18.05.2013 Views

improving safety and productivity of isothermal semi-batch ... - EPFL

improving safety and productivity of isothermal semi-batch ... - EPFL

improving safety and productivity of isothermal semi-batch ... - EPFL

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IMPROVING SAFETY AND PRODUCTIVITY<br />

OF ISOTHERMAL SEMI-BATCH REACTORS<br />

BY MODULATING THE FEED RATE<br />

PAR<br />

Olivier UBRICH<br />

lngdnieur chimiste ENSSPICAM<br />

de nationalit6 franqaise<br />

acceptbe sur proposition du jury:<br />

Pr<strong>of</strong>. F. Stoessel, directeur de thhe<br />

Pr<strong>of</strong>. D. Bonvin, rapporteur<br />

Pr<strong>of</strong>. K. Hungerbijhler, rapporteur<br />

Pr<strong>of</strong>. G. Kille, rapporteur<br />

Dr Th. Meyer, rapporteur<br />

Lausanne, <strong>EPFL</strong><br />

2000


Version abregee<br />

Depuis la prise tle conscience cies risques que penvent erltrairrer urle production<br />

cllimique ma1 gkrke, dc nornbrcuscs cntrcprises sc sont penchkes sur la si.curit6 thcrmiquc<br />

dcs procCd6s. Ces dernihrcs annkcs, le contrale des r6actions cst devcnn nn<br />

dcs soucis ~najcrlrs dcs indr~strics. Afin d'avoir un mcillc~~r contrblc, Ics proc6diis dc<br />

chimie fiue sent la plupart du temps rBalisCs en mode serni-<strong>batch</strong>. De nlClnle, pour des<br />

raisoms de selectivit6, Ic mode isothcrmc cst souvcnt Ic lr~ode utilise. Ainsi, normalt:ment,<br />

les reactions se dCroulent sans incidents. Cependant, occasior~nellement, elles<br />

s'ernballent parce que des materiaux inadecluats out kt6 utilisb, parce que les conditions<br />

operatoires ont chaugCt 011 encore parce qne les Cqnipemer~ts sont d6fect11e1~u.<br />

Lors dc toutc 6tudc dc scaleup, dc~uc questions fondamentalcs doivent Btrc posbcs. La<br />

prcmihrc cst relative aux conditions normalcs dc fonctio~nicmcnt. I1 cst n6ccssaire dc<br />

v6rificr que le systhmc dc refroidisscmcnt soit capablc dc maintcnir la tempkraturc sltr<br />

la trajectoire dksirke. Pour cela, il faut vBrifier sorl aptitude ii Bvacuer ii tout instant<br />

la cl~aleur produitc par la rkaction chirnique. Ainsi, lc systkme est capable de rester<br />

en mode isotherme. La deuxikrne est relative ii I'Bvolution de la nlasse r6actionnelle<br />

en cas de dysfonctionnernent. I1 est r~kcessaire de vkrifier que la rBactio11 ne puisse<br />

p~s cor~duire ti une situatior~ critiqne en cas de parlne ~ Isysterr~e I tle refroidissetnent.<br />

Avant tolitc mise cn production d'un nouvcan procbd6 scmi <strong>batch</strong>, tmc 6t1ldc<br />

dc s6curitB est rkaliske. La plupart du temps, clle sc bornc h vkrificr In faisabiliti: du<br />

prockdi! pour un flu d'introductior~ de reactif cot~sti~t~t. Ut1 tel flux est utilise pour<br />

des raisons pratiqucs: il cst cn cffct Ic 11l1ts fitc.ilt9 .:I ri-i~list.~.. II c~sistc~ elor~c c.11 cc poi~~t<br />

precis n~atiere ii am6lioratior1 tiit lit ~)~.t~cI~~c~ti\~ili.. I


sance cfcs contraintcs A chaque instant pcrn~ct de d6finir uric fonction d'introduction<br />

optimale. I1 cst alors possi1)le de ddtcrminer explicitenlent nnc fonction d'ajont compos6c<br />

de diffkrcntes scgmcnts kvcntucllcnlcnt approchks par unc succcssion dc diffbrcnts<br />

palicrs. Dc mgmc, lcs temp dc basculcment entre ces diffhrcntes scgmcnts<br />

sont connus. En fait, il existe deux rnani6res de r6aliser l'implaritation de la m6thode:<br />

soit en boucle fermke, soit en boucle ouverte.<br />

La m6thode va 6tre app1iqui.e datis un premier temps en boucle ouverte. Dar~s<br />

cc cas il est ndccssairc de trouver dc facon cxplicite la cinetiquc de la reaction 6tudiCe<br />

avant de po~~voir rdaliscr l'optiniisation. Cctte btude cir16tique B 6tk r6alisi.c cn couplant<br />

la calorinlbtrie ct la spcctroscopie (infrarougc ct Raman) lors de m6mes expbricnces.<br />

Une fois la cinetique Ctablie, l'optimisation est test6e expbrimentalement:<br />

les rdst~ltats sont compards avcc dm sin~i~lations thCoriques. La nlkthodc s'av&rc efficace,<br />

rriais est trh dkpendante de la precision de I'etude cinktique. De plus, elle peut<br />

s'avkrer probl6rriatiyue lors de son implantation si la cinktique ne corresporid pas li<br />

celle deterrninee en laboratoire.<br />

Dc cc fait, la mbthodc d'optimisation utilisant une boilclc ferm6c revet des avantages<br />

ddtermiriants. Afin de pouvoir implanter la mbthode en boucle fcrrnbc, il a 6t6<br />

necessairc dc modifier un calorinlbtre commercial dc maniere a determiner l'dcart de<br />

la trajcctoirc par rapport a la contrainte active et de l'y maintcnir. L'installation<br />

a bt6 utiliske pour optimiser une r6action aux parametres cin6tiqucs inconnils. Elle<br />

permettra kgalement de prouver l'importance de I'utilisation de boucles fernlees en<br />

se niontrant trks robuste vis a vis de l'utilisation de produits plus ou moins purs.<br />

Ainsi, ce travail met en kvidence l'importance de l'utilisation d'une fonction<br />

ti'ajout non 1int.aii-e pour des procdes <strong>semi</strong> <strong>batch</strong> r6alisi.s en mode isotherme. Elle<br />

pcrrnct uric arnklioration de la productivitk tont en 6vitant les risques thcrrniques<br />

en conditions normales de fonctionnement, conime en cas de panne du systen~e de<br />

refroidissemcnt.


Summary<br />

In recent decades, a more pr<strong>of</strong>ound underst<strong>and</strong>ing has been realized that 1111controlled<br />

chemical processes can lead to accidents with severe conscqnences. Many<br />

chemical corripanies became active in research on thermal risks. For chemical engineers,<br />

the control <strong>of</strong> chenlical reactions becarrie one <strong>of</strong> the most important concerns.<br />

Thus, for a better control, most fine chemical processes today are performed in a<br />

<strong>semi</strong>-<strong>batch</strong> mode. Also, <strong>isothermal</strong> operating conditions arc <strong>of</strong>ten employcd for inlproved<br />

sclcctivity. As a rule, the chcrr~ical reactions proceed without problems, 1~1t<br />

in some rare cases unfortunately a runaway situation is encolintered, because wrong<br />

mat,crial havc been uscd, opcrating conditions havc changed, or cquipmcnt has been<br />

deficient.<br />

In any scale-up from laboratory or pilot to full-scale operation, two cluestions must<br />

be answered. The first one relates to the normal operating conditions. Indeed, it will<br />

always be necessary to verify that the reactor temperature can be niaintained along<br />

the dcsircd path. In other words, it mnst be verified that the capacity <strong>of</strong> the cooling<br />

system will at all ti~nes be able to ncntralizc cxccss heat gcr~cratctl ar~ywhcrc within<br />

the rcactor by the chcrnical reaction. The system will thcn function isothcrn~ally.<br />

The second cllicstion relates to the bchavior <strong>of</strong> rcactor tcmpcratnre in thc c=c <strong>of</strong><br />

technical failures. It will bc ncccssary to verify, for instancc, that a critical situation<br />

can be avoided when the cooling breaks down.<br />

Thermal studies are realized, therefore, before any new <strong>semi</strong>-<strong>batch</strong> process is put in<br />

operation. With respect to reaction cornponent feed, such studies gerierdly tent1 to<br />

cvalnatc the fcasibilit,~ <strong>of</strong> the process under coiidit,ior~s <strong>of</strong> a st,rict,ly linear ii~t,rod~iction<br />

<strong>of</strong> one componcr~t into the reacting system. Such a fed function is uscd for practical<br />

rcasons like case <strong>of</strong> implcmcntation. Howcvcr, no fnndamcntd rcasons spcak against<br />

using a nonlinear fccd function. Lifting thc limitation to lincas fccd frlnctions may<br />

actnally opcn up ways to improvc the <strong>productivity</strong>. Physical <strong>and</strong> <strong>safety</strong> constrain1,s<br />

rnust <strong>of</strong> course be respected just as rigorously when using a nonlinear feed function.<br />

It was the airn <strong>of</strong> this work to define a method that can be applied to run isotherrn:il<br />

<strong>semi</strong>-<strong>batch</strong> reactors while using a controlled nonlinear feed rate. This method should<br />

yield scnsit)ly reduced cyclc timcs while fiilly acco~~~rr~odating all irnposctl coristraints.<br />

Thc n~odnlation <strong>of</strong> fccd rate rnust be such that thcsc objjectives can 1)c achieved.<br />

Toward this aim, a preliminary mathematical study <strong>of</strong> nonlinear systems ha< first<br />

1)cen realized. A simple mcthod is presented in this part <strong>of</strong> the work which allours


one to recognize whether a given chernical reaction model will be influenced by the<br />

feed <strong>of</strong> one <strong>of</strong> the components. In systems defined a? being "feedback linearizable",<br />

the production optimum depends on the constraints alone. This means that the optimlmm<br />

feed rate can be defined fiom a mere knowledge <strong>of</strong> the dominating constraint as<br />

a function <strong>of</strong> time. It will then be possible to explicitly deterrniue the function as a<br />

composite <strong>of</strong> different consecutive segments, each depencling on an active constraint.<br />

The switching times Getweer1 the different segn~erlts can also be defined. Implementation<br />

may occur in ;in opo~ or in n closccl loop.<br />

In a first np~)ro;lc:l~. lilt: IIII~I~IIII~ \\.;is ~~li~I~orii~(~l li~r o1)(:11-1001) S~S~CIIIS. As a prercq~~isilc<br />

to ol)ti~r~iz;~~io~~.<br />

t111a. IIIII>I ~.s~~Ii~.itl\ II~-II,~III~II(! 11~: kinet;ics <strong>of</strong> the chemical<br />

sys11~111 (,ol~siIit~rI~l. *r11i> \\;L\ I ~ ~ I I ill I ~ . t11t. ~II..I;IIII.I, t)f' it i~~~~)r(!scl~t.;lti~~c reaction, by<br />

o i I r i ~ I ~ ~ r t t t i ( it t i ' i ~ I l I I I ) ~csren~ents. Usil~g<br />

tllc, ki~~c-tia. I)~II.~IIII~~II.I~ tIt.11'1 111i11tll1 ill IIIIW. IIII~~I~II~I~IIIL'II~S, the optirrlization was<br />

~xrSvr~~~erl. 'I'II(w (.~l)I:ri~l~ta~~l . l1i14 1.4 WIII 11i1vc I,~~.II cor~~pared with theoretical<br />

si~~ruli~tio~is. T~II* IIII~I~IIII~ I)~II\IYI III \)I. t~liic:iciit, I~ut also strongly cfepenclent on the<br />

accnracy <strong>of</strong> thc ki~ict.ic. cl;lt;l. Tlicrclbrc, apart from below-optinl~nn process conditions,<br />

hazartloi~s sitliatio~~s I I I IJ)C ~ ~ CIICOIIII~~~C~, for instance, as a result, <strong>of</strong> changes<br />

in reaction kinetics caused by conta~nination <strong>of</strong> the reaction medium. Hcrc an 011line<br />

optimization implementing a closed-loop optimization algorithm presents strong<br />

advantagw.<br />

For the work involving closed systerns, it was necessary to use a rnodified reaction<br />

calori~r~eter allowing the trajectory divergence to be evaluated relative to the active<br />

constrai~lt, <strong>and</strong> coutrol the systerr~ accordingly. This i~~stallation was utilized for the<br />

optinlizatio~~ <strong>of</strong> a chenlical reaction for which the kinetic parameters were unknown.<br />

The si~periority <strong>of</strong> thc closed loop was also demonstrated by revealing its robustness<br />

with regard to a contamination <strong>of</strong> the reaction system by an impurity affecting the<br />

kinetics.<br />

In conclusion, it was shown in this work that 1~y using a modulated rextant feed<br />

function for serni-<strong>batch</strong> processes performed <strong>isothermal</strong>ly under constraints one can<br />

sigr~ificantly improve the <strong>productivity</strong>, <strong>and</strong> at the same time avoid severe consequences<br />

<strong>of</strong> incidences such a? a cooling failure.


Contents<br />

Nomenclature<br />

1 Introduction<br />

2 Bibliography<br />

2.1 Iritroduction ................................<br />

2.2 Thcr~nal stability .............................<br />

2.2.1 In 11or111al operating .......................<br />

2.2.2 Coolir~g failure ..........................<br />

2.3 Optirnizatiom <strong>of</strong> thc proccss .......................<br />

2.3.1 Optimization without any constraints ..............<br />

2.3.2 Optimization under constraints .................<br />

2.4 Organii~at~ion <strong>of</strong> thc thcsis ........................<br />

3 Characterization <strong>of</strong> the optimal solution<br />

3.1 Introduction ................................<br />

3.2 Preliminaries ...............................<br />

3.2.1 Nonlinear systems . ........................<br />

3.2.2 Short introduction to Lie algebra ................<br />

3.2.3 Feedback linearization ......................<br />

3.3 Forrr~ulatiorl <strong>of</strong> the optimization problern ................<br />

3.3.1 Problern forniulation .......................<br />

3.3.2 Optirnurn <strong>of</strong> a feedback linearizable system ...........<br />

3.3.3 Singular regions . .........................<br />

3.3.4 Characterization <strong>of</strong> optimal input for feedback linearizable systerns<br />

................................<br />

3.3.5 Formulation <strong>of</strong> constraillts ....................<br />

3.3.6 Shapc <strong>of</strong> thc optimal solution ..................<br />

3.4 Proposcd methodology for finding an optimal solutior~ .........<br />

3.5 Kinetic models in isothcrmal mode ...................<br />

3.5.1 Case <strong>of</strong> consecutivc reactions ...................<br />

3.5.2 Case <strong>of</strong> diffcrcnt ordcr parallel reactions ............


CONTENTS<br />

3.5.3 Case <strong>of</strong> same order parallel reactions .............. 55<br />

3.5.4 Case <strong>of</strong> nth-order reactions with impurity in feed ........ 56<br />

3.5.5 Case <strong>of</strong> consecutive parallel reactions, case number one .... 58<br />

3.5.6 Case <strong>of</strong> consecl~tive parallel reactions. casc number two .... 60<br />

3.5.7 Case <strong>of</strong> nth-order reactions with decomposition . ........ 63<br />

3.5.8 Recapitulation ........................... 64<br />

3.6 Qualitative comparison wit11 the method used in industry ....... 67<br />

3.7 Conclusions ................................ 69<br />

4 Off-line feed control: Case study<br />

4.1 Int~oductior~ ................................<br />

4.2 The reaction ................................<br />

4.2.1 The model reaction examined ..................<br />

4.2.2 Plailsibility check for the reaction being 2nd order .......<br />

4.2.3 Can the selected reaction be considered as a 2nd order reaction?<br />

4.3 Identificatiorl <strong>of</strong> kinetic pararrieters ...................<br />

4.3.1 Results <strong>of</strong> thc spectroscopic measurements ...........<br />

4.3.2 Results obtained by calorimetry .................<br />

4.3.3 Evaluation <strong>of</strong> the activation energy <strong>and</strong> <strong>of</strong> the frequency factor<br />

4.3.4 Calorimetry or spectroscopy: advantages/disadvantages . ...<br />

4.4 Optimization: experinlerital results ...................<br />

4.4.1 Spectroscopic results .......................<br />

4.4.2 Calorimetric results ........................<br />

4.5 Optimum constar~t feed rate: experirnerltal results ...........<br />

4.6 Comparisons ................................<br />

4.7 Conclusion<br />

.................................<br />

5 On-line feed control: Case studies 97<br />

5.1 Introduction ................................ 97<br />

5.2 Experirnentalset-up ........................... 98<br />

5.3 The second-order reaction: experirncntal results ............ 101<br />

5.3.1 Calibration ............................ 101<br />

5.3.2 On-line results . .......................... 102<br />

5.3.3 Cornparkon with constant feed rate . .............. 104<br />

5.3.4 Limitation <strong>of</strong> the method . .................... 105<br />

5.4 A more complex reaction system: experimental rcsillts ........ 105<br />

5.4.1 The reaction . ........................... 106<br />

5.4.2 Heat <strong>of</strong> mixirlg .......................... 107<br />

5.4.3 Heat <strong>of</strong> rcaction .......................... 108<br />

5.4.4 h/lodulated feed method with pure product: experimental results109<br />

5.4.5 Parametric sensitivity ...................... 114<br />

5.4.6 Adiabatic experiments ...................... 116


CONTENTS 13<br />

5.4.7 Cornparison with constant feed ratc ............... 118<br />

5.5 Modulated feed mcthod with impure product ............. 119<br />

5.5.1 Constant feed rate expcrimc~lt .................. 120<br />

5.5.2 Modrilated fced mcthod: cxpcrimental results ......... 120<br />

5.5.3 Cornparisor1 ............................ 121<br />

5.6 Conclusiori ................................. 122<br />

6 Conclusions 125<br />

6.1 Summary ................................. 125<br />

6.2 Perspect;ives ................................ 127<br />

7 References 129<br />

8 Annex 137

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!