17.05.2013 Views

THE FASCINATING WORLD OF QUASICRYSTALS - iitk.ac.in ...

THE FASCINATING WORLD OF QUASICRYSTALS - iitk.ac.in ...

THE FASCINATING WORLD OF QUASICRYSTALS - iitk.ac.in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>THE</strong> <strong>FASCINATING</strong> <strong>WORLD</strong> <strong>OF</strong><br />

<strong>QUASICRYSTALS</strong><br />

Anandh Subramaniam<br />

Materials Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />

INDIAN INSTITUTE <strong>OF</strong> TECHNOLOGY KANPUR<br />

Kanpur- 208016<br />

Email: anandh@<strong>iitk</strong>.<strong>ac</strong>.<strong>in</strong><br />

http://home.<strong>iitk</strong>.<strong>ac</strong>.<strong>in</strong>/~anandh<br />

Oct 2011


Daniel Shechtman


7 April 1982<br />

8 April 1982<br />

GLASS<br />

(AMORPHOUS)<br />

GLASS<br />

(AMORPHOUS)<br />

SOLIDS<br />

Based on Structure<br />

SOLIDS<br />

Based on Structure<br />

QUASI CRYSTALS<br />

CRYSTALS<br />

CRYSTALS


A leaf from a diary…<br />

Daniel Shechtman<br />

Born: January 24, 1941<br />

Enter the Decagon!<br />

<br />

7 April 1982<br />

8 April 1982<br />

12 Nov 1984


Pa<strong>in</strong>t<strong>in</strong>g by Dr. Alok S<strong>in</strong>gh, 1993


“If you are a scientist and believe <strong>in</strong> <strong>in</strong> your results, then fight for the<br />

truth”. “Listen to to others, but fight for what you believe <strong>in</strong>…”<br />

-<br />

DAN SHECHTMAN<br />

"I must have shared with you my first ever meet<strong>in</strong>g with him <strong>in</strong> July this year.<br />

I was <strong>in</strong>vited to Ames Lab by Mat Kramer and I was sitt<strong>in</strong>g <strong>in</strong> his office and<br />

told him "I have been wait<strong>in</strong>g to meet Prof. Shechtman from my PhD days".<br />

That was the time one person entered his office and was ask<strong>in</strong>g Mat, "Mat, I<br />

have been search<strong>in</strong>g for the glue for ion mill<strong>in</strong>g my sample and could not f<strong>in</strong>d<br />

it <strong>in</strong> the lab. Can you please let me know". Mat tuned towards me and told me<br />

"the man you are look<strong>in</strong>g forward to meet is here". He was about to celebrate<br />

his 70th birthday <strong>in</strong> a few days from then. That speaks volumes about the<br />

commitment to research from this great scientist."<br />

– B.S. MURTHY


Why did it take so long?<br />

<br />

Are QC only made of rare-<br />

“hard to f<strong>in</strong>d”<br />

elements?<br />

No! Most of them conta<strong>in</strong> common elements like Al, Mn, Mg, Cu, Fe…<br />

Do we require ‘difficult conditions for synthesis’- High temperature, High<br />

pressure,…?<br />

They even<br />

No! Many of them can be produced by simple cast<strong>in</strong>g (e.g. AlCuFe, MgZnY…) occur naturally<br />

<br />

Hav<strong>in</strong>g produced them-<br />

are they ‘unstable’<br />

with small lifetimes?<br />

No! Some of them are so stable (at RT) that they would survive for millennia (but for<br />

corrosion!)<br />

<br />

Element 117 (with 177 neutrons) has a half life of 78 ms<br />

Do we need extremely sensitive experimentation (like neutron diffr<strong>ac</strong>tion…) to<br />

detect their presence/identify them?<br />

No! All you need is a Transmission Electron Microscope (TEM) (that too without EELS,<br />

EDXS… however, HREM would help!)


<strong>QUASICRYSTALS</strong>: <strong>THE</strong> PRESAGES!


Gunbad-i<br />

Kabud<br />

tomb <strong>in</strong> Maragha, Iran, 1197 AD<br />

Darb-I Imam shr<strong>in</strong>e, Isfaha, Iran, 1453 AD<br />

1453 AD


PENROSE TILING<br />

The til<strong>in</strong>g has only one<br />

po<strong>in</strong>t of global 5-fold<br />

symmetry (the centre of<br />

the pattern)<br />

However if we<br />

obta<strong>in</strong> a diffr<strong>ac</strong>tion<br />

pattern (FFT) of<br />

any ‘broad’ region<br />

<strong>in</strong> the til<strong>in</strong>g, we will<br />

get a 10-fold<br />

pattern!<br />

(we get a 10-fold <strong>in</strong>stead of a<br />

5-fold because the SAD pattern<br />

has <strong>in</strong>version symmetry)<br />

The til<strong>in</strong>g has regions of<br />

local 5-fold symmetry<br />

R. Penrose, “Pentaplexity”, Eureka, 39, 16, 1978<br />

M. Gardner, Sci. Am. 236 (1977) 110


A brief history of aperiodic<br />

<br />

<br />

<br />

<br />

Berger, 1966 20,000<br />

Rob<strong>in</strong>son, 1971 6 tiles<br />

Penrose 1<br />

Penrose 2<br />

, 1974 4 (6) tiles<br />

, 1978 2<br />

tiles<br />

til<strong>in</strong>gs<br />

tiles (then to 104 tiles)<br />

R. Berger, Mem. Am. Math. Soc., No.66, 1966.<br />

R.W. Rob<strong>in</strong>son, Invent. Math., 12, 177, 1971.<br />

[1] R. Penrose, Bull. Inst. Math. Appl., 10, 266, 1974.<br />

[2] R. Penrose, “Pentaplexity”, Eureka, 39, 16, 1978.


Penrose versus Kepler (Harmonice Mundi, 1619)<br />

Kepler<br />

Kepler<br />

concluded that the pattern would never repeat-<br />

Penrose’s Pattern<br />

Kepler’s Pattern<br />

there would always be “surprises”<br />

had anticipated the concept of aperiodic til<strong>in</strong>g by 350 years!


Wonders of Numbers:<br />

Adventures <strong>in</strong> Mathematics,<br />

M<strong>in</strong>d and Mean<strong>in</strong>g<br />

Clifford A Pickover<br />

A Circle has been pl<strong>ac</strong>ed on e<strong>ac</strong>h quasi-lattice po<strong>in</strong>t<br />

of the 2D pattern to model a possible atomic structure


WHAT IS A CRYSTAL?


Crystal =<br />

Sp<strong>ac</strong>e group (how to repeat)<br />

+<br />

Asymmetric unit (Motif’: what to repeat)<br />

+<br />

Wyckoff positions<br />

WHAT IS A CRYSTAL?<br />

a<br />

=<br />

a<br />

+<br />

Glide reflection<br />

operator<br />

Symbol g may also be used<br />

+Wyckoff label ‘a’<br />

Positions entities<br />

with respect to<br />

symmetry operators<br />

Usually asymmetric units are regions of sp<strong>ac</strong>e- which conta<strong>in</strong> the entities (e.g. atoms, molecules)


Crystals have certa<strong>in</strong> symmetries<br />

t Translation<br />

R Rotation<br />

R Roto-<strong>in</strong>version<br />

G Glide reflection<br />

S Screw axis<br />

<br />

Symmetry operators<br />

t<br />

<br />

R Inversion R Mirror<br />

Takes object to the same form<br />

Takes object to the enantiomorphic form<br />

m


3 out of the 5 Platonic solids have the symmetries seen <strong>in</strong> the<br />

crystall<strong>in</strong>e world<br />

i.e. the symmetries of the Icosahedron and its dual the Dodecahedron are<br />

not found <strong>in</strong> crystals<br />

These symmetries (rotation,<br />

mirror, <strong>in</strong>version) are also<br />

expressed w.r.t. the external<br />

shape of the crystal<br />

Pyrite<br />

Cube<br />

Rüdiger Appel, http://www.3quarks.com/GIF-Animations/PlatonicSolids/<br />

Plato wrote about these solids <strong>in</strong> the dialogue Timaeus c.360 B.C.<br />

Fluorite<br />

Octahedron<br />

http://en.wikipedia.org/wiki/Crystal_habit http://www.galleries.com/m<strong>in</strong>erals/property/crystal.htm


HOW IS A QUASICRYSTAL DIFFERENT<br />

FROM A CRYSTAL?


Dodecahedral<br />

s<strong>in</strong>gle<br />

quasicrystal<br />

[1] I.R. Fisher et al., Phil Mag B 77 (1998) 1601<br />

[2] Rüdiger diger Appel, Appel http://www.3quarks.com/GIF-Animations/PlatonicSolids/<br />

FOUND!<br />

<strong>THE</strong> MISSING PLATONIC SOLID<br />

m<br />

35<br />

[1]<br />

Mg-Zn-Ho<br />

Octahedron and icosahedron were discovered by Theaetetus, a contemporary of Plato<br />

[2]


<strong>QUASICRYSTALS</strong> (QC)<br />

ORDERED PERIODIC QC ARE<br />

ORDERED<br />

STRUCTURES<br />

WHICH ARE<br />

NOT<br />

PERIODIC<br />

CRYSTALS <br />

QC <br />

AMORPHOUS


t translation<br />

<strong>in</strong>flation<br />

SYMMETRY<br />

CRYSTAL QUASICRYSTAL<br />

RC rotation 2, crystallographic<br />

3, 4, 6<br />

RCQ RC + 5, other 8, 10, 12<br />

t <br />

R C R CQ<br />

* Quasicrystals can have allowed and disallowed crystallographic symmetries<br />

QC are char<strong>ac</strong>terized by Inflationary<br />

Symmetry and can have disallowed<br />

crystallographic symmetries*


DIMENSION <strong>OF</strong> QUASIPERIODICITY (QP)<br />

QC as a crystal?<br />

QC can be thought of as crystals <strong>in</strong> higher<br />

dimensions<br />

(which are projected on to lower<br />

dimensions → lose their periodicity*)<br />

* At least <strong>in</strong> one dimension<br />

QC can have quasiperiodicity along 1,2 or 3<br />

dimensions<br />

(at least one dimension should be<br />

quasiperiodic)<br />

QP XAL<br />

1 4<br />

2 5<br />

3 6


QUASIPERIODICITY & INFLATIONARY SYMMETRY


The Fibon<strong>ac</strong>ci sequence has a curious connection with quasicrystals* via the GOLDEN MEAN ()<br />

<strong>THE</strong> FIBONACCI SEQUENCE<br />

Fibon<strong>ac</strong>ci 1 1 2 3 5 8 13 21 34 ... <br />

Ratio 1/1 2/1 3/2 5/3 8/5 13/8 21/13 34/21 ... = ( 1+5)/2<br />

The ratio of<br />

successive terms of<br />

the Fibon<strong>ac</strong>ci<br />

sequence converges to<br />

the Golden Mean<br />

In 1202 Fibon<strong>ac</strong>ci<br />

discussed the<br />

number sequence <strong>in</strong><br />

connection with the<br />

proliferation of<br />

rabbits<br />

Where <br />

Ratio<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

is the root of the quadratic equation: x 2<br />

1<br />

Convergence of Fibon<strong>ac</strong>ci Ratios<br />

1 2 3 4 5 6 7 8 9 10<br />

n<br />

–x –1 = 0<br />

* There are many phases of quasicrystals and some are associated with other sequences and other irrational numbers<br />

1.618… x 1<br />

x<br />

<br />

1 x<br />

2<br />

x x<br />

10


Rational<br />

Approximants<br />

E<strong>ac</strong>h one of these units<br />

(before we obta<strong>in</strong> the 1D<br />

quasilattice <strong>in</strong> the limit)<br />

can be used to get a<br />

crystal (by repetition:<br />

e.g. AB AB AB…or<br />

BAB BAB BAB…)<br />

In the limit we obta<strong>in</strong> the<br />

1D Quasilattice<br />

A<br />

B<br />

B A<br />

B A B<br />

B A B B A<br />

B A B B A B A B<br />

B A B B A B A B B A B B A<br />

1-D QC<br />

Deflated<br />

sequence<br />

<br />

Schematic diagram show<strong>in</strong>g the structural analogue of the Fibon<strong>ac</strong>ci sequence<br />

lead<strong>in</strong>g to a 1-D QC<br />

a<br />

b<br />

ba<br />

bab<br />

babba<br />

Note: the deflated sequence is<br />

identical to the orig<strong>in</strong>al sequence


Where is the Golden Mean?<br />

<br />

<br />

In the ratio of lengths<br />

In the ratio of numbers<br />

n<br />

n<br />

B<br />

A<br />

<br />

L<br />

L<br />

A<br />

B<br />

<br />

1<br />

1 1<br />

1<br />

1<br />

1<br />

1<br />

1 1


Inflationary symmetry <strong>in</strong> the Penrose til<strong>in</strong>g<br />

Inflated til<strong>in</strong>g<br />

The <strong>in</strong>flated tiles<br />

can be used to<br />

create an <strong>in</strong>flated<br />

replica of the<br />

orig<strong>in</strong>al til<strong>in</strong>g


HOW IS A DIFFRACTION PATTERN FROM A CRYSTAL<br />

DIFFERENT FROM THAT <strong>OF</strong> A QUASICRYSTAL?


Let us look at the Selected Area Diffr<strong>ac</strong>tion Pattern (SAD) from a crystal → the spots/peaks are arranged periodically<br />

Superlattice spots<br />

The spots are<br />

periodically<br />

arranged<br />

[112]<br />

[111] [011]<br />

SAD patterns from a BCC phase (a = 10.7 Å) <strong>in</strong> as-cast Mg 4 Zn 94 Y 2 alloy show<strong>in</strong>g important zones


Now let us look at the SAD pattern from a quasicrystal from the same alloy system (Mg-Zn-Y)<br />

[1 <br />

0]<br />

[0 0 1]<br />

The spots<br />

show<br />

<strong>in</strong>flationary<br />

symmetry<br />

Expla<strong>in</strong>ed <strong>in</strong><br />

the next slide<br />

SAD patterns from as-cast Mg 23 Zn 68 Y 9 show<strong>in</strong>g the formation of F<strong>ac</strong>e Centred Icosahedral QC<br />

[1 1 1]<br />

[<br />

1 3 + ]


DIFFRACTION PATTERN<br />

5-fold SAD pattern<br />

from as-cast<br />

alloy<br />

Mg23Zn68Y9 Note the 10-fold pattern<br />

1<br />

2 3 4<br />

Successive spots are at a distance <strong>in</strong>flated by <br />

Inflationary symmetry


STRUCTURE <strong>OF</strong> <strong>QUASICRYSTALS</strong><br />

QUASILATTICE APPROACH<br />

(Construction of a quasilattice followed by the decoration of the lattice by atoms)<br />

PROJECTION FORMALISM<br />

TILINGS AND COVERINGS<br />

CLUSTER BASED CONSTRUCTION<br />

(local symmetry and stage-wise construction are given importance)<br />

<br />

<br />

TRIACONTAHEDRON (45 Atoms)<br />

MACKAY ICOSAHEDRON (55 Atoms)<br />

BERGMAN CLUSTER (105 Atoms)


E2<br />

HIGHER DIMENSIONS ARE NEAT<br />

REGULAR<br />

PENTAGONS<br />

Regular pentagons cannot tile E2 sp<strong>ac</strong>e but can tile<br />

S2 sp<strong>ac</strong>e (which is embedded <strong>in</strong> E3 sp<strong>ac</strong>e)<br />

GAPS<br />

S2 <br />

E3<br />

SPACE FILLING


For crystals We require two basis vectors to <strong>in</strong>dex the diffr<strong>ac</strong>tion pattern <strong>in</strong> 2D<br />

For quasicrystals <br />

We require more than two basis vectors to <strong>in</strong>dex the diffr<strong>ac</strong>tion diffr<strong>ac</strong>tion<br />

pattern <strong>in</strong> 2D<br />

For this SAD pattern<br />

we require 5 basis vectors<br />

(4 <strong>in</strong>dependent)<br />

to <strong>in</strong>dex the diffr<strong>ac</strong>tion pattern <strong>in</strong> 2D


PROJECTION METHOD<br />

QC considered a crystal <strong>in</strong> higher dimension → projection to lower dimension can<br />

give a crystal or a quasicrystal<br />

2D 1D<br />

E W<strong>in</strong>dow<br />

<br />

Slope = Tan ()<br />

e 2<br />

Irrational QC<br />

e 1<br />

Rational RA (XAL)<br />

E ||<br />

<br />

E ||<br />

To get RA <br />

approximations are made<br />

<strong>in</strong> E (i.e to )<br />

x' Cos S<strong>in</strong> x R <br />

y' S<strong>in</strong> Cosy


1D<br />

<br />

2D<br />

<br />

Penrose Til<strong>in</strong>g<br />

2 1 1<br />

<br />

<br />

0 3 3 3 - 3<br />

<br />

R2<br />

1 1 <br />

<br />

<br />

0 3- 3 3 3 <br />

2 2 2 2 2 <br />

1-D QC<br />

B A B B A B A B B A B B A<br />

<br />

Octogonal<br />

<br />

Til<strong>in</strong>g<br />

1 0 1 1 <br />

2 2 <br />

<br />

0 1 1<br />

1 <br />

2 2 <br />

R <br />

1 1 1 0 <br />

2 2<br />

<br />

1 1<br />

0 1<br />

<br />

<br />

<br />

2 2


3D<br />

5-fold<br />

[1 <br />

0]<br />

Note the occurrence of<br />

irrational Miller <strong>in</strong>dices<br />

<br />

<br />

<br />

<br />

ICOSAHEDRAL QUASILATTICE<br />

The icosahedral quasilattice is the 3D analogue of the Penrose til<strong>in</strong>g.<br />

It is quasiperiodic <strong>in</strong> all three dimensions.<br />

The quasilattice can be generated by projection from 6D.<br />

It has got a char<strong>ac</strong>teristic 5-fold symmetry.<br />

3-fold<br />

[2+1 <br />

0]<br />

1 0 1<br />

0 <br />

<br />

1 0 0 1<br />

<br />

<br />

<br />

<br />

0 1 0 1<br />

<br />

R <br />

1 0 1<br />

0 <br />

1 0 1 0 <br />

<br />

0 1 0 1<br />

2-fold [+1 1]


Cluster Based Construction<br />

Rhombic Tri<strong>ac</strong>ontahedron<br />

Bergman cluster<br />

Kre<strong>in</strong>er, G., and Franzen, H. F., J. Alloys and Compounds, 221 (1995) 15<br />

(a) Bergman, G., Waugh, J. L. T., and Paul<strong>in</strong>g, L., Acta Cryst., 10 (1957) 2454<br />

(b) Ranganathan, S., and Chattopadhyay, K., Annu. Rev. Mater. Sci., 21 (1991) 437<br />

(a) (b)<br />

M<strong>ac</strong>kay double icosahedron<br />

Hiraga, K et al, S., Phil. Mag. B67 (1993) 193


Comparison of a crystal with a quasicrystal<br />

CRYSTAL QUASICRYSTAL<br />

Translational symmetry Inflationary<br />

symmetry<br />

Crystallographic rotational symmetries Allowed + some disallowed rotational<br />

symmetries<br />

S<strong>in</strong>gle unit cell to generate the structure Two prototiles are required to generate the<br />

structure (cover<strong>in</strong>g possible with one tile!)<br />

3D periodic Periodic <strong>in</strong> higher dimensions<br />

Sharp peaks <strong>in</strong> reciprocal sp<strong>ac</strong>e with Sharp peaks <strong>in</strong> reciprocal sp<strong>ac</strong>e with<br />

translational symmetry<br />

<strong>in</strong>flationary symmetry<br />

Underly<strong>in</strong>g metric is a rational number Irrational metric<br />

Usually made of ‘small’<br />

clusters Large clusters


SYSTEMS FORMING <strong>QUASICRYSTALS</strong><br />

&<br />

TYPES <strong>OF</strong> <strong>QUASICRYSTALS</strong>


List of quasicrystals with diverse k<strong>in</strong>ds of symmetries<br />

Type QP + Rank Metric Symmetry System Reference<br />

Icosahedral 3 D 6 (5)<br />

Cubic 3D 6 3<br />

Tetrahedral 3D 6 3<br />

m3 _<br />

5 _<br />

_<br />

43m<br />

m3 _<br />

AlMn Shechtman et al., 1984<br />

VNiSi<br />

AlLiCu<br />

Feng et al., 1989<br />

Donnadieu, 1994<br />

Decagonal 2D 5 (5) 10/mmm AlMn Chattopadhyay et al., 1985<br />

and Bendersky, 1985<br />

Dodecagonal 2D 5 3 12/mmm NiCr Ishimasa et al., 1985<br />

Octagonal 2D 5 2 8/mmm VNiSi,<br />

Pentagonal 2D 5 (5)<br />

5m<br />

_<br />

CrNiSi<br />

AlCuFe<br />

Wang et al., 1987<br />

Bancel, 1993<br />

Hexagonal 2D 5 3 6/mmm AlCr Selke et al., 1994<br />

Trigonal 1D 4 3<br />

3m<br />

_<br />

AlCuNi<br />

Chattopadhyay et al., 1987<br />

Digonal 1D 4 2 222 AlCuCo He et al., 1988


Naturally Occurr<strong>in</strong>g QC<br />

<br />

First naturally occurr<strong>in</strong>g QC was reported associated with the m<strong>in</strong>eral Khatyrkite.


Indian Contributions<br />

http://www.iucr.org/news/newsletter/volume-15/number-4/crystallography-<strong>in</strong>-<strong>in</strong>dia<br />

“However, India missed some opportunities <strong>in</strong> this area. Early work of<br />

T.R. Anantharaman on Mn-Ga alloys and G.V.S. Sastry and C. Suryanarayana<br />

(BHU) on Al-Pd alloys came tantaliz<strong>in</strong>gly close to the discovery of quasicrystals”.<br />

Conference <strong>in</strong> Honour of Prof. T.R. Anantharaman<br />

IITK<br />

S. Lele<br />

S. Ranganathan<br />

C. Suryanarayana<br />

http://www.<strong>iitk</strong>.<strong>ac</strong>.<strong>in</strong>/<strong>in</strong>focell/announce/metallo/collection.htm<br />

G.V.S SASTRY


Allowed crystallographic symmetrytiled aperiodically<br />

Discovery of the decagonal phase<br />

Basis for synthesis of QC


1-D quasiperiodicity


Approximant to 7fold<br />

quasilattice<br />

= 2<br />

= 1<br />

Icosahedral Quasicrystal = 3<br />

Decagonal<br />

Hexagonal<br />

Quasicrystal<br />

= 1<br />

Quasicrystal<br />

Digonal Pentagonal Cubic R.A.S. Trigonal Hexagonal<br />

Quasicrystal Quasicrystal M<strong>ac</strong>kay Bergman Quasicrystal R.A.S.<br />

Orthorhombic<br />

Orthorhombic<br />

R.A.S.<br />

R.A.S<br />

Taylor<br />

Rob<strong>in</strong>son<br />

Little<br />

R.A.S. Monocl<strong>in</strong>ic<br />

Monocl<strong>in</strong>ic<br />

R.A.S.<br />

R.A.S.<br />

= 90 o<br />

= 108 o<br />

Trigonal and Pentagonal<br />

quasilattices<br />

3 2<br />

x x 2x10 Trigonal<br />

R.A.S.<br />

Orthorhombic<br />

R.A.S.<br />

Monocl<strong>in</strong>ic<br />

R.A.S.<br />

120 o<br />

First observation of a<br />

relation between five-fold<br />

and hexagonal symmetry<br />

Unified view of quasicrystals,<br />

rational approximants and<br />

related structures<br />

Fundamental<br />

work on<br />

V<strong>ac</strong>ancy<br />

Ordered Phases<br />

Uniform deformation along the arrow of the [0 0 1] 2-fold pattern<br />

from IQC giv<strong>in</strong>g rise to a pattern similar to the [ 1 3 + ] pattern

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!