

2<br />

V 3<br />

4<br />

<br />

q<br />

<br />

<br />

<br />

0<br />

<br />

0<br />

3<br />

6 4<br />

1<br />

V 1<br />

3<br />

q<br />

1<br />

<br />

6<br />

<br />

<br />

q<br />

1<br />

V 2<br />

2<br />

5<br />

q<br />

1<br />

<br />

<br />

q<br />

<br />

1<br />

p<br />

0<br />

<br />

<br />

2


6 3<br />

4<br />

{1/1 } T TRIGONAL QUASILATTICE<br />

B' =<br />

E ||<br />

2 2 2<br />

<br />

<br />

<br />

<br />

2 1 2 1<br />

<br />

2 2 1 1<br />

<br />

5<br />

V 1<br />

5<br />

2<br />

1<br />

V 2<br />

4<br />

6<br />

V 3


Three dimensional cover<strong>in</strong>g with tri<strong>ac</strong>ontahedra<br />

Lord, E. A., Ranganathan, S., <strong>and</strong> Kulkarni, U. D., Current Science, 78 (2000) 64


(a) (b)<br />

Bergman cluster M<strong>ac</strong>kay double icosahedron<br />

Important clusters underly<strong>in</strong>g the <strong>structure</strong> <strong>of</strong><br />

<strong>quasicrystals</strong> <strong>and</strong> their approximants.<br />

(a) Bergman, G., Waugh, J. L. T., <strong>and</strong> Paul<strong>in</strong>g, L., Acta Cryst., 10 (1957) 2454<br />

(b) Ranganathan, S., <strong>and</strong> Chattopadhyay, K., Annu. Rev. Mater. Sci., 21 (1991) 437<br />

<br />

= 1


The <strong>structure</strong> <strong>of</strong> the Al3Mn decagonal phase<br />

Hiraga, K., Kaneko, M., Matsuo, Y., <strong>and</strong> Hashimoto, S., Phil. Mag. B67 (1993) 193<br />

= 2


(a) (b)<br />

Cluster <strong>of</strong> three dodecahedra Four vertex-connected vertex connected icosahedra<br />

Arrangement <strong>of</strong> sub-units <strong>in</strong> complex hexagonal<br />

<strong>phases</strong><br />

(a) S<strong>in</strong>gh, A., Abe, E., <strong>and</strong> Tsai, A. P., Phil. Mag. Lett., 77 (1998) 95<br />

(b) Kre<strong>in</strong>er, G., <strong>and</strong> Franzen, H. F., J. Alloys <strong>and</strong> Compounds, 221 (1995) 15<br />

= 3


IQC ( = 1) DQC ( = 2)<br />

<br />

M<strong>ac</strong>kay Approximant Taylor Approximant<br />

<br />

Little Approximant Rob<strong>in</strong>son Approximant<br />

IQC ( = 1) HQC ( = 3)<br />

Key: shows a tw<strong>in</strong>n<strong>in</strong>g operation<br />

Relation between IQ C <strong>and</strong> its approxim ants with<br />

D Q C, its approxim ants <strong>and</strong> H Q C via the tw<strong>in</strong>n<strong>in</strong>g<br />

operation


A quadrant <strong>of</strong> the stereogram <strong>of</strong> the decagonal phase<br />

with <strong>in</strong>dices derived by the tw<strong>in</strong>ned icosahedron<br />

model


Stereogram <strong>of</strong> the Taylor phase obta<strong>in</strong>ed by tw<strong>in</strong>n<strong>in</strong>g<br />

<strong>of</strong> the M<strong>ac</strong>kay approximant to the icosahedral phase


Quadrant <strong>of</strong> the stereogram correspond<strong>in</strong>g to I3<br />

cluster


= 2<br />

= 1<br />

Icosahedral Quasicrystal = 3<br />

Decagonal<br />

Hexagonal<br />

Quasicrystal<br />

= 1<br />

Quasicrystal<br />

Digonal Pentagonal Cubic R.A.S. Trigonal Hexagonal<br />

Quasicrystal Quasicrystal M<strong>ac</strong>kay Bergman Quasicrystal R.A.S.<br />

Orthorhombic<br />

R.A.S.<br />

Taylor Little<br />

Rob<strong>in</strong>son<br />

Monocl<strong>in</strong>ic<br />

R.A.S.<br />

= 108 o<br />

R.A.S.<br />

Orthorhombic<br />

R.A.S<br />

Monocl<strong>in</strong>ic<br />

R.A.S.<br />

= 90 o<br />

Trigonal<br />

R.A.S.<br />

Unification scheme based on the tw<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the<br />

icosahedral cluster<br />

Orthorhombic<br />

R.A.S.<br />

Monocl<strong>in</strong>ic<br />

R.A.S.<br />

120 o


EXPERIMENTAL<br />

Mg-Zn Mg Zn-(Y, (Y, La)<br />

SYSTEMS


METASTABLE PHASES IN Mg-BASED ALLOYS<br />

QUASICRYSTALS<br />

RATIONAL APPROXIMANTS & RELATED STRUCTURES<br />

METALLIC GLASSES<br />

NANOCRYSTALS & NANOQUASICRYSTALS


MILESTONES IN Mg-BASED QUASICRYSTAL RESEARCH<br />

Mg-Zn-Al First Mg-Based QC<br />

(Icosahedral)<br />

P. Ram<strong>ac</strong>h<strong>and</strong>rarao, G.V.S. Sastry<br />

1985<br />

Mg-Zn-Al-Cu Quaternary System N.K. Mukhopadhyay, G.N. Subbanna, S.<br />

Ranganathan, K. Chattopadhyay<br />

1986<br />

Mg-Zn-Ga Stable QC W. Ohashi, F. Spaepen<br />

1987<br />

Mg-Zn-RE Icosahedral QC Z. Luo, S. Zhang, Y. Tang, D. Zhao<br />

1993<br />

Mg-Al Cubic QC P. Donnadieu, A. Redjaimia<br />

1995<br />

Mg-Zn-RE Decagonal QC T.J. Sato, E. Abe, A.P. Tsai<br />

1997<br />

Mg-Zn-RE QC without underly<strong>in</strong>g<br />

atomic clusters<br />

E. Abe, T.J. Sato, A.P. Tsai<br />

1999


IMPORTANT PHASES IN THE Mg-Zn-RE SYSTEMS<br />

Composition e/a Phase, Symmetry Comments<br />

Mg3Zn6RE 2.1 Icosahedral, Fm53<br />

aR = 0.519<br />

RE = Y, Gd, Tb, Dy, Ho, Er<br />

dia (0.352, 0.360)<br />

Mg40Zn58RE2 2.02 Decagonal, 10/mmm RE = Y, Dy, Ho, Er, Tm, Lu<br />

Mg24Zn65RE10 (S) 2.1 Hexagonal superlattice, P63/mmc<br />

a = 1.46 nm, c = 0.86 nm<br />

Mg24Zn65RE10 (M) 2.1 Hexagonal superlattice, P63/mmc<br />

a = 2.35 nm, c = 0.86 nm<br />

Mg24Zn65Y10 (L) 2.1 Hexagonal superlattice, P63/mmc<br />

a = 3.29 nm, c = 0.86 nm<br />

Mg12ZnY 2.07 ?<br />

Mg3Zn3Y2 2.25 cF16, Fm3m<br />

dia < 0.355<br />

RE = Y, Sm, Gd<br />

Related to IQC<br />

RE = Sm, Gd<br />

Related to IQC<br />

RE = Sm<br />

Related to IQC<br />

aS : aM : aL = 3 : 5 : 7<br />

Mg7Zn3 2 oI142, Immm 1/1 RA to IQC<br />

Mg4Zn7 2 mC110, B2/m Related to DQC<br />

MgZn2 2 hp12, P63/mmc Related to S, L & M <strong>phases</strong>


(a)<br />

SEM micrograph <strong>of</strong> as-cast Mg 51 Zn 41 Y 8 alloy show<strong>in</strong>g<br />

(a) Eutectic Micro<strong>structure</strong> (b) Four-fold dendrite<br />

(b)


5-FOLD<br />

5-FOLD FOLD TO 6-FOLD 6 FOLD<br />

SEM micrograph <strong>of</strong> as-cast Mg 51 Zn 41 Y 8 alloy show<strong>in</strong>g<br />

distorted 5-fold dendrite grow<strong>in</strong>g <strong>in</strong>to hexagonal shape<br />

DEVELOPING<br />

INTO 6-FOLD<br />

Initial stages <strong>of</strong><br />

growth


BFI<br />

As-cast Mg 37 Zn 38 Y 25 alloy show<strong>in</strong>g the formation <strong>of</strong> a cubic phase (a = 7.07 Å):<br />

[111]<br />

[110] [113]


[112]<br />

[111] [011]<br />

SAD patterns from a BCC phase (a = 10.7 Å) <strong>in</strong> as-cast Mg 4 Zn 94 Y 2 alloy show<strong>in</strong>g important zones


High-resolution micrograph<br />

SAD pattern BFI<br />

As-cast Mg 37 Zn 38 Y 25 alloy show<strong>in</strong>g a 18 R modulated phase


[1 <br />

0]<br />

[0 0 1]<br />

SAD patterns from as-cast Mg 23 Zn 68 Y 9 show<strong>in</strong>g the formation <strong>of</strong> FCI QC<br />

[1 1 1]<br />

[ 1 3 + ]


Uniform deformation along the arrow <strong>of</strong> the [0 0 1] 2-fold pattern from IQC giv<strong>in</strong>g<br />

rise to a pattern similar to the [ 1 3 + ] pattern


BFI<br />

TEM micrograph <strong>of</strong> as-cast Mg 4 Zn 94 Y 2 alloy show<strong>in</strong>g the formation <strong>of</strong> nanocrystall<strong>in</strong>e Mg 3 Zn 6 Y phase<br />

BFI<br />

SAD<br />

Mg 4 Zn 94 Y 2 as-cast alloy heat treated at 350 o C for 20 hrs (correspond<strong>in</strong>g to the MgZn 5.51 phase)<br />

SAD


BFI from as-cast Mg 46 Zn 46 La 8 alloy show<strong>in</strong>g patterns from APBs


BFI<br />

[113]<br />

Melt-spun Mg 50 Zn 45 Y 5 alloy show<strong>in</strong>g the formation <strong>of</strong> a cubic phase (a = 6.63 Å)<br />

[001]<br />

[111]


Comparison <strong>of</strong> the [001] two-fold <strong>of</strong> the FCI QC (a) with the two-fold from other<br />

phase <strong>in</strong> the MgZnY (b), (c) <strong>and</strong> MgZnLa (d) systems


CONCLUSIONS<br />

A variety <strong>of</strong> Quasiperiodic <strong>and</strong> Rational Approximant <strong>structure</strong>s can be realized us<strong>in</strong>g the Strip<br />

Projection Method, which serves to unify these <strong>structure</strong>s us<strong>in</strong>g higher dimensions<br />

Structures with diverse k<strong>in</strong>ds <strong>of</strong> symmetries can be generated us<strong>in</strong>g the Tw<strong>in</strong>ned Icosahedron<br />

Model, which further can be used to construct a unified framework based on the orientations <strong>of</strong> the<br />

icosahedron <strong>and</strong> the lower<strong>in</strong>g <strong>of</strong> symmetry<br />

The Mg-Zn-RE systems serves a new ‘model system’ for the study <strong>of</strong> <strong>quasicrystals</strong> <strong>and</strong> <strong>related</strong><br />

<strong>phases</strong><br />

Study <strong>of</strong> <strong>quasicrystals</strong> is fun<br />

ACKNOWLEDGEMENTS<br />

Dr. Eric A Lord<br />

Pr<strong>of</strong>. S. Ranganathan<br />

Dr. K. Ramakrishnan<br />

Dr. S<strong>and</strong>ip Bysakh<br />

Dr. Steffen Weber


APPLICATIONS OF QUASICRYSTALS<br />

WEAR RESISTANT COATING (Al-Cu (Al Cu-Fe Fe-(Cr)) (Cr))<br />

NON-STICK NON STICK COATING (Al-Cu (Al Cu-Fe) Fe)<br />

THERMAL BARRIER COATING (Al-Co (Al Co-Fe Fe-Cr) Cr)<br />

HIGH THERMOPOWER (Al-Pd (Al Pd-Mn Mn)<br />

IN POLYMER MATRIX COMPOSITES (Al-Cu (Al Cu-Fe) Fe)<br />

SELECTIVE SOLAR ABSORBERS (Al-Cu (Al Cu-Fe Fe-(Cr)) (Cr))<br />

HYDROGEN STORAGE (Ti-Zr (Ti Zr-Ni) Ni)


PENROSE TILING<br />

Inflated til<strong>in</strong>g


DIFFRACTION PATTERN<br />

5-fold SAD pattern<br />

from as-cast<br />

Mg 23 Zn 68 Y 9 alloy<br />

1<br />

2 3 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!