04.06.2013 Views

Cosmological solutions of the Einstein-Friedmann equations ...

Cosmological solutions of the Einstein-Friedmann equations ...

Cosmological solutions of the Einstein-Friedmann equations ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cosmology<br />

<strong>Cosmological</strong> <strong>solutions</strong> <strong>of</strong> <strong>the</strong> <strong>Einstein</strong>-<strong>Friedmann</strong> <strong>equations</strong><br />

Summary <strong>of</strong> <strong>Friedmann</strong>’s <strong>equations</strong><br />

Ingredients are <strong>the</strong> <strong>Einstein</strong> <strong>equations</strong> <strong>of</strong> GRT:<br />

Rµν − 1<br />

2 R gµν − Λ gµν = κ Tµν ,<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 439


Cosmology<br />

<strong>Cosmological</strong> <strong>solutions</strong> <strong>of</strong> <strong>the</strong> <strong>Einstein</strong>-<strong>Friedmann</strong> <strong>equations</strong><br />

Summary <strong>of</strong> <strong>Friedmann</strong>’s <strong>equations</strong><br />

Ingredients are <strong>the</strong> <strong>Einstein</strong> <strong>equations</strong> <strong>of</strong> GRT:<br />

Rµν − 1<br />

2 R gµν − Λ gµν = κ Tµν ,<br />

with <strong>the</strong> cosmic ideal fluid energy-momentum tensor<br />

T µν = (ρ + p) (t) u µ u ν − p(t) g µν .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 439


Cosmology<br />

<strong>Cosmological</strong> <strong>solutions</strong> <strong>of</strong> <strong>the</strong> <strong>Einstein</strong>-<strong>Friedmann</strong> <strong>equations</strong><br />

Summary <strong>of</strong> <strong>Friedmann</strong>’s <strong>equations</strong><br />

Ingredients are <strong>the</strong> <strong>Einstein</strong> <strong>equations</strong> <strong>of</strong> GRT:<br />

Rµν − 1<br />

2 R gµν − Λ gµν = κ Tµν ,<br />

with <strong>the</strong> cosmic ideal fluid energy-momentum tensor<br />

T µν = (ρ + p) (t) u µ u ν − p(t) g µν .<br />

The cosmological constant term Λ gµν nowadays is usually included as part <strong>of</strong> Tµν<br />

as an additional contribution to <strong>the</strong> energy density<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 439


Cosmology<br />

<strong>Cosmological</strong> <strong>solutions</strong> <strong>of</strong> <strong>the</strong> <strong>Einstein</strong>-<strong>Friedmann</strong> <strong>equations</strong><br />

Summary <strong>of</strong> <strong>Friedmann</strong>’s <strong>equations</strong><br />

Ingredients are <strong>the</strong> <strong>Einstein</strong> <strong>equations</strong> <strong>of</strong> GRT:<br />

Rµν − 1<br />

2 R gµν − Λ gµν = κ Tµν ,<br />

with <strong>the</strong> cosmic ideal fluid energy-momentum tensor<br />

T µν = (ρ + p) (t) u µ u ν − p(t) g µν .<br />

The cosmological constant term Λ gµν nowadays is usually included as part <strong>of</strong> Tµν<br />

as an additional contribution to <strong>the</strong> energy density<br />

ρ(t) → ρ(t) + ρΛ ; ρΛ = Λ<br />

κ ,<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 439


Cosmology<br />

claimed to represent <strong>the</strong> vacuum energy density.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 440


Cosmology<br />

claimed to represent <strong>the</strong> vacuum energy density. The ideal fluid tensor structure<br />

<strong>the</strong>n requires <strong>the</strong> vacuum energy, now usually called dark energy to satisfy <strong>the</strong><br />

exotic equation <strong>of</strong> state<br />

pΛ = −ρΛ .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 440


Cosmology<br />

claimed to represent <strong>the</strong> vacuum energy density. The ideal fluid tensor structure<br />

<strong>the</strong>n requires <strong>the</strong> vacuum energy, now usually called dark energy to satisfy <strong>the</strong><br />

exotic equation <strong>of</strong> state<br />

pΛ = −ρΛ .<br />

In <strong>the</strong> following we discuss <strong>the</strong> resulting set <strong>of</strong> <strong>Friedmann</strong> <strong>equations</strong><br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 440


Cosmology<br />

claimed to represent <strong>the</strong> vacuum energy density. The ideal fluid tensor structure<br />

<strong>the</strong>n requires <strong>the</strong> vacuum energy, now usually called dark energy to satisfy <strong>the</strong><br />

exotic equation <strong>of</strong> state<br />

pΛ = −ρΛ .<br />

In <strong>the</strong> following we discuss <strong>the</strong> resulting set <strong>of</strong> <strong>Friedmann</strong> <strong>equations</strong><br />

˙S 2<br />

c2 = κ<br />

3 ρ S 2 − k <strong>Friedmann</strong> equation<br />

<br />

d 3<br />

dS ρ S = −3 p S 2 energy equation<br />

p = p(ρ) equation <strong>of</strong> state<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 440


Cosmology<br />

claimed to represent <strong>the</strong> vacuum energy density. The ideal fluid tensor structure<br />

<strong>the</strong>n requires <strong>the</strong> vacuum energy, now usually called dark energy to satisfy <strong>the</strong><br />

exotic equation <strong>of</strong> state<br />

pΛ = −ρΛ .<br />

In <strong>the</strong> following we discuss <strong>the</strong> resulting set <strong>of</strong> <strong>Friedmann</strong> <strong>equations</strong><br />

˙S 2<br />

c2 = κ<br />

3 ρ S 2 − k <strong>Friedmann</strong> equation<br />

<br />

d 3<br />

dS ρ S = −3 p S 2 energy equation<br />

p = p(ρ) equation <strong>of</strong> state<br />

with ρ and p now assumed to include <strong>the</strong> cosmological constant term.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 440


Cosmology<br />

claimed to represent <strong>the</strong> vacuum energy density. The ideal fluid tensor structure<br />

<strong>the</strong>n requires <strong>the</strong> vacuum energy, now usually called dark energy to satisfy <strong>the</strong><br />

exotic equation <strong>of</strong> state<br />

pΛ = −ρΛ .<br />

In <strong>the</strong> following we discuss <strong>the</strong> resulting set <strong>of</strong> <strong>Friedmann</strong> <strong>equations</strong><br />

˙S 2<br />

c2 = κ<br />

3 ρ S 2 − k <strong>Friedmann</strong> equation<br />

<br />

d 3<br />

dS ρ S = −3 p S 2 energy equation<br />

p = p(ρ) equation <strong>of</strong> state<br />

with ρ and p now assumed to include <strong>the</strong> cosmological constant term.<br />

Note, we have 3 functions S (t), ρ(t) and p(t) to be determined, for which we need<br />

3 <strong>equations</strong> to uniquely determine <strong>the</strong>m in terms <strong>of</strong> some initial values.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 440


Cosmology<br />

A) Empty Worlds, vacuum energy at most: ρ = p = 0 , Λ = κ ρvac<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 441


Cosmology<br />

A) Empty Worlds, vacuum energy at most: ρ = p = 0 , Λ = κ ρvac<br />

In spite <strong>of</strong> <strong>the</strong> fact that such models are unrealistic, <strong>the</strong>y give some insight into <strong>the</strong><br />

geometrical and kinematic possibilities in cosmological model building. In this<br />

limiting case we have <strong>the</strong> following basic <strong>equations</strong>:<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 441


Cosmology<br />

A) Empty Worlds, vacuum energy at most: ρ = p = 0 , Λ = κ ρvac<br />

In spite <strong>of</strong> <strong>the</strong> fact that such models are unrealistic, <strong>the</strong>y give some insight into <strong>the</strong><br />

geometrical and kinematic possibilities in cosmological model building. In this<br />

limiting case we have <strong>the</strong> following basic <strong>equations</strong>:<br />

˙S 2<br />

c 2 = Λ<br />

3 S 2 − k ;<br />

¨S<br />

c 2 = Λ<br />

3 S<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 441


Cosmology<br />

A) Empty Worlds, vacuum energy at most: ρ = p = 0 , Λ = κ ρvac<br />

In spite <strong>of</strong> <strong>the</strong> fact that such models are unrealistic, <strong>the</strong>y give some insight into <strong>the</strong><br />

geometrical and kinematic possibilities in cosmological model building. In this<br />

limiting case we have <strong>the</strong> following basic <strong>equations</strong>:<br />

or<br />

˙S 2<br />

c 2 = Λ<br />

3 S 2 − k ;<br />

¨S<br />

c 2 = Λ<br />

3 S<br />

Λ = −3 H2 (t)<br />

c 2 q(t) ; K(t) = − H2 (t)<br />

c 2 (q(t) + 1) .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 441


Cosmology<br />

The general solution is<br />

S (t) = a ct + b ; Λ = 0 , a 2 = −k ,<br />

S (t) = 1<br />

2<br />

a e αct + b e −αct ; Λ 0 , α 2 = Λ<br />

3<br />

; Λ<br />

3<br />

ab = k = (1, 0, −1) .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 442


Cosmology<br />

The general solution is<br />

S (t) = a ct + b ; Λ = 0 , a 2 = −k ,<br />

S (t) = 1<br />

2<br />

a e αct + b e −αct ; Λ 0 , α 2 = Λ<br />

3<br />

Because <strong>of</strong> time reversal symmetry or anti-symmetry:<br />

when b 0: b = ±a with a > 0.<br />

; Λ<br />

3<br />

ab = k = (1, 0, −1) .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 442


Cosmology<br />

The general solution is<br />

S (t) = a ct + b ; Λ = 0 , a 2 = −k ,<br />

S (t) = 1<br />

2<br />

a e αct + b e −αct ; Λ 0 , α 2 = Λ<br />

3<br />

Because <strong>of</strong> time reversal symmetry or anti-symmetry:<br />

when b 0: b = ±a with a > 0.<br />

Cases:<br />

(a) Λ = 0 , k = 0: S = S 0 = constant ; H = 0 , q = 0 .<br />

; Λ<br />

3<br />

ab = k = (1, 0, −1) .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 442


Cosmology<br />

The general solution is<br />

S (t) = a ct + b ; Λ = 0 , a 2 = −k ,<br />

S (t) = 1<br />

2<br />

a e αct + b e −αct ; Λ 0 , α 2 = Λ<br />

3<br />

Because <strong>of</strong> time reversal symmetry or anti-symmetry:<br />

when b 0: b = ±a with a > 0.<br />

Cases:<br />

(a) Λ = 0 , k = 0: S = S 0 = constant ; H = 0 , q = 0 .<br />

; Λ<br />

3<br />

(b) Λ = 0 , k = −1: S = ct ; H = 1/t , q = 0 ; z = t0/t1 − 1 ,<br />

Milne’s Universe<br />

ab = k = (1, 0, −1) .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 442


Cosmology<br />

The general solution is<br />

S (t) = a ct + b ; Λ = 0 , a 2 = −k ,<br />

S (t) = 1<br />

2<br />

a e αct + b e −αct ; Λ 0 , α 2 = Λ<br />

3<br />

Because <strong>of</strong> time reversal symmetry or anti-symmetry:<br />

when b 0: b = ±a with a > 0.<br />

Cases:<br />

(a) Λ = 0 , k = 0: S = S 0 = constant ; H = 0 , q = 0 .<br />

; Λ<br />

3<br />

(b) Λ = 0 , k = −1: S = ct ; H = 1/t , q = 0 ; z = t0/t1 − 1 ,<br />

Milne’s Universe<br />

(c) Λ > 0 , k = 1: S = a cosh <br />

ct<br />

a .<br />

ab = k = (1, 0, −1) .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 442


Cosmology<br />

(d) Λ > 0 , k = 0: S = exp <br />

ct<br />

c<br />

a = exp (Ht) ; H ≡ a = κ ρvac c2 /3<br />

de Sitter Universe: here H(t) = constant and q(t) ≡ −1, this universe has infinite<br />

age!<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 443


Cosmology<br />

(d) Λ > 0 , k = 0: S = exp <br />

ct<br />

c<br />

a = exp (Ht) ; H ≡ a = κ ρvac c2 /3<br />

de Sitter Universe: here H(t) = constant and q(t) ≡ −1, this universe has infinite<br />

age! Today’s pure dark energy universe!<br />

(e) Λ > 0 , k = −1: S = a sinh <br />

ct<br />

a .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 443


Cosmology<br />

(d) Λ > 0 , k = 0: S = exp <br />

ct<br />

c<br />

a = exp (Ht) ; H ≡ a = κ ρvac c2 /3<br />

de Sitter Universe: here H(t) = constant and q(t) ≡ −1, this universe has infinite<br />

age! Today’s pure dark energy universe!<br />

(e) Λ > 0 , k = −1: S = a sinh <br />

ct<br />

a .<br />

(f) Λ < 0 , k = −1: S = a sin <br />

ct<br />

a .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 443


Cosmology<br />

(d) Λ > 0 , k = 0: S = exp <br />

ct<br />

c<br />

a = exp (Ht) ; H ≡ a = κ ρvac c2 /3<br />

de Sitter Universe: here H(t) = constant and q(t) ≡ −1, this universe has infinite<br />

age! Today’s pure dark energy universe!<br />

(e) Λ > 0 , k = −1: S = a sinh <br />

ct<br />

a .<br />

(f) Λ < 0 , k = −1: S = a sin <br />

ct<br />

a .<br />

where in all cases<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 443


Cosmology<br />

(d) Λ > 0 , k = 0: S = exp <br />

ct<br />

c<br />

a = exp (Ht) ; H ≡ a = κ ρvac c2 /3<br />

de Sitter Universe: here H(t) = constant and q(t) ≡ −1, this universe has infinite<br />

age! Today’s pure dark energy universe!<br />

(e) Λ > 0 , k = −1: S = a sinh <br />

ct<br />

a .<br />

(f) Λ < 0 , k = −1: S = a sin <br />

ct<br />

a .<br />

where in all cases<br />

a = |3/Λ| .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 443


Cosmology<br />

(d) Λ > 0 , k = 0: S = exp <br />

ct<br />

c<br />

a = exp (Ht) ; H ≡ a = κ ρvac c2 /3<br />

de Sitter Universe: here H(t) = constant and q(t) ≡ −1, this universe has infinite<br />

age! Today’s pure dark energy universe!<br />

(e) Λ > 0 , k = −1: S = a sinh <br />

ct<br />

a .<br />

(f) Λ < 0 , k = −1: S = a sin <br />

ct<br />

a .<br />

where in all cases<br />

a = |3/Λ| .<br />

Models (b), (d), (e) and (f) some times have been called “incomplete” as <strong>the</strong>y<br />

exhibit more space than “substrate”.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 443


Cosmology<br />

Terminology: Λ > 0 , k = 0, ±1 (ρ = p = 0) de Sitter spaces<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 444


Cosmology<br />

Terminology: Λ > 0 , k = 0, ±1 (ρ = p = 0) de Sitter spaces<br />

Λ < 0 , k = −1 (ρ = p = 0) Anti-de Sitter spaces<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 444


Cosmology<br />

Terminology: Λ > 0 , k = 0, ±1 (ρ = p = 0) de Sitter spaces<br />

Λ < 0 , k = −1 (ρ = p = 0) Anti-de Sitter spaces<br />

Isometric embedding: ds 2 = dz 0 2<br />

− dz 1 2<br />

− dz 2 2<br />

− dz 3 2<br />

− k dz 4 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 444


Cosmology<br />

Terminology: Λ > 0 , k = 0, ±1 (ρ = p = 0) de Sitter spaces<br />

Λ < 0 , k = −1 (ρ = p = 0) Anti-de Sitter spaces<br />

Isometric embedding: ds 2 = dz 0 2<br />

− dz 1 2<br />

− dz 2 2<br />

− dz 3 2<br />

− k dz 4 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 444


Cosmology<br />

Terminology: Λ > 0 , k = 0, ±1 (ρ = p = 0) de Sitter spaces<br />

Λ < 0 , k = −1 (ρ = p = 0) Anti-de Sitter spaces<br />

Isometric embedding: ds 2 = dz 0 2<br />

− dz 1 2<br />

− dz 2 2<br />

− dz 3 2<br />

− k dz 4 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 444


Cosmology<br />

Terminology: Λ > 0 , k = 0, ±1 (ρ = p = 0) de Sitter spaces<br />

Λ < 0 , k = −1 (ρ = p = 0) Anti-de Sitter spaces<br />

Isometric embedding: ds 2 = dz 0 2<br />

S − 4<br />

✻<br />

z 0<br />

− dz 1 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

✲<br />

✒<br />

z3 de Sitter<br />

z 4<br />

S + 4<br />

− dz 2 2<br />

− dz 3 2<br />

z 0<br />

✻<br />

− k dz 4 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

✒<br />

Anti de Sitter<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 444<br />

z 4<br />

z 3<br />


Cosmology<br />

B) Matter dominated: ρ > 0 , p = 0<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 445


Cosmology<br />

B) Matter dominated: ρ > 0 , p = 0<br />

Λ = 0: preferable class <strong>of</strong> models<br />

satisfies <strong>Einstein</strong>’s boundary criterion: empty space = flat space<br />

Base <strong>equations</strong>: ρ S 3 = ρ0 S 3<br />

0<br />

= constant<br />

˙S 2<br />

c2 = κ<br />

3 ρ S 2 − k = C<br />

S<br />

− k ; C κ<br />

3 ρ S 3 = constant<br />

which can be integrated elementary: dS/ √ C/S − k = ±c dt<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 445


Cosmology<br />

B) Matter dominated: ρ > 0 , p = 0<br />

Λ = 0: preferable class <strong>of</strong> models<br />

satisfies <strong>Einstein</strong>’s boundary criterion: empty space = flat space<br />

Base <strong>equations</strong>: ρ S 3 = ρ0 S 3<br />

0<br />

= constant<br />

˙S 2<br />

c2 = κ<br />

3 ρ S 2 − k = C<br />

S<br />

− k ; C κ<br />

3 ρ S 3 = constant<br />

which can be integrated elementary: dS/ √ C/S − k = ±c dt<br />

❖ k = 0 : <strong>Einstein</strong>-de Sitter universe<br />

S (t) = 9<br />

4 C 1/3<br />

(ct) 2/3<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 445


Cosmology<br />

B) Matter dominated: ρ > 0 , p = 0<br />

Λ = 0: preferable class <strong>of</strong> models<br />

satisfies <strong>Einstein</strong>’s boundary criterion: empty space = flat space<br />

Base <strong>equations</strong>: ρ S 3 = ρ0 S 3<br />

0<br />

= constant<br />

˙S 2<br />

c2 = κ<br />

3 ρ S 2 − k = C<br />

S<br />

− k ; C κ<br />

3 ρ S 3 = constant<br />

which can be integrated elementary: dS/ √ C/S − k = ±c dt<br />

❖ k = 0 : <strong>Einstein</strong>-de Sitter universe<br />

S (t) = 9<br />

4 C 1/3<br />

(ct) 2/3<br />

❖ k = 1 : <strong>Friedmann</strong>-<strong>Einstein</strong> universe<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 445


Cosmology<br />

ct = C arcsin √ X − √ X − X 2 ; X = S (t)/C<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 446


Cosmology<br />

ct = C arcsin √ X − √ X − X 2 ; X = S (t)/C<br />

Parameter representation:<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 446


Cosmology<br />

ct = C arcsin √ X − √ X − X 2 ; X = S (t)/C<br />

Parameter representation:<br />

S (t) = 1<br />

2 C (1 − cos η)<br />

1 ct = 2 C (η − sin η)<br />

<br />

cycloid<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 446


Cosmology<br />

ct = C arcsin √ X − √ X − X 2 ; X = S (t)/C<br />

Parameter representation:<br />

❖ k = −1 :<br />

S (t) = 1<br />

2 C (1 − cos η)<br />

1 ct = 2 C (η − sin η)<br />

ct = C √ X + X 2 − arcsinh √ X ; X = S (t)/C<br />

<br />

cycloid<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 446


Cosmology<br />

ct = C arcsin √ X − √ X − X 2 ; X = S (t)/C<br />

Parameter representation:<br />

❖ k = −1 :<br />

S (t) = 1<br />

2 C (1 − cos η)<br />

1 ct = 2 C (η − sin η)<br />

ct = C √ X + X 2 − arcsinh √ X ; X = S (t)/C<br />

Parameter representation:<br />

<br />

cycloid<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 446


Cosmology<br />

ct = C arcsin √ X − √ X − X 2 ; X = S (t)/C<br />

Parameter representation:<br />

❖ k = −1 :<br />

S (t) = 1<br />

2 C (1 − cos η)<br />

1 ct = 2 C (η − sin η)<br />

ct = C √ X + X 2 − arcsinh √ X ; X = S (t)/C<br />

Parameter representation:<br />

<br />

S (t) = 1<br />

2 C (cosh η − 1)<br />

1 ct = 2 C (sinh η − η)<br />

cycloid<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 446


Cosmology<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 447


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang cosmologies.<br />

For small t <strong>the</strong> C term is dominating, such that<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 448


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang cosmologies.<br />

For small t <strong>the</strong> C term is dominating, such that<br />

S (t) 9<br />

4 C 1/3<br />

(ct) 2/3 ; t → 0<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 448


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang cosmologies.<br />

For small t <strong>the</strong> C term is dominating, such that<br />

S (t) 9<br />

4 C 1/3<br />

For <strong>the</strong> observables we have <strong>the</strong> relationships<br />

(ct) 2/3 ; t → 0<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 448


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang cosmologies.<br />

For small t <strong>the</strong> C term is dominating, such that<br />

S (t) 9<br />

4 C 1/3<br />

For <strong>the</strong> observables we have <strong>the</strong> relationships<br />

κ<br />

2 ρ(t) = 3 H2 (t)<br />

K(t) =<br />

(ct) 2/3 ; t → 0<br />

c 2 q(t) ✄ q(t) > 0!<br />

H 2 (t)<br />

c 2 (2 q(t) − 1) ✄ q(t) =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

> 1<br />

2<br />

= 1<br />

2<br />

< 1<br />

2<br />

; k = 1<br />

; k = 0<br />

; k = −1<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 448


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang cosmologies.<br />

For small t <strong>the</strong> C term is dominating, such that<br />

S (t) 9<br />

4 C 1/3<br />

For <strong>the</strong> observables we have <strong>the</strong> relationships<br />

κ<br />

2 ρ(t) = 3 H2 (t)<br />

K(t) =<br />

(ct) 2/3 ; t → 0<br />

c 2 q(t) ✄ q(t) > 0!<br />

H 2 (t)<br />

c 2 (2 q(t) − 1) ✄ q(t) =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

> 1<br />

2<br />

= 1<br />

2<br />

< 1<br />

2<br />

; k = 1<br />

; k = 0<br />

; k = −1<br />

The following graphical representation is shown for C = 1 and c = 1, i.e, S (t) as<br />

well as ct are represented in units <strong>of</strong> C.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 448


Cosmology<br />

0.16<br />

0.21<br />

0.25<br />

0.30<br />

1.0<br />

2.0<br />

7.5<br />

0.5<br />

∞<br />

↑<br />

1<br />

2 ctc<br />

q = 0.10<br />

↑<br />

ctc = π<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 449


Cosmology<br />

<strong>Einstein</strong>-de Sitter universe<br />

The flat case k = 0 is <strong>of</strong> particular interest as a critical universe in between positive<br />

and negative curvature. In this case many things are fixed:<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 450


Cosmology<br />

<strong>Einstein</strong>-de Sitter universe<br />

The flat case k = 0 is <strong>of</strong> particular interest as a critical universe in between positive<br />

and negative curvature. In this case many things are fixed:<br />

First<br />

K(t) ≡ 0 ✄ qEdS(t) ≡ 1<br />

2 and ρEdS(t) = 3<br />

κ<br />

H 2 (t)<br />

c 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 450<br />

.


Cosmology<br />

<strong>Einstein</strong>-de Sitter universe<br />

The flat case k = 0 is <strong>of</strong> particular interest as a critical universe in between positive<br />

and negative curvature. In this case many things are fixed:<br />

First<br />

K(t) ≡ 0 ✄ qEdS(t) ≡ 1<br />

2 and ρEdS(t) = 3<br />

κ<br />

In addition, using S 3 = 9<br />

4 C(ct)2 , we obtain<br />

C = κ<br />

3 ρ S 3 = κ<br />

3<br />

3 H<br />

·<br />

κ<br />

2 (t)<br />

c2 where C cancels and we get 1 = 9<br />

4 H2 (t) (t) 2 or<br />

· S 3 = 9<br />

4 C H2 (t)<br />

c 2<br />

H 2 (t)<br />

c 2<br />

(ct) 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 450<br />

.


Cosmology<br />

t = 2<br />

3 H−1 (t) (EdS)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 451


Cosmology<br />

t = 2<br />

3 H−1 (t) (EdS)<br />

Hence in <strong>the</strong> EdS universe everything is fixed for given H0:<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 451


Cosmology<br />

t = 2<br />

3 H−1 (t) (EdS)<br />

Hence in <strong>the</strong> EdS universe everything is fixed for given H0:<br />

Present values:<br />

H0 0.83 × 10 −28 cm −1 × c<br />

ρ0 EdS 1.2 × 10 −29 gr/cm 3 × c 2<br />

t0 EdS = 2<br />

3 H−1<br />

0 8.1 × 109 years (EdS age <strong>of</strong> <strong>the</strong> universe)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 451


Cosmology<br />

t = 2<br />

3 H−1 (t) (EdS)<br />

Hence in <strong>the</strong> EdS universe everything is fixed for given H0:<br />

Present values:<br />

H0 0.83 × 10 −28 cm −1 × c<br />

ρ0 EdS 1.2 × 10 −29 gr/cm 3 × c 2<br />

t0 EdS = 2<br />

3 H−1<br />

0 8.1 × 109 years (EdS age <strong>of</strong> <strong>the</strong> universe)<br />

where we used<br />

κ = 8πGN<br />

c 2<br />

= 1.86637 × 10 −27 cm/gr .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 451


Cosmology<br />

S(t)<br />

t0<br />

tH = H −1<br />

0<br />

<strong>Einstein</strong>-de Sitter universe: a typical expansion pattern (for closed universes only<br />

for t ≪ trecontraction)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 452<br />

t


Cosmology<br />

Back to <strong>the</strong> non-flat geometries k = ±1:<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 453


Cosmology<br />

Back to <strong>the</strong> non-flat geometries k = ±1: here we have<br />

C = κ<br />

3 ρ(t) S (t)3 = 2 H2 (t)<br />

q(t) S (t)3<br />

c2 c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 453


Cosmology<br />

Back to <strong>the</strong> non-flat geometries k = ±1: here we have<br />

thus, with<br />

C = κ<br />

3 ρ(t) S (t)3 = 2 H2 (t)<br />

q(t) S (t)3<br />

c2 k S (t) −2 = H2 (t)<br />

c 2<br />

(2 q(t) − 1) ,<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 453


Cosmology<br />

Back to <strong>the</strong> non-flat geometries k = ±1: here we have<br />

thus, with<br />

we may write<br />

C = κ<br />

3 ρ(t) S (t)3 = 2 H2 (t)<br />

q(t) S (t)3<br />

c2 k S (t) −2 = H2 (t)<br />

c 2<br />

S (t) = c<br />

H(t)<br />

(2 q(t) − 1) ,<br />

√ 1<br />

|2 q(t)−1|<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 453


Cosmology<br />

in terms <strong>of</strong> <strong>the</strong> observables H(t) and q(t).<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 454


Cosmology<br />

in terms <strong>of</strong> <strong>the</strong> observables H(t) and q(t). Fur<strong>the</strong>rmore, we have<br />

C = 2 c<br />

H(t)<br />

q(t)<br />

; q(t) ≥ 0 !<br />

3/2<br />

(|2 q(t) − 1|)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 454


Cosmology<br />

in terms <strong>of</strong> <strong>the</strong> observables H(t) and q(t). Fur<strong>the</strong>rmore, we have<br />

Also, with<br />

˙S 2<br />

C<br />

=<br />

c2 S<br />

C = 2 c<br />

H(t)<br />

− k ,<br />

q(t)<br />

; q(t) ≥ 0 !<br />

3/2<br />

(|2 q(t) − 1|)<br />

¨S C<br />

= −<br />

c2 2S 2 ; q = − ¨S S 1<br />

=<br />

˙S 2 2<br />

C<br />

C − kS<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 454


Cosmology<br />

in terms <strong>of</strong> <strong>the</strong> observables H(t) and q(t). Fur<strong>the</strong>rmore, we have<br />

Also, with<br />

we obtain<br />

˙S 2<br />

C<br />

=<br />

c2 S<br />

C = 2 c<br />

H(t)<br />

− k ,<br />

q(t)<br />

; q(t) ≥ 0 !<br />

3/2<br />

(|2 q(t) − 1|)<br />

¨S C<br />

= −<br />

c2 2S 2 ; q = − ¨S S 1<br />

=<br />

˙S 2 2<br />

C<br />

C − kS<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 454


Cosmology<br />

in terms <strong>of</strong> <strong>the</strong> observables H(t) and q(t). Fur<strong>the</strong>rmore, we have<br />

Also, with<br />

we obtain 7<br />

˙S 2<br />

C<br />

=<br />

c2 S<br />

C = 2 c<br />

H(t)<br />

− k ,<br />

q(t)<br />

; q(t) ≥ 0 !<br />

3/2<br />

(|2 q(t) − 1|)<br />

¨S C<br />

= −<br />

c2 2S 2 ; q = − ¨S S 1<br />

=<br />

˙S 2 2<br />

C<br />

C − kS<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 454


Cosmology<br />

in terms <strong>of</strong> <strong>the</strong> observables H(t) and q(t). Fur<strong>the</strong>rmore, we have<br />

Also, with<br />

we obtain 7<br />

˙S 2<br />

C<br />

=<br />

c2 S<br />

C = 2 c<br />

H(t)<br />

− k ,<br />

q(t)<br />

; q(t) ≥ 0 !<br />

3/2<br />

(|2 q(t) − 1|)<br />

¨S C<br />

= −<br />

c2 2S 2 ; q = − ¨S S 1<br />

=<br />

˙S 2 2<br />

k S (t) = C<br />

2 q(t) − 1<br />

2 q(t)<br />

which means that kS (t) is determined by C and q(t).<br />

,<br />

C<br />

C − kS<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 454


Cosmology<br />

in terms <strong>of</strong> <strong>the</strong> observables H(t) and q(t). Fur<strong>the</strong>rmore, we have<br />

Also, with<br />

we obtain 7<br />

˙S 2<br />

C<br />

=<br />

c2 S<br />

C = 2 c<br />

H(t)<br />

− k ,<br />

q(t)<br />

; q(t) ≥ 0 !<br />

3/2<br />

(|2 q(t) − 1|)<br />

¨S C<br />

= −<br />

c2 2S 2 ; q = − ¨S S 1<br />

=<br />

˙S 2 2<br />

k S (t) = C<br />

2 q(t) − 1<br />

2 q(t)<br />

which means that kS (t) is determined by C and q(t).<br />

7 We also may write<br />

ct k=1<br />

= C<br />

<br />

arcsin<br />

<br />

1 − 2q −1 −<br />

√ <br />

2q−1<br />

2q<br />

; ct k=−1<br />

√<br />

1−2q<br />

= C 2q − arcsinh<br />

,<br />

<br />

2q−1 <br />

− 1<br />

C<br />

C − kS<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 454


Cosmology<br />

The conclusion <strong>of</strong> <strong>the</strong> above discussion: provided Λ = 0 and p = 0, we may<br />

determine <strong>the</strong> age and <strong>the</strong> curvature <strong>of</strong> <strong>the</strong> universe by evaluating <strong>the</strong> observable<br />

relations at t = t0. Since, in principle, we can determine H0 and ρ0 independently,<br />

we can find whe<strong>the</strong>r k = 0, +1 or − 1. The density ρEdS for k = 0, shows up as <strong>the</strong><br />

critical density.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 455


Cosmology<br />

The conclusion <strong>of</strong> <strong>the</strong> above discussion: provided Λ = 0 and p = 0, we may<br />

determine <strong>the</strong> age and <strong>the</strong> curvature <strong>of</strong> <strong>the</strong> universe by evaluating <strong>the</strong> observable<br />

relations at t = t0. Since, in principle, we can determine H0 and ρ0 independently,<br />

we can find whe<strong>the</strong>r k = 0, +1 or − 1. The density ρEdS for k = 0, shows up as <strong>the</strong><br />

critical density. Generally,<br />

such that<br />

ρ(t) = ρEdS(t) · 2 q(t)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 455


Cosmology<br />

The conclusion <strong>of</strong> <strong>the</strong> above discussion: provided Λ = 0 and p = 0, we may<br />

determine <strong>the</strong> age and <strong>the</strong> curvature <strong>of</strong> <strong>the</strong> universe by evaluating <strong>the</strong> observable<br />

relations at t = t0. Since, in principle, we can determine H0 and ρ0 independently,<br />

we can find whe<strong>the</strong>r k = 0, +1 or − 1. The density ρEdS for k = 0, shows up as <strong>the</strong><br />

critical density. Generally,<br />

such that<br />

ρ(t) = ρEdS(t) · 2 q(t)<br />

ρ0 > ρ0 EdS ✄ k = 1<br />

ρ0 < ρ0 EdS ✄ k = −1<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 455


Cosmology<br />

The conclusion <strong>of</strong> <strong>the</strong> above discussion: provided Λ = 0 and p = 0, we may<br />

determine <strong>the</strong> age and <strong>the</strong> curvature <strong>of</strong> <strong>the</strong> universe by evaluating <strong>the</strong> observable<br />

relations at t = t0. Since, in principle, we can determine H0 and ρ0 independently,<br />

we can find whe<strong>the</strong>r k = 0, +1 or − 1. The density ρEdS for k = 0, shows up as <strong>the</strong><br />

critical density. Generally,<br />

ρ(t) = ρEdS(t) · 2 q(t)<br />

such that<br />

ρ0 > ρ0 EdS ✄ k = 1<br />

Thus:<br />

ρ0 < ρ0 EdS ✄ k = −1<br />

● Lot <strong>of</strong> matter – space closes under gravity, gravity wins.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 455


Cosmology<br />

The conclusion <strong>of</strong> <strong>the</strong> above discussion: provided Λ = 0 and p = 0, we may<br />

determine <strong>the</strong> age and <strong>the</strong> curvature <strong>of</strong> <strong>the</strong> universe by evaluating <strong>the</strong> observable<br />

relations at t = t0. Since, in principle, we can determine H0 and ρ0 independently,<br />

we can find whe<strong>the</strong>r k = 0, +1 or − 1. The density ρEdS for k = 0, shows up as <strong>the</strong><br />

critical density. Generally,<br />

ρ(t) = ρEdS(t) · 2 q(t)<br />

such that<br />

ρ0 > ρ0 EdS ✄ k = 1<br />

Thus:<br />

ρ0 < ρ0 EdS ✄ k = −1<br />

● Lot <strong>of</strong> matter – space closes under gravity, gravity wins.<br />

● Little matter – space is open and matter spreads forever.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 455


Cosmology<br />

The conclusion <strong>of</strong> <strong>the</strong> above discussion: provided Λ = 0 and p = 0, we may<br />

determine <strong>the</strong> age and <strong>the</strong> curvature <strong>of</strong> <strong>the</strong> universe by evaluating <strong>the</strong> observable<br />

relations at t = t0. Since, in principle, we can determine H0 and ρ0 independently,<br />

we can find whe<strong>the</strong>r k = 0, +1 or − 1. The density ρEdS for k = 0, shows up as <strong>the</strong><br />

critical density. Generally,<br />

ρ(t) = ρEdS(t) · 2 q(t)<br />

such that<br />

ρ0 > ρ0 EdS ✄ k = 1<br />

Thus:<br />

ρ0 < ρ0 EdS ✄ k = −1<br />

● Lot <strong>of</strong> matter – space closes under gravity, gravity wins.<br />

● Little matter – space is open and matter spreads forever.<br />

i.e, ei<strong>the</strong>r confinement or asymptotic freedom<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 455


Cosmology<br />

In any case <strong>the</strong> matter dominated energy density ρmat is known not to be given by<br />

<strong>the</strong> normal baryonic matter which stars, planets, dust and interstellar gas are<br />

made <strong>of</strong>. There are many indications that baryonic matter is only a fraction <strong>of</strong> <strong>the</strong><br />

total gravitating matter, which is mainly Dark Matter (DM). Dark matter, which only<br />

manifests to us by gravitational interaction, is seen in galaxies (velocity pr<strong>of</strong>iles), in<br />

relative motion <strong>of</strong> <strong>the</strong> objects in clusters <strong>of</strong> galaxies (Fritz Zwicky 1933, applying<br />

<strong>the</strong> virial <strong>the</strong>orem to Coma Cluster) as well as in <strong>the</strong> universe as a whole (CMB<br />

fluctuations). A very important “tool” in dark matter search is gravitational lensing,<br />

which convincingly supports <strong>the</strong> o<strong>the</strong>r findings, and in addition provides important<br />

information concerning <strong>the</strong> distribution <strong>of</strong> DM. We will discussed this in detail later,<br />

toge<strong>the</strong>r with Observational findings.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 456


Cosmology<br />

C) Radiation dominated: p = ρ/3<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 457


Cosmology<br />

C) Radiation dominated: p = ρ/3<br />

Realistic for <strong>the</strong> early stage <strong>of</strong> a Big-Bang cosmology.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 457


Cosmology<br />

C) Radiation dominated: p = ρ/3<br />

Realistic for <strong>the</strong> early stage <strong>of</strong> a Big-Bang cosmology.<br />

Λ = 0: preferable class <strong>of</strong> models<br />

satisfies <strong>Einstein</strong>’s boundary criterion: empty space = flat space<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 457


Cosmology<br />

C) Radiation dominated: p = ρ/3<br />

Realistic for <strong>the</strong> early stage <strong>of</strong> a Big-Bang cosmology.<br />

Λ = 0: preferable class <strong>of</strong> models<br />

satisfies <strong>Einstein</strong>’s boundary criterion: empty space = flat space<br />

Base <strong>equations</strong>: ρ S 4 = ρ0 S 4 0<br />

= constant<br />

˙S 2<br />

c 2 = κ<br />

3 ρ S 2 − k = ¯C<br />

S 2 − k ; ¯C κ<br />

3 ρ S 4 = constant<br />

which can be integrated elementary.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 457


Cosmology<br />

C) Radiation dominated: p = ρ/3<br />

Realistic for <strong>the</strong> early stage <strong>of</strong> a Big-Bang cosmology.<br />

Λ = 0: preferable class <strong>of</strong> models<br />

satisfies <strong>Einstein</strong>’s boundary criterion: empty space = flat space<br />

Base <strong>equations</strong>: ρ S 4 = ρ0 S 4 0<br />

= constant<br />

˙S 2<br />

c 2 = κ<br />

3 ρ S 2 − k = ¯C<br />

S 2 − k ; ¯C κ<br />

3 ρ S 4 = constant<br />

which can be integrated elementary. We actually have<br />

√<br />

S dS = ±cdt<br />

¯C−kS 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 457


Cosmology<br />

❖ k = 0 :<br />

S (t) = 4 ¯C 1/4<br />

(ct) 1/2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 458


Cosmology<br />

❖ k = 0 :<br />

S (t) = 4 ¯C 1/4<br />

❖ k = 1 :<br />

S (t) =<br />

(ct) 1/2<br />

¯C − √ ¯C − ct 2 1/2<br />

in 0 < ct < 2 √ ¯C with cyclic extension !<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 458


Cosmology<br />

❖ k = 0 :<br />

S (t) = 4 ¯C 1/4<br />

❖ k = 1 :<br />

S (t) =<br />

(ct) 1/2<br />

¯C − √ ¯C − ct 2 1/2<br />

in 0 < ct < 2 √ ¯C with cyclic extension !<br />

❖ k = −1 :<br />

S (t) =<br />

√ ¯C + ct 2<br />

1/2 − ¯C<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 458


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang<br />

cosmologies.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 459


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang<br />

cosmologies. As in <strong>the</strong> matter dominated scenario, for small t <strong>the</strong> ¯C term is<br />

dominating, such that, independently <strong>of</strong> k,<br />

S (t) 4 ¯C 1/4<br />

(ct) 1/2 ; t → 0<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 459


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang<br />

cosmologies. As in <strong>the</strong> matter dominated scenario, for small t <strong>the</strong> ¯C term is<br />

dominating, such that, independently <strong>of</strong> k,<br />

S (t) 4 ¯C 1/4<br />

The behavior for large t is easily obtained:<br />

k=0 : S (t) = 4 ¯C 1/4 (ct) 1/2<br />

k=-1<br />

k=1<br />

:<br />

:<br />

S (t) ct<br />

cyclic, cycle time ctc = 2 √ ¯C<br />

(ct) 1/2 ; t → 0<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 459


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang<br />

cosmologies. As in <strong>the</strong> matter dominated scenario, for small t <strong>the</strong> ¯C term is<br />

dominating, such that, independently <strong>of</strong> k,<br />

S (t) 4 ¯C 1/4<br />

The behavior for large t is easily obtained:<br />

k=0 : S (t) = 4 ¯C 1/4 (ct) 1/2<br />

k=-1<br />

k=1<br />

:<br />

:<br />

S (t) ct<br />

cyclic, cycle time ctc = 2 √ ¯C<br />

For k = 1 cyclicity is t → t − t0n ; t0n = n · 2 √ ¯C<br />

c .<br />

(ct) 1/2 ; t → 0<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 459


Cosmology<br />

In each case we have S (t) → 0 (t → 0) i.e., all <strong>of</strong> <strong>the</strong>m are Big-Bang<br />

cosmologies. As in <strong>the</strong> matter dominated scenario, for small t <strong>the</strong> ¯C term is<br />

dominating, such that, independently <strong>of</strong> k,<br />

S (t) 4 ¯C 1/4<br />

The behavior for large t is easily obtained:<br />

k=0 : S (t) = 4 ¯C 1/4 (ct) 1/2<br />

k=-1<br />

k=1<br />

:<br />

:<br />

S (t) ct<br />

cyclic, cycle time ctc = 2 √ ¯C<br />

For k = 1 cyclicity is t → t − t0n ; t0n = n · 2 √ ¯C<br />

c .<br />

For <strong>the</strong> observables we have <strong>the</strong> relationships<br />

(ct) 1/2 ; t → 0<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 459


Cosmology<br />

κ ρ(t) = 3 H2 (t)<br />

K(t) =<br />

c 2 q(t) ✄ q(t) ≥ 0!<br />

H 2 (t)<br />

c 2 (q(t) − 1) ✄ q(t) =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

> 1 ; k = 1<br />

= 1 ; k = 0<br />

< 1 ; k = −1<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 460


Cosmology<br />

κ ρ(t) = 3 H2 (t)<br />

K(t) =<br />

c 2 q(t) ✄ q(t) ≥ 0!<br />

H 2 (t)<br />

c 2 (q(t) − 1) ✄ q(t) =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

> 1 ; k = 1<br />

= 1 ; k = 0<br />

< 1 ; k = −1<br />

The following graphical representation is shown for ¯C = 1 and c = 1, i.e, S (t) as<br />

well as ct are represented in units <strong>of</strong> √ ¯C.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 460


Cosmology<br />

0.5<br />

0.3<br />

0.2<br />

3.0<br />

1.0<br />

ր 6.0 ∞<br />

↑<br />

1<br />

2 ctc<br />

q = 0.10<br />

↑<br />

ctc = 2 √ C<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 461


Cosmology<br />

Actually, in <strong>the</strong> radiation dominated era <strong>the</strong> situation is qualitatively very similar to<br />

<strong>the</strong> matter dominated p = 0 scenario.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 462


Cosmology<br />

Actually, in <strong>the</strong> radiation dominated era <strong>the</strong> situation is qualitatively very similar to<br />

<strong>the</strong> matter dominated p = 0 scenario.<br />

Exercise: Express q(t) in terms <strong>of</strong> S and C (matter dominated) or ¯C (radiation<br />

dominated) scenario, respectively.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 462


Cosmology<br />

Actually, in <strong>the</strong> radiation dominated era <strong>the</strong> situation is qualitatively very similar to<br />

<strong>the</strong> matter dominated p = 0 scenario.<br />

Exercise: Express q(t) in terms <strong>of</strong> S and C (matter dominated) or ¯C (radiation<br />

dominated) scenario, respectively.<br />

For radiation in <strong>the</strong>rmal equilibrium (black body radiation) <strong>the</strong> Stefan-Boltzmann<br />

law holds:<br />

ρradiation = a T 4 c 2 ; a = π2 k 4 B<br />

15 3 c 2 = 8.418 × 10 −36 gr/cm 3 ◦ K −4<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 462


Cosmology<br />

Actually, in <strong>the</strong> radiation dominated era <strong>the</strong> situation is qualitatively very similar to<br />

<strong>the</strong> matter dominated p = 0 scenario.<br />

Exercise: Express q(t) in terms <strong>of</strong> S and C (matter dominated) or ¯C (radiation<br />

dominated) scenario, respectively.<br />

For radiation in <strong>the</strong>rmal equilibrium (black body radiation) <strong>the</strong> Stefan-Boltzmann<br />

law holds:<br />

ρradiation = a T 4 c 2 ; a = π2 k 4 B<br />

15 3 c 2 = 8.418 × 10 −36 gr/cm 3 ◦ K −4<br />

and <strong>the</strong> spectral distribution is given by <strong>the</strong> Planck-distribution<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 462


Cosmology<br />

8π hν ργ(ν) dν = 3 dν <br />

exp<br />

hν<br />

k B Tγ<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 463<br />

<br />

−1


Cosmology<br />

8π hν ργ(ν) dν = 3 dν <br />

which characterizes <strong>the</strong> perfect radiator.<br />

exp<br />

hν<br />

k B Tγ<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 463<br />

<br />

−1


Cosmology<br />

8π hν ργ(ν) dν = 3 dν <br />

which characterizes <strong>the</strong> perfect radiator.<br />

exp<br />

hν<br />

k B Tγ<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 463<br />

<br />

−1


Cosmology<br />

Since ρ(t)S (t) 4 = ρ0S 4 0<br />

= constant we have<br />

ρ(t) ∝ T 4 (t) ∝ 1<br />

S (t) 4<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 464


Cosmology<br />

Since ρ(t)S (t) 4 = ρ0S 4 0<br />

implying<br />

= constant we have<br />

ρ(t) ∝ T 4 (t) ∝ 1<br />

S (t) 4<br />

T(t) = T0 S 0<br />

S (t)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 464


Cosmology<br />

Since ρ(t)S (t) 4 = ρ0S 4 0<br />

implying<br />

= constant we have<br />

ρ(t) ∝ T 4 (t) ∝ 1<br />

S (t) 4<br />

T(t) = T0 S 0<br />

S (t)<br />

In fact, <strong>the</strong> radiation cools down by <strong>the</strong> expansion so much that it decouples from<br />

matter. This was predicted by Gamow and Alpher and Herman in 1948,<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 464


Cosmology<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 465


Cosmology<br />

and Dicke and Peebles at Princeton were searching for it when it was actually<br />

discovered “by accident” in 1965 by Penzias and Wilson at Bell Laboratories.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 465


Cosmology<br />

and Dicke and Peebles at Princeton were searching for it when it was actually<br />

discovered “by accident” in 1965 by Penzias and Wilson at Bell Laboratories. For<br />

more history read:✲≫✲≫<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 465


Cosmology<br />

The discovery <strong>of</strong> <strong>the</strong> isotropic Cosmic Microwave Background (CMB) <strong>of</strong><br />

temperature<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 466


Cosmology<br />

T0 = (2.725 ± 0.002) ◦ K<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 467


Cosmology<br />

T0 = (2.725 ± 0.002) ◦ K<br />

not only clearly favored Big-Bang cosmologies and essentially ruled out<br />

steady-state <strong>the</strong>ory, it by now provides <strong>the</strong> best test <strong>of</strong> isotropy at <strong>the</strong> level <strong>of</strong> 0.1%<br />

over 360 ◦ <strong>of</strong> <strong>the</strong> sky! We will come to that later.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 467


Cosmology<br />

T0 = (2.725 ± 0.002) ◦ K<br />

not only clearly favored Big-Bang cosmologies and essentially ruled out<br />

steady-state <strong>the</strong>ory, it by now provides <strong>the</strong> best test <strong>of</strong> isotropy at <strong>the</strong> level <strong>of</strong> 0.1%<br />

over 360 ◦ <strong>of</strong> <strong>the</strong> sky! We will come to that later.<br />

What does it mean? First we have<br />

ρ0γ = a T 4 0 c2 ✄ ρ0γ 4.64 × 10 −34 gr/cm 3 × c 2 ,<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 467


Cosmology<br />

T0 = (2.725 ± 0.002) ◦ K<br />

not only clearly favored Big-Bang cosmologies and essentially ruled out<br />

steady-state <strong>the</strong>ory, it by now provides <strong>the</strong> best test <strong>of</strong> isotropy at <strong>the</strong> level <strong>of</strong> 0.1%<br />

over 360 ◦ <strong>of</strong> <strong>the</strong> sky! We will come to that later.<br />

What does it mean? First we have<br />

ρ0γ = a T 4 0 c2 ✄ ρ0γ 4.64 × 10 −34 gr/cm 3 × c 2 , n0γ 410 photons/cm 3<br />

which confronts with <strong>the</strong> present baryonic matter density<br />

ρ0,mat 3 × 10 −31 gr/cm 3 × c 2 .<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 467


Cosmology<br />

However, <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> two densities are different<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 468


Cosmology<br />

However, <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> two densities are different<br />

ρrad(t) = ρ0,rad<br />

4 S 0<br />

S (t)<br />

whereas ρmat = ρ0,mat<br />

3 S 0<br />

S (t)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 468<br />

,


Cosmology<br />

However, <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> two densities are different<br />

ρrad(t) = ρ0,rad<br />

4 S 0<br />

S (t)<br />

whereas ρmat = ρ0,mat<br />

3 S 0<br />

S (t)<br />

and since S (t) → 0 (t → 0) in a Big-Bang cosmology radiation always dominates<br />

in <strong>the</strong> early universe!<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 468<br />

,


Cosmology<br />

ρ(t)<br />

Big Bang<br />

radiation<br />

era<br />

ρrad(t)<br />

ρrad = ρmat<br />

matter<br />

era<br />

ρmat(t)<br />

curvature ?<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 469<br />

present<br />

t


Cosmology<br />

ρ(t)<br />

Big Bang<br />

radiation<br />

era<br />

ρrad(t)<br />

ρrad = ρmat<br />

matter<br />

era<br />

ρmat(t)<br />

curvature ?<br />

Radiation dominates <strong>the</strong> Big Bang, at present it is a cold relict <strong>the</strong> CMB<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 469<br />

present<br />

t


Cosmology<br />

ρ(t)<br />

Big Bang<br />

radiation<br />

era<br />

ρrad(t)<br />

ρrad = ρmat<br />

matter<br />

era<br />

ρmat(t)<br />

curvature ?<br />

Radiation dominates <strong>the</strong> Big Bang, at present it is a cold relict <strong>the</strong> CMB<br />

Besides photons, a similar sea <strong>of</strong> cold neutrinos fills our universe. This we will<br />

discuss later.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 469<br />

present<br />

t


Cosmology<br />

The critical energy density and <strong>the</strong> flatness problem<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 470


Cosmology<br />

The critical energy density and <strong>the</strong> flatness problem<br />

In general we have some mixture <strong>of</strong> vacuum energy, relativistic and non-relativistic<br />

matter. We have seen that <strong>the</strong> <strong>Einstein</strong>-de Sitter universe with k=0 plays a special<br />

role. In <strong>the</strong> present matter dominated era ρEdS plays <strong>the</strong> boundary case between<br />

expansion forever or recontraction.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 470


Cosmology<br />

The critical energy density and <strong>the</strong> flatness problem<br />

In general we have some mixture <strong>of</strong> vacuum energy, relativistic and non-relativistic<br />

matter. We have seen that <strong>the</strong> <strong>Einstein</strong>-de Sitter universe with k=0 plays a special<br />

role. In <strong>the</strong> present matter dominated era ρEdS plays <strong>the</strong> boundary case between<br />

expansion forever or recontraction. We <strong>the</strong>refore define<br />

ρ0,crit = ρEdS = 3H2 0<br />

8πGN = 1.878 × 10−29 h 2 gr/cm 3 ,<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 470


Cosmology<br />

The critical energy density and <strong>the</strong> flatness problem<br />

In general we have some mixture <strong>of</strong> vacuum energy, relativistic and non-relativistic<br />

matter. We have seen that <strong>the</strong> <strong>Einstein</strong>-de Sitter universe with k=0 plays a special<br />

role. In <strong>the</strong> present matter dominated era ρEdS plays <strong>the</strong> boundary case between<br />

expansion forever or recontraction. We <strong>the</strong>refore define<br />

ρ0,crit = ρEdS = 3H2 0<br />

8πGN = 1.878 × 10−29 h 2 gr/cm 3 ,<br />

where H0 is <strong>the</strong> present Hubble constant, and h its value in units <strong>of</strong> 100 km s −1<br />

Mpc −1 , and express <strong>the</strong> energy density in units <strong>of</strong> ρ0,crit.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 470


Cosmology<br />

The critical energy density and <strong>the</strong> flatness problem<br />

In general we have some mixture <strong>of</strong> vacuum energy, relativistic and non-relativistic<br />

matter. We have seen that <strong>the</strong> <strong>Einstein</strong>-de Sitter universe with k=0 plays a special<br />

role. In <strong>the</strong> present matter dominated era ρEdS plays <strong>the</strong> boundary case between<br />

expansion forever or recontraction. We <strong>the</strong>refore define<br />

ρ0,crit = ρEdS = 3H2 0<br />

8πGN = 1.878 × 10−29 h 2 gr/cm 3 ,<br />

where H0 is <strong>the</strong> present Hubble constant, and h its value in units <strong>of</strong> 100 km s −1<br />

Mpc −1 , and express <strong>the</strong> energy density in units <strong>of</strong> ρ0,crit. Thus <strong>the</strong> present density<br />

ρ0 is represented by<br />

Ω0 = ρ0/ρ0,crit<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 470


Cosmology<br />

The critical energy density and <strong>the</strong> flatness problem<br />

In general we have some mixture <strong>of</strong> vacuum energy, relativistic and non-relativistic<br />

matter. We have seen that <strong>the</strong> <strong>Einstein</strong>-de Sitter universe with k=0 plays a special<br />

role. In <strong>the</strong> present matter dominated era ρEdS plays <strong>the</strong> boundary case between<br />

expansion forever or recontraction. We <strong>the</strong>refore define<br />

ρ0,crit = ρEdS = 3H2 0<br />

8πGN = 1.878 × 10−29 h 2 gr/cm 3 ,<br />

where H0 is <strong>the</strong> present Hubble constant, and h its value in units <strong>of</strong> 100 km s −1<br />

Mpc −1 , and express <strong>the</strong> energy density in units <strong>of</strong> ρ0,crit. Thus <strong>the</strong> present density<br />

ρ0 is represented by<br />

and<br />

Ω0 = ρ0/ρ0,crit<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 470


Cosmology<br />

Ω0 = 1<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 471


Cosmology<br />

Ω0 = 1<br />

is <strong>the</strong> critical density for which <strong>the</strong> universe just remains open, infinite and flat.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 471


Cosmology<br />

Ω0 = 1<br />

is <strong>the</strong> critical density for which <strong>the</strong> universe just remains open, infinite and flat.<br />

Ω0 > 1<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 471


Cosmology<br />

Ω0 = 1<br />

is <strong>the</strong> critical density for which <strong>the</strong> universe just remains open, infinite and flat.<br />

Ω0 > 1<br />

<strong>the</strong> case <strong>of</strong> much matter, space closes due to gravitational attraction <strong>of</strong> mass.<br />

Gravity stops <strong>the</strong> expansion after finite time, <strong>the</strong> universe collapses, ends in heat<br />

death!<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 471


Cosmology<br />

Ω0 = 1<br />

is <strong>the</strong> critical density for which <strong>the</strong> universe just remains open, infinite and flat.<br />

Ω0 > 1<br />

<strong>the</strong> case <strong>of</strong> much matter, space closes due to gravitational attraction <strong>of</strong> mass.<br />

Gravity stops <strong>the</strong> expansion after finite time, <strong>the</strong> universe collapses, ends in heat<br />

death!<br />

Ω0 < 1<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 471


Cosmology<br />

Ω0 = 1<br />

is <strong>the</strong> critical density for which <strong>the</strong> universe just remains open, infinite and flat.<br />

Ω0 > 1<br />

<strong>the</strong> case <strong>of</strong> much matter, space closes due to gravitational attraction <strong>of</strong> mass.<br />

Gravity stops <strong>the</strong> expansion after finite time, <strong>the</strong> universe collapses, ends in heat<br />

death!<br />

Ω0 < 1<br />

<strong>the</strong> case <strong>of</strong> little matter, gravity not sufficient to stop expansion, universe expands<br />

forever, space open, ends in freezing to death!<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 471


Cosmology<br />

Ω0 = 1<br />

is <strong>the</strong> critical density for which <strong>the</strong> universe just remains open, infinite and flat.<br />

Ω0 > 1<br />

<strong>the</strong> case <strong>of</strong> much matter, space closes due to gravitational attraction <strong>of</strong> mass.<br />

Gravity stops <strong>the</strong> expansion after finite time, <strong>the</strong> universe collapses, ends in heat<br />

death!<br />

Ω0 < 1<br />

<strong>the</strong> case <strong>of</strong> little matter, gravity not sufficient to stop expansion, universe expands<br />

forever, space open, ends in freezing to death!<br />

If we include <strong>the</strong> cosmological constant as a vacuum energy density in <strong>the</strong> total<br />

density ρ, we may write <strong>the</strong> <strong>Friedmann</strong> <strong>equations</strong> in <strong>the</strong> form<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 471


Cosmology<br />

˙S 2<br />

c 2 + k = κ<br />

3 ρ S 2 and 3 ¨S<br />

c 2 S<br />

= −κ<br />

2<br />

(3 p + ρ)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 472


Cosmology<br />

˙S 2<br />

c 2 + k = κ<br />

3 ρ S 2 and 3 ¨S<br />

c 2 S<br />

and <strong>the</strong> energy-momentum conservation as<br />

= −κ<br />

2<br />

(3 p + ρ)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 472


Cosmology<br />

˙S 2<br />

c 2 + k = κ<br />

3 ρ S 2 and 3 ¨S<br />

c 2 S<br />

and <strong>the</strong> energy-momentum conservation as<br />

˙ρ = −3 ˙S<br />

S<br />

(ρ + p) .<br />

= −κ<br />

2<br />

(3 p + ρ)<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 472


Cosmology<br />

˙S 2<br />

c 2 + k = κ<br />

3 ρ S 2 and 3 ¨S<br />

c 2 S<br />

and <strong>the</strong> energy-momentum conservation as<br />

˙ρ = −3 ˙S<br />

S<br />

(ρ + p) .<br />

= −κ<br />

2<br />

(3 p + ρ)<br />

If <strong>the</strong> mixture <strong>of</strong> radiation and matter dominates over <strong>the</strong> vacuum energy 3p + ρ is<br />

always positive and thus we have ¨S /S ≤ 0. This means that <strong>the</strong> expansion must<br />

have started with S = 0 in <strong>the</strong> past and <strong>the</strong> present age must be lower than <strong>the</strong><br />

Hubble age: t0 < H−1 0 (see figure in EdS case above). For k = 1 this also implies<br />

<strong>the</strong> recontraction to S = 0.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 472


Cosmology<br />

˙S 2<br />

c 2 + k = κ<br />

3 ρ S 2 and 3 ¨S<br />

c 2 S<br />

and <strong>the</strong> energy-momentum conservation as<br />

˙ρ = −3 ˙S<br />

S<br />

(ρ + p) .<br />

= −κ<br />

2<br />

(3 p + ρ)<br />

If <strong>the</strong> mixture <strong>of</strong> radiation and matter dominates over <strong>the</strong> vacuum energy 3p + ρ is<br />

always positive and thus we have ¨S /S ≤ 0. This means that <strong>the</strong> expansion must<br />

have started with S = 0 in <strong>the</strong> past and <strong>the</strong> present age must be lower than <strong>the</strong><br />

Hubble age: t0 < H−1 0 (see figure in EdS case above). For k = 1 this also implies<br />

<strong>the</strong> recontraction to S = 0.<br />

The present deceleration parameter q0 = − ¨S 0/ S 0 H2 <br />

0 can be written as<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 472


Cosmology<br />

q0 = κ (ρ0+3 p0)<br />

6 H 2 0<br />

= ρ0+3 p0<br />

2 ρ 0,crit<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 473


Cosmology<br />

q0 = κ (ρ0+3 p0)<br />

6 H 2 0<br />

= ρ0+3 p0<br />

2 ρ 0,crit<br />

This equation provides a simple explanation for <strong>the</strong> different values q0 takes<br />

depending on <strong>the</strong> form <strong>of</strong> <strong>the</strong> equation <strong>of</strong> state:<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 473


Cosmology<br />

Form <strong>of</strong> energy equation <strong>of</strong> state q0 q0(k = 0)<br />

a) vacuum energy: pΛ = −ρΛ q0 = −ΩΛ q0 = −1,<br />

b) non-relativistic matter: pmat = 0 q0 = 1<br />

2 Ωmat q0 = 1<br />

2 ,<br />

c) relativistic matter, radiation: prad = ρrad/3 q0 = Ωrad q0 = 1,<br />

<strong>the</strong> different forms <strong>of</strong> matter contribute with different signs and weights to q0.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 474<br />

i.e.


Cosmology<br />

Form <strong>of</strong> energy equation <strong>of</strong> state q0 q0(k = 0)<br />

a) vacuum energy: pΛ = −ρΛ q0 = −ΩΛ q0 = −1,<br />

b) non-relativistic matter: pmat = 0 q0 = 1<br />

2 Ωmat q0 = 1<br />

2 ,<br />

c) relativistic matter, radiation: prad = ρrad/3 q0 = Ωrad q0 = 1,<br />

<strong>the</strong> different forms <strong>of</strong> matter contribute with different signs and weights to q0.<br />

Whatever <strong>the</strong> mix <strong>of</strong> energies <strong>the</strong> total energy density<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 474<br />

i.e.


Cosmology<br />

Form <strong>of</strong> energy equation <strong>of</strong> state q0 q0(k = 0)<br />

a) vacuum energy: pΛ = −ρΛ q0 = −ΩΛ q0 = −1,<br />

b) non-relativistic matter: pmat = 0 q0 = 1<br />

2 Ωmat q0 = 1<br />

2 ,<br />

c) relativistic matter, radiation: prad = ρrad/3 q0 = Ωrad q0 = 1,<br />

<strong>the</strong> different forms <strong>of</strong> matter contribute with different signs and weights to q0.<br />

Whatever <strong>the</strong> mix <strong>of</strong> energies <strong>the</strong> total energy density<br />

ρ(t) = ρ0,crit<br />

⎧<br />

⎪⎨<br />

⎪⎩ ΩΛ + Ω0,mat<br />

3 S 0<br />

S (t)<br />

+ Ω0,rad<br />

⎫<br />

4<br />

S 0 ⎪⎬<br />

S (t) ⎪⎭<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 474<br />

i.e.


Cosmology<br />

Form <strong>of</strong> energy equation <strong>of</strong> state q0 q0(k = 0)<br />

a) vacuum energy: pΛ = −ρΛ q0 = −ΩΛ q0 = −1,<br />

b) non-relativistic matter: pmat = 0 q0 = 1<br />

2 Ωmat q0 = 1<br />

2 ,<br />

c) relativistic matter, radiation: prad = ρrad/3 q0 = Ωrad q0 = 1,<br />

<strong>the</strong> different forms <strong>of</strong> matter contribute with different signs and weights to q0.<br />

Whatever <strong>the</strong> mix <strong>of</strong> energies <strong>the</strong> total energy density<br />

ρ(t) = ρ0,crit<br />

⎧<br />

⎪⎨<br />

⎪⎩ ΩΛ + Ω0,mat<br />

3 S 0<br />

S (t)<br />

+ Ω0,rad<br />

for t → 0 is dominated in any case by <strong>the</strong> radiation part:<br />

⎫<br />

4<br />

S 0 ⎪⎬<br />

S (t) ⎪⎭<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 474<br />

i.e.


Cosmology<br />

Form <strong>of</strong> energy equation <strong>of</strong> state q0 q0(k = 0)<br />

a) vacuum energy: pΛ = −ρΛ q0 = −ΩΛ q0 = −1,<br />

b) non-relativistic matter: pmat = 0 q0 = 1<br />

2 Ωmat q0 = 1<br />

2 ,<br />

c) relativistic matter, radiation: prad = ρrad/3 q0 = Ωrad q0 = 1,<br />

<strong>the</strong> different forms <strong>of</strong> matter contribute with different signs and weights to q0.<br />

Whatever <strong>the</strong> mix <strong>of</strong> energies <strong>the</strong> total energy density<br />

ρ(t) = ρ0,crit<br />

⎧<br />

⎪⎨<br />

⎪⎩ ΩΛ + Ω0,mat<br />

3 S 0<br />

S (t)<br />

+ Ω0,rad<br />

for t → 0 is dominated in any case by <strong>the</strong> radiation part:<br />

ρtot ρ0,crit Ω0,rad<br />

4 S 0<br />

S (t)<br />

⎫<br />

4<br />

S 0 ⎪⎬<br />

S (t) ⎪⎭<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 474<br />

,<br />

i.e.


Cosmology<br />

in which case, independent <strong>of</strong> k!<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 475


Cosmology<br />

in which case, independent <strong>of</strong> k!<br />

S (t) 4 ¯C 1/4<br />

(ct) 1/2 ; ¯C = κ<br />

3 ρ0,rad S 4 0 i.e.<br />

S 4 0<br />

S 4 (t) =<br />

3<br />

4 κ (ct) 2 ρ0,rad<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 475<br />

,


Cosmology<br />

in which case, independent <strong>of</strong> k!<br />

such that<br />

S (t) 4 ¯C 1/4<br />

is universal.<br />

(ct) 1/2 ; ¯C = κ<br />

3 ρ0,rad S 4 0 i.e.<br />

ρtot(t) 3<br />

4 κ (ct) 2<br />

S 4 0<br />

S 4 (t) =<br />

3<br />

4 κ (ct) 2 ρ0,rad<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 475<br />

,


Cosmology<br />

in which case, independent <strong>of</strong> k!<br />

such that<br />

S (t) 4 ¯C 1/4<br />

is universal.<br />

(ct) 1/2 ; ¯C = κ<br />

3 ρ0,rad S 4 0 i.e.<br />

ρtot(t) 3<br />

4 κ (ct) 2<br />

S 4 0<br />

S 4 (t) =<br />

Now, in <strong>the</strong> radiation dominated early phase after <strong>the</strong> Big Bang<br />

3<br />

4 κ (ct) 2 ρ0,rad<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 475<br />

,


Cosmology<br />

in which case, independent <strong>of</strong> k!<br />

such that<br />

S (t) 4 ¯C 1/4<br />

is universal.<br />

(ct) 1/2 ; ¯C = κ<br />

3 ρ0,rad S 4 0 i.e.<br />

ρtot(t) 3<br />

4 κ (ct) 2<br />

S 4 0<br />

S 4 (t) =<br />

Now, in <strong>the</strong> radiation dominated early phase after <strong>the</strong> Big Bang<br />

3<br />

4 κ (ct) 2 ρ0,rad<br />

˙S 2<br />

c 2 = κ<br />

3 ρ S 2 − k = ¯C<br />

S 2 − k ; ¯C κ<br />

3 ρ S 4 = constant<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 475<br />

,


Cosmology<br />

in which case, independent <strong>of</strong> k!<br />

such that<br />

S (t) 4 ¯C 1/4<br />

is universal.<br />

(ct) 1/2 ; ¯C = κ<br />

3 ρ0,rad S 4 0 i.e.<br />

ρtot(t) 3<br />

4 κ (ct) 2<br />

S 4 0<br />

S 4 (t) =<br />

Now, in <strong>the</strong> radiation dominated early phase after <strong>the</strong> Big Bang<br />

3<br />

4 κ (ct) 2 ρ0,rad<br />

˙S 2<br />

c 2 = κ<br />

3 ρ S 2 − k = ¯C<br />

S 2 − k ; ¯C κ<br />

3 ρ S 4 = constant<br />

shows that <strong>the</strong> curvature term proportional to k is subleading and may be dropped<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 475<br />

,


Cosmology<br />

(in accord with <strong>the</strong> universal behavior just mentioned before):<br />

In fact <strong>the</strong> observed energy density at present is close to <strong>the</strong> critical one. This we<br />

will discuss later. Even if one counts <strong>the</strong> normal baryonic matter only one is not<br />

much more than a factor <strong>of</strong> 10 <strong>of</strong>f from <strong>the</strong> critical value Ω = 1 (atoms ∼ 4%) . The<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 476


Cosmology<br />

(in accord with <strong>the</strong> universal behavior just mentioned before):<br />

˙S 2<br />

¯C<br />

→<br />

c2 S<br />

2 or<br />

˙S 2<br />

S 2 → c2 ¯C<br />

S 4 = c2 κρ<br />

3<br />

In fact <strong>the</strong> observed energy density at present is close to <strong>the</strong> critical one. This we<br />

will discuss later. Even if one counts <strong>the</strong> normal baryonic matter only one is not<br />

much more than a factor <strong>of</strong> 10 <strong>of</strong>f from <strong>the</strong> critical value Ω = 1 (atoms ∼ 4%) . The<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 476


Cosmology<br />

(in accord with <strong>the</strong> universal behavior just mentioned before):<br />

i.e.<br />

˙S 2<br />

¯C<br />

→<br />

c2 S<br />

2 or<br />

˙S 2<br />

S 2 → c2 ¯C<br />

S 4 = c2 κρ<br />

3<br />

ρ(t) = ρEdS(t) = 3<br />

κ<br />

H 2 (t)<br />

c 2 .<br />

In fact <strong>the</strong> observed energy density at present is close to <strong>the</strong> critical one. This we<br />

will discuss later. Even if one counts <strong>the</strong> normal baryonic matter only one is not<br />

much more than a factor <strong>of</strong> 10 <strong>of</strong>f from <strong>the</strong> critical value Ω = 1 (atoms ∼ 4%) . The<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 476


Cosmology<br />

(in accord with <strong>the</strong> universal behavior just mentioned before):<br />

i.e.<br />

˙S 2<br />

¯C<br />

→<br />

c2 S<br />

2 or<br />

˙S 2<br />

S 2 → c2 ¯C<br />

S 4 = c2 κρ<br />

3<br />

ρ(t) = ρEdS(t) = 3<br />

κ<br />

H 2 (t)<br />

c 2 .<br />

It is truly remarkable that at that early times, precisely when we would expect<br />

curvature <strong>the</strong> be most important, <strong>the</strong> evolution automatically picks <strong>the</strong> flat solution.<br />

This does not mean, however, that at later times when <strong>the</strong> o<strong>the</strong>r energy density<br />

components come in to play and even dominate <strong>the</strong> scene we have to expect a flat<br />

space one.<br />

In fact <strong>the</strong> observed energy density at present is close to <strong>the</strong> critical one. This we<br />

will discuss later. Even if one counts <strong>the</strong> normal baryonic matter only one is not<br />

much more than a factor <strong>of</strong> 10 <strong>of</strong>f from <strong>the</strong> critical value Ω = 1 (atoms ∼ 4%) . The<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 476


Cosmology<br />

missing part making Ω = 1 complete is dark matter (cosmological constant 73%)<br />

and cold dark matter (what is it ? 23%).<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 477


Cosmology<br />

missing part making Ω = 1 complete is dark matter (cosmological constant 73%)<br />

and cold dark matter (what is it ? 23%). The strongly time and scenario<br />

dependent energy density ρ(t) easily deviates by 60 orders <strong>of</strong> magnitude from<br />

ρ0,crit today, given <strong>the</strong> evolution during <strong>the</strong> enormous time span <strong>of</strong> <strong>the</strong> present age<br />

<strong>of</strong> <strong>the</strong> universe. In o<strong>the</strong>r words, <strong>the</strong> flat solution Ω = 1 is highly unstable. How is it<br />

possible <strong>the</strong>n that we apparently live in a universe close to that unstable point?<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 477


Cosmology<br />

missing part making Ω = 1 complete is dark matter (cosmological constant 73%)<br />

and cold dark matter (what is it ? 23%). The strongly time and scenario<br />

dependent energy density ρ(t) easily deviates by 60 orders <strong>of</strong> magnitude from<br />

ρ0,crit today, given <strong>the</strong> evolution during <strong>the</strong> enormous time span <strong>of</strong> <strong>the</strong> present age<br />

<strong>of</strong> <strong>the</strong> universe. In o<strong>the</strong>r words, <strong>the</strong> flat solution Ω = 1 is highly unstable. How is it<br />

possible <strong>the</strong>n that we apparently live in a universe close to that unstable point?<br />

This is <strong>the</strong> so called flatness problem (Dicke 1969). The solution: ei<strong>the</strong>r<br />

cosmological fine-tuning assuming we really started with an accuracy <strong>of</strong> 62 or<br />

more digits with Ω = 1 or some dynamical mechanism transmutes this unstable<br />

point into an stable attractor, this is what inflation <strong>the</strong>ory, to be discussed later, can<br />

do for us.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 477


Cosmology<br />

missing part making Ω = 1 complete is dark matter (cosmological constant 73%)<br />

and cold dark matter (what is it ? 23%). The strongly time and scenario<br />

dependent energy density ρ(t) easily deviates by 60 orders <strong>of</strong> magnitude from<br />

ρ0,crit today, given <strong>the</strong> evolution during <strong>the</strong> enormous time span <strong>of</strong> <strong>the</strong> present age<br />

<strong>of</strong> <strong>the</strong> universe. In o<strong>the</strong>r words, <strong>the</strong> flat solution Ω = 1 is highly unstable. How is it<br />

possible <strong>the</strong>n that we apparently live in a universe close to that unstable point?<br />

This is <strong>the</strong> so called flatness problem (Dicke 1969). The solution: ei<strong>the</strong>r<br />

cosmological fine-tuning assuming we really started with an accuracy <strong>of</strong> 62 or<br />

more digits with Ω = 1 or some dynamical mechanism transmutes this unstable<br />

point into an stable attractor, this is what inflation <strong>the</strong>ory, to be discussed later, can<br />

do for us.<br />

Exercise: confirm <strong>the</strong> necessary fine tuning in <strong>the</strong> cosmic evolution by explicit<br />

calculation.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 477


Cosmology<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 478


Cosmology<br />

Appendix: Λ 0<br />

The issue about <strong>the</strong> true value <strong>of</strong> <strong>the</strong> cosmological constant, which likely is<br />

non-vanishing as mentioned earlier, will be reconsidered later. In any case we<br />

have to discuss <strong>the</strong> solution <strong>of</strong> <strong>the</strong> cosmological <strong>equations</strong> for <strong>the</strong> case on<br />

non-zero cosmological constant. The consequences for <strong>the</strong> empty world case we<br />

already discussed: flat “background space” gets replaced by de Sitter or anti-de<br />

Sitter space. The generalization to <strong>the</strong> matter dominated scenario is almost trivial.<br />

A glimpse at <strong>the</strong> <strong>Friedmann</strong> equation shows that one can treat <strong>the</strong> cosmological<br />

constant as a contribution to <strong>the</strong> energy density:<br />

κρmat + Λ → κρtot,<br />

where ρtot = ρtot + ρΛ with ρΛ = Λ<br />

κ . Provided p = 0, all <strong>solutions</strong> remain unchanged,<br />

except for a different interpretation <strong>of</strong> <strong>the</strong> energy density, which in this case is not<br />

identical with <strong>the</strong> “normal” mass density <strong>of</strong> baryonic plus dark matter. Note that<br />

<strong>the</strong> cosmological constant in general enters <strong>the</strong> equation <strong>of</strong> state in a not a priori<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 479


Cosmology<br />

known way. However, this seems not to matter as long as we have p 0.<br />

That a non-vanishing Λ spoils <strong>the</strong> geometry ⇔ matter duality, because <strong>the</strong><br />

<strong>Einstein</strong> equation remains true no matter on which side <strong>of</strong> <strong>the</strong> equation we write<br />

<strong>the</strong> cosmological term. Many believe it has some thing to do with quantum<br />

vacuum fluctuations, but no answer can be given why it is so small. In any case if<br />

we take <strong>the</strong> energy momentum tensor as given on <strong>the</strong> quantum level by <strong>the</strong><br />

Standard Model (SM) <strong>of</strong> strong and electroweak interactions we would expect <strong>the</strong><br />

Higgs field vacuum expectation value (Bose condensate) as well as <strong>the</strong> quark<br />

condensates to contribute to <strong>the</strong> cosmological constant. Again, <strong>the</strong> value obtained<br />

is about 50 orders <strong>of</strong> magnitude to big! What tames <strong>the</strong> cosmological constant to<br />

a small non-vanishing value?<br />

Exercise: estimate <strong>the</strong> cosmological constant as induced by <strong>the</strong> Higgs mechanism<br />

and by spontaneous symmetry breaking <strong>of</strong> chiral symmetry in QCD.<br />

A cosmological constant <strong>of</strong> course affects local gravitation in particular it might<br />

affect black holes by changing <strong>the</strong> Schwarzschild radius etc. In order to study <strong>the</strong><br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 480


Cosmology<br />

physical effect <strong>of</strong> a non-vanishing Λ we consider <strong>the</strong> spherically symmetric mass<br />

distribution in outer space:<br />

➊ Λ = 0 : Schwarzschild<br />

ds 2 =<br />

Gµν ≡ 0 ✄ Gµν = Λ gµν<br />

<br />

1 − r0<br />

<br />

r<br />

(cdt) 2 − 1<br />

1 − r0<br />

r<br />

dr 2 − r 2 dΩ 2<br />

which is unique, static with boundary condition: flat as r → ∞. It has <strong>the</strong> Newto-<br />

nian approximation with potential: ϕ − m<br />

r<br />

with m r0<br />

2 and where g00 1 + 2ϕ<br />

c 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 481


Cosmology<br />

➋ Λ 0 :<br />

α = 1 − r0<br />

r<br />

→ 1 − r0<br />

r<br />

ds 2 =<br />

<br />

1 − r0<br />

r<br />

Λ − 3 R2 . Denoting K = Λ<br />

3<br />

− Kr2<br />

<br />

(cdt) 2 −<br />

1<br />

1 − r0<br />

r − Kr2 dr2 − r 2 dΩ 2<br />

which is unique, static with boundary condition: Schwarzschild as Λ → 0. In <strong>the</strong><br />

Newtonian approximation: ϕ −m 1<br />

r − 2kr2 Observation <strong>of</strong> planetary motions yields: |Λ| ≪ 10−42 cm−2 !<br />

In particular: in empty space (no matter) m = r0<br />

2<br />

Λ > 0. The gravity potential is<br />

ϕ − 1<br />

2 Kr2 repulsive linear force F ∝ Kr<br />

= 0 we have de Sitter space if<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 482


Cosmology<br />

and <strong>the</strong> metric<br />

ds 2 = 1 − Kr 2 (cdt) 2 −<br />

1<br />

1 − Kr 2 dr2 − r 2 dΩ 2<br />

which is spherical symmetric with respect to any point and is regular. For K > 0<br />

<strong>the</strong>re is <strong>the</strong> de Sitter coordinate singularity K r 2 = 1. While for m 0 we have a<br />

true singularity at r = 0, such a singularity is absent for m = 0.<br />

Mappings<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 483


Cosmology<br />

and <strong>the</strong> metric<br />

ds 2 = 1 − Kr 2 (cdt) 2 −<br />

1<br />

1 − Kr 2 dr2 − r 2 dΩ 2<br />

which is spherical symmetric with respect to any point and is regular. For K > 0<br />

<strong>the</strong>re is <strong>the</strong> de Sitter coordinate singularity K r 2 = 1. While for m 0 we have a<br />

true singularity at r = 0, such a singularity is absent for m = 0.<br />

Mappings<br />

Λ > 0: de Sitter space dS 4<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 483


Cosmology<br />

and <strong>the</strong> metric<br />

ds 2 = 1 − Kr 2 (cdt) 2 −<br />

1<br />

1 − Kr 2 dr2 − r 2 dΩ 2<br />

which is spherical symmetric with respect to any point and is regular. For K > 0<br />

<strong>the</strong>re is <strong>the</strong> de Sitter coordinate singularity K r 2 = 1. While for m 0 we have a<br />

true singularity at r = 0, such a singularity is absent for m = 0.<br />

Mappings<br />

Λ > 0: de Sitter space dS 4<br />

embedding into M 5 = R 1,4 : (cT) 2 − X 2 − Y 2 − Z 2 − W 2 = −a 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 483


Cosmology<br />

and <strong>the</strong> metric<br />

ds 2 = 1 − Kr 2 (cdt) 2 −<br />

1<br />

1 − Kr 2 dr2 − r 2 dΩ 2<br />

which is spherical symmetric with respect to any point and is regular. For K > 0<br />

<strong>the</strong>re is <strong>the</strong> de Sitter coordinate singularity K r 2 = 1. While for m 0 we have a<br />

true singularity at r = 0, such a singularity is absent for m = 0.<br />

Mappings<br />

Λ > 0: de Sitter space dS 4<br />

embedding into M 5 = R 1,4 : (cT) 2 − X 2 − Y 2 − Z 2 − W 2 = −a 2<br />

ds 2 = (cdT) 2 − dX 2 + dY 2 + dZ 2 + dW 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 483


Cosmology<br />

With a 2 1<br />

K<br />

= 3<br />

Λ<br />

; a > 0 <strong>the</strong> mapping reads:<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 484


Cosmology<br />

With a 2 1<br />

K<br />

= 3<br />

Λ<br />

; a > 0 <strong>the</strong> mapping reads:<br />

X = r sin θ sin ϕ<br />

Y = r sin θ cos ϕ<br />

Z = r cos θ<br />

<br />

W = a 1 − r2<br />

a2 cosh ct<br />

<br />

a<br />

T = a 1 − r2<br />

a2 sinh ct<br />

a<br />

W = a<br />

T = a<br />

r 2<br />

r 2<br />

a2 − 1 sinh ct<br />

a<br />

a 2 − 1 cosh ct<br />

a<br />

⎫<br />

⎪⎬<br />

r < a<br />

⎪⎭<br />

⎫<br />

⎪⎬<br />

r > a .<br />

⎪⎭<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 484


Cosmology<br />

With a 2 1<br />

K<br />

= 3<br />

Λ<br />

; a > 0 <strong>the</strong> mapping reads:<br />

X = r sin θ sin ϕ<br />

Y = r sin θ cos ϕ<br />

Z = r cos θ<br />

<br />

W = a 1 − r2<br />

a2 cosh ct<br />

<br />

a<br />

T = a 1 − r2<br />

a2 sinh ct<br />

a<br />

W = a<br />

T = a<br />

r 2<br />

r 2<br />

a2 − 1 sinh ct<br />

a<br />

a 2 − 1 cosh ct<br />

a<br />

⎫<br />

⎪⎬<br />

r < a<br />

⎪⎭<br />

⎫<br />

⎪⎬<br />

r > a .<br />

⎪⎭<br />

Note: z = constant is <strong>the</strong> hyperboloid: (cT) 2 − W2 = constant. Homogeneity and<br />

Isotropy follow from <strong>the</strong> symmetry: S − 4 is invariant under 5-dimensional Lorentz<br />

Λ r.<br />

transformations. The force is linear repulsive F ∝ 1<br />

3<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 484


Cosmology<br />

Λ < 0: Anti-de Sitter space AdS 4<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 485


Cosmology<br />

Λ < 0: Anti-de Sitter space AdS 4<br />

embedding into R 2,3 : (cT) 2 − X 2 − Y 2 − Z 2 + W 2 = a 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 485


Cosmology<br />

Λ < 0: Anti-de Sitter space AdS 4<br />

embedding into R 2,3 : (cT) 2 − X 2 − Y 2 − Z 2 + W 2 = a 2<br />

ds 2 = (cdT) 2 − dX 2 + dY 2 + dZ 2 + dW 2<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 485


Cosmology<br />

Λ < 0: Anti-de Sitter space AdS 4<br />

embedding into R 2,3 : (cT) 2 − X 2 − Y 2 − Z 2 + W 2 = a 2<br />

With a 2 1<br />

K<br />

= − 3<br />

Λ<br />

ds 2 = (cdT) 2 − dX 2 + dY 2 + dZ 2 + dW 2<br />

; a > 0 <strong>the</strong> mapping reads:<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 485


Cosmology<br />

Λ < 0: Anti-de Sitter space AdS 4<br />

embedding into R 2,3 : (cT) 2 − X 2 − Y 2 − Z 2 + W 2 = a 2<br />

With a 2 1<br />

K<br />

= − 3<br />

Λ<br />

ds 2 = (cdT) 2 − dX 2 + dY 2 + dZ 2 + dW 2<br />

; a > 0 <strong>the</strong> mapping reads:<br />

X = r sin θ sin ϕ<br />

Y = r sin θ cos ϕ<br />

Z = r cos θ<br />

<br />

W = a 1 + r2 ct<br />

cos<br />

a2 a<br />

<br />

T = a 1 + r2 ct<br />

sin<br />

a2 a<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 485


Cosmology<br />

Note: z = constant is <strong>the</strong> circle: (cT) 2 + W2 = constant. Homogeneity and Isotropy<br />

follow from <strong>the</strong> symmetry: S + 4 is invariant under S O(2, 3). The force is linear<br />

attractive F ∝ −1 3 Λ r. Causality problem: periodicity in time ct → ct + 2 π a. The<br />

circle in <strong>the</strong> (cT, W) plane is acausal. May be cured by mapping <strong>the</strong> circle to <strong>the</strong><br />

real line: which is <strong>the</strong> universal cover <strong>of</strong> <strong>the</strong> AdS space.<br />

Exercise: find <strong>the</strong> model <strong>Einstein</strong> proposed: an eternal static solution. Show that<br />

<strong>Einstein</strong>’s GRT with vanishing cosmological constant has no such solution.<br />

Exercise: <strong>the</strong> observation <strong>of</strong> planetary motions constrains <strong>the</strong> cosmological<br />

constant to |Λ| ≪ 10 −42 cm −2 !. Show that this is compatible with a dark energy<br />

density, which has been determined to be ΩΛ ∼ 0.74 ± 0.03.<br />

Previous ≪❘ , next ❘≫ lecture.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 486


Cosmology<br />

Note: z = constant is <strong>the</strong> circle: (cT) 2 + W2 = constant. Homogeneity and Isotropy<br />

follow from <strong>the</strong> symmetry: S + 4 is invariant under S O(2, 3). The force is linear<br />

attractive F ∝ −1 3 Λ r. Causality problem: periodicity in time ct → ct + 2 π a. The<br />

circle in <strong>the</strong> (cT, W) plane is acausal. May be cured by mapping <strong>the</strong> circle to <strong>the</strong><br />

real line: which is <strong>the</strong> universal cover <strong>of</strong> <strong>the</strong> AdS space.<br />

For <strong>the</strong> cosmological <strong>solutions</strong> <strong>of</strong> <strong>the</strong> <strong>Einstein</strong>-<strong>Friedmann</strong> <strong>equations</strong> <strong>the</strong> RW-metric<br />

is only affected as far as S (t) solves a different dynamical equation.<br />

Exercise: find <strong>the</strong> model <strong>Einstein</strong> proposed: an eternal static solution. Show that<br />

<strong>Einstein</strong>’s GRT with vanishing cosmological constant has no such solution.<br />

Exercise: <strong>the</strong> observation <strong>of</strong> planetary motions constrains <strong>the</strong> cosmological<br />

constant to |Λ| ≪ 10 −42 cm −2 !. Show that this is compatible with a dark energy<br />

density, which has been determined to be ΩΛ ∼ 0.74 ± 0.03.<br />

Previous ≪❘ , next ❘≫ lecture.<br />

c○ 2009, F. Jegerlehner ≪❘ Lect. 7 ❘≫ 486

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!