07.06.2013 Views

The unicellular green alga Dunaliella salina Teod. as a model - Algae

The unicellular green alga Dunaliella salina Teod. as a model - Algae

The unicellular green alga Dunaliella salina Teod. as a model - Algae

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Review<br />

<strong>Algae</strong> 2011, 26(1): 3-20<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003<br />

Open Access<br />

<strong>The</strong> <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> <strong>Teod</strong>. <strong>as</strong> a <strong>model</strong> for<br />

abiotic stress tolerance: genetic advances and future perspectives<br />

Ana A. Ramos 1 , Jürgen Polle 2 , Duc Tran 2 , John C. Cushman 3 , EonSeon Jin 4 and João C. Varela 1, *<br />

1 Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal<br />

2 Brooklyn College, <strong>The</strong> City University of New York Brooklyn, New York, NY 11210, USA<br />

3 Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557-0330, USA<br />

4 Department of Life Science, Hanyang University, Seoul 133-791, Korea<br />

<strong>The</strong> physiology of the <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> in response to abiotic stress h<strong>as</strong> been studied for several<br />

decades. Early D. <strong>salina</strong> research focused on its remarkable salinity tolerance and ability, upon exposure to various<br />

abiotic stresses, to accumulate high concentrations of β-carotene and other carotenoid pigments valued highly <strong>as</strong><br />

nutraceuticals. <strong>The</strong> simple life cycle and growth requirements of D. <strong>salina</strong> make this organism one of the large-scale<br />

commercially exploited micro<strong>alga</strong>e for natural carotenoids. Recent advances in genomics and proteomics now allow<br />

investigation of abiotic stress responses at the molecular level. Detailed knowledge of isoprenoid biosynthesis mechanisms<br />

and the development of molecular tools and techniques for D. <strong>salina</strong> will allow the improvement of physiological<br />

characteristics of <strong>alga</strong>l strains and the use of transgenic <strong>alga</strong>e in bioreactors. Here we review D. <strong>salina</strong> isoprenoid and<br />

carotenoid biosynthesis regulation, and also the biotechnological and genetic transformation procedures developed for<br />

this <strong>alga</strong> that set the stage for its future use <strong>as</strong> a production system.<br />

Key Words: abiotic stress; carotenogenesis; <strong>Dunaliella</strong> <strong>salina</strong>; genomics; isoprenoid biosynthesis; lipid biosynthesis;<br />

transformation<br />

Abbreviations: Acetyl-CoA, acetyl-coenzyme A; CaMV35S, Cauliflower mosaic virus 35S promoter; CAT, chloramphenicol<br />

acetyltransfer<strong>as</strong>e; CrtISO, carotenoid isomer<strong>as</strong>e; DCA1, carbonic anhydr<strong>as</strong>e; DMAPP, dimethylallyl diphosphate;<br />

DXP, 1-deoxy-D-xylulose-5-phosphate; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomer<strong>as</strong>e; DXS, 1-deoxy-Dxylulose<br />

5-phosphate synth<strong>as</strong>e; ESTs, expressed sequence tags; GGPP, geranylgeranyl diphosphate; HbsAg, hepatitis B<br />

surface antigen; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate reduct<strong>as</strong>e; IPP, isopentenyl diphosphate; LCY-b, lycopene<br />

β-cycl<strong>as</strong>e; LCY-e, lycopene ε-cycl<strong>as</strong>e; MEP, 2-C-methyl-D-erythritol 4-phosphate; MVA, mevalonate; NR, nitrate<br />

redut<strong>as</strong>e; PAT, phosphinothricin acetyltransfer<strong>as</strong>e; PDS, phytoene desatur<strong>as</strong>e; PSY, phytoene synth<strong>as</strong>e; ROS, reactive<br />

oxygen species; SV40, simian virus 40; TAG, triacylglycerols; Ubil-Ω, ubiquitin; ZDS, ζ-carotene desatur<strong>as</strong>e; ZISO, 15-cisζ-isomer<strong>as</strong>e<br />

INTRODUCTION<br />

Micro<strong>alga</strong>e include a very diverse group of prokaryotic and eukaryotic organisms that play important ecological<br />

This is an Open Access article distributed under the terms of the<br />

Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/)<br />

which permits unrestricted<br />

non-commercial use, distribution, and reproduction in any medium,<br />

provided the original work is properly cited.<br />

Received 08 January 2011, Accepted 10 February 2011<br />

*Corresponding Author<br />

E-mail: jvarela@ualg.pt<br />

Tel: +351-289800900, Ext. 7381 Fax: +351-289800069<br />

Copyright © <strong>The</strong> Korean Society of Phycology 3 http://e-<strong>alga</strong>e.kr pISSN: 1226-2617 eISSN: 2093-0860


<strong>Algae</strong> 2011, 26(1): 3-20<br />

A B C<br />

Fig. 1. <strong>Dunaliella</strong> <strong>salina</strong> cells in different culture conditions. (A) Green cell from a non-stressed culture. (B) Stressed cell turning orange. (C)<br />

Orange cell from a culture exposed to nutrient stress due to β-carotene accumulation. Scale bar represents: 10 µm (<strong>The</strong> photos were kindly provided<br />

by Dr. M. Aksoy).<br />

roles and synthesize a v<strong>as</strong>t array of natural products. Micro<strong>alga</strong>l<br />

species have been widely used <strong>as</strong> simple <strong>model</strong><br />

systems for research on higher plants due to shared physiological<br />

and biochemical reactions (Harris 2001, Hicks<br />

et al. 2001, Rochaix 2002). With f<strong>as</strong>t growth rates and low<br />

production costs relative to other transgenic expression<br />

systems, micro<strong>alga</strong>e provide useful cell factories for the<br />

production of valuable chemical compounds and recombinant<br />

products (e.g., biofuels, novel carotenoids, vaccines<br />

and antibodies) (Fletcher et al. 2007, Mayfield et al.<br />

2007, Greenwell et al. 2010). Various <strong>as</strong>pects of <strong>alga</strong>culture<br />

and the use of micro<strong>alga</strong>e <strong>as</strong> bioreactors have been<br />

reviewed extensively (Chapin 1991, Dunahay et al. 1996,<br />

Geng et al. 2003, Hejazi and Wijffels 2004, León-Bañares<br />

et al. 2004, Pulz and Gross 2004, Rochaix 2004, Walker et<br />

al. 2005c, Chisti 2008, Raja et al. 2008, Rosenberg et al.<br />

2008, Wijffels 2008, Potvin and Zhang 2010).<br />

Among eukaryotic micro<strong>alga</strong>e, the relatively unique<br />

ability to accumulate glycerol and β-carotene in response<br />

to osmotic stress h<strong>as</strong> made the halotolerant, <strong>unicellular</strong>,<br />

<strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> (Fig. 1) an ideal <strong>model</strong> organism<br />

for dissecting the molecular mechanism(s) of osmotic<br />

stress responses (Cowan et al. 1992, Pick 1998). In<br />

contr<strong>as</strong>t to the intensively studied chlorophyte Chlamydomon<strong>as</strong><br />

reinhardtii (Lefebvre and Silflow 1999, Harris<br />

2001, Grossman et al. 2003, 2007, Hema et al. 2007, León<br />

et al. 2007, Merchant et al. 2007), relatively few studies<br />

have investigated D. <strong>salina</strong>. However, <strong>as</strong> D. <strong>salina</strong> is one<br />

of a few micro<strong>alga</strong>e currently cultivated on an industrial<br />

scale, this organism is rapidly becoming the focus of intense<br />

fundamental and applied research. <strong>The</strong> purpose of<br />

this review is to survey recent developments into cellular,<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 4<br />

biochemical, molecular biological, and biotechnological<br />

studies of D. <strong>salina</strong> with a focus on isoprenoid biosynthesis.<br />

GENUS DUNALIELLA<br />

In 1905, <strong>Teod</strong>oresco established the new <strong>alga</strong>l genus<br />

<strong>Dunaliella</strong> (Chlorophyta, Chlorophyceae, Chlamydomonadales,<br />

<strong>Dunaliella</strong>ceae), which mainly includes halophilic<br />

species adapted to hypersaline (0.05-5.5 M NaCl)<br />

environments (Chen and Jiang 2009, Polle et al. 2009).<br />

<strong>Dunaliella</strong> species can be found in euryhaline waters<br />

on all continents. In general, cells of <strong>Dunaliella</strong> species<br />

are of ovoid form, flagellated and lack a rigid polysaccharide<br />

wall, although they are enclosed by a mucilaginous<br />

glycoprotein coat called a glycocalyx (size varying<br />

from 5-25 µm in length and 3-13 µm width) (<strong>Teod</strong>oresco<br />

1905, Borowitzka and Borowitzka 1988, Avron and Ben-<br />

Amotz 1992, Oren 2005). This genus includes more than<br />

20 species and its taxonomic organization b<strong>as</strong>ed on<br />

morphological and physiological characteristics is still<br />

controversial due to large intra-species variation in morphology,<br />

which depends on growth conditions. Consequently<br />

numerous <strong>Dunaliella</strong> isolates were misidentified<br />

previously (Borowitzka and Borowitzka 1988, Pick 1998).<br />

Such erroneous cl<strong>as</strong>sification of <strong>Dunaliella</strong> isolates still<br />

causes problems, for example, when new molecular data<br />

are published, pointing to the need for the establishment<br />

of a robust molecular phylogeny within the genus. A recent<br />

attempt to update and reorganize the genus b<strong>as</strong>ed<br />

on cell morphology and physiology w<strong>as</strong> performed by


Borowitzka and Siva (2007). A more recent cl<strong>as</strong>sification<br />

of <strong>Dunaliella</strong> species using molecular markers indicated<br />

that, most likely, fewer species of <strong>Dunaliella</strong> exist than<br />

those established previously b<strong>as</strong>ed on morphological<br />

and physiological attributes (González et al. 2009). Overall,<br />

systematic molecular data (Olmos et al. 2000, 2009,<br />

Cifuentes et al. 2001, González et al. 2001, 2009, Olmos-<br />

Soto et al. 2002, Gómez and González 2004, Raja et al.<br />

2007b, Hejazi et al. 2010) should be extended and be used<br />

in combination with morphological and physiological<br />

markers to re-evaluate species cl<strong>as</strong>sification.<br />

Some <strong>Dunaliella</strong> strains can accumulate β-carotene<br />

and glycerol, properties with economical interest that<br />

have led, since the 1980s, to the large-scale culture of<br />

these <strong>alga</strong>e in several countries such <strong>as</strong> Australia, China,<br />

Israel, and India with pilot-scale projects attempted<br />

in other countries (e.g., Chile, Spain, Iran) (Ben-Amotz<br />

and Avron 1990, Borowitzka 1999, Pulz 2001, Tseng 2001,<br />

Del Campo et al. 2007). D. <strong>salina</strong> and D. bardawil, which<br />

might be a variety of D. <strong>salina</strong> (Borowitzka and Borowitzka<br />

1988, González et al. 2009), are the main natural sources<br />

of β-carotene (up to about 10-14% of <strong>alga</strong>l dry weight)<br />

and also the most extensively analyzed strains in terms of<br />

physiological abiotic stress adaptations especially under<br />

m<strong>as</strong>s culture conditions (Loeblich 1982, Ben-Amotz and<br />

Avron 1983, Cifuentes et al. 1996, Oren 2005).<br />

In response to several stress or growth limiting conditions<br />

(e.g., salt, temperature, light, and nutrient deficiencies)<br />

D. <strong>salina</strong> synthesizes and accumulates β-carotene<br />

in lipid globules in the stroma of chloropl<strong>as</strong>ts (Borowitzka<br />

et al. 1990, Shaish et al. 1992, Vorst et al. 1994, Katz<br />

et al. 1995, Bhosale 2004, Coesel et al. 2008, Jin and Polle<br />

2009). This high-value compound, mostly composed of<br />

all-trans and 9-cis stereoisomers, h<strong>as</strong> a wide range of important<br />

economical applications such <strong>as</strong> human health,<br />

cosmetic and aquaculture industries (Jiménez and Pick<br />

1993, Murthy et al. 2005, Spolaore et al. 2006, Raja et al.<br />

2007a, Oren 2010). Consequently, understanding stressinduced<br />

carotenoid metabolism and unraveling the regulatory<br />

mechanism(s) of stress tolerance in this organism<br />

are important biotechnological research goals (Xue et al.<br />

2003).<br />

In the p<strong>as</strong>t, use of <strong>Dunaliella</strong> species <strong>as</strong> <strong>model</strong> organisms<br />

had one major disadvantage: lack of established<br />

procedures of genetic and genomic analysis. However,<br />

more recent studies have addressed this shortcoming<br />

(Polle and Song 2009, Smith et al. 2010) and genomic<br />

technologies promise further improvements in such<br />

analyses. <strong>The</strong> most widely used <strong>model</strong> species within the<br />

genus of <strong>Dunaliella</strong> h<strong>as</strong> been D. <strong>salina</strong>. <strong>The</strong>refore, the fol-<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

lowing sections will concern D. <strong>salina</strong> unless otherwise<br />

indicated.<br />

GENES AND PROTEIN IDENTIFICATION<br />

Complex regulatory and signaling networks of stress<br />

response have been uncovered in several <strong>model</strong> plants<br />

and <strong>alga</strong>e using novel genomics, functional, and computational<br />

approaches (Cushman and Bohnert 2000, Shrager<br />

et al. 2003, Grossman et al. 2007, Jain et al. 2007,<br />

Montsant et al. 2007, Urano et al. 2010). <strong>The</strong>se data often<br />

provide initial clues towards the identification and possible<br />

functions of unknown encoded proteins in other<br />

species. Currently, a genome sequencing project is under<br />

way for D. <strong>salina</strong> strain CCAP 19/18 (USDA-DOE Joint<br />

Genome Institute [JGI]). Part of this effort h<strong>as</strong> resulted in<br />

the recent publication of the chloropl<strong>as</strong>t and mitochondrial<br />

genomes of D. <strong>salina</strong> (269 and 28.3 Kb, respectively)<br />

(Smith et al. 2010). Future availability of more genomic<br />

data including the nuclear genome (approximately 300<br />

megab<strong>as</strong>es) (Smith et al. 2010) will be a major step towards<br />

a better understanding of the molecular mechanisms<br />

underlying the response of D. <strong>salina</strong> to abiotic<br />

stress <strong>as</strong> well <strong>as</strong> the development of genetic tools, such <strong>as</strong><br />

nuclear and pl<strong>as</strong>tid transformation.<br />

Gene discovery followed by genome-wide expression<br />

analysis is the initial step to clarify complex cellular abiotic<br />

stress responses. Molecular approaches such <strong>as</strong> the<br />

generation of expressed sequence tags (ESTs) datab<strong>as</strong>es,<br />

microarray analysis, transcriptome analysis, and / or parallel<br />

genomic sequencing can thus provide the required<br />

gene expression data. Partial EST, microarray and cDNA<br />

data are available from a limited number of halophytic<br />

plants including Mesembryanthemum crystallinum<br />

(Kore-eda et al. 2004, Cushman et al. 2008), <strong>The</strong>llungiella<br />

halophila (Amtmann 2009, Taji et al. 2010), and Spartina<br />

alterniflora (Baisakh et al. 2008), and can provide novel<br />

insights into osmoregulation and responses to stress.<br />

Compared with C. reinhardtii, for which more than<br />

200,000 ESTs are stored at NCBI (Jain et al. 2007), only<br />

about 4,100 ESTs (<strong>as</strong> of January 2011) are available for D.<br />

<strong>salina</strong> cells subjected to salinity and light stress (Park et<br />

al. 2006, Alkayal et al. 2010). Profiling of about 2,800 ESTs<br />

revealed elevated expression of protein synthetic apparatus<br />

components in salinity shocked cells (Alkayal et al.<br />

2010).<br />

In addition to ongoing genomic approaches, proteomic<br />

methodologies are also necessary to further characterize<br />

cell stress adaptations mechanisms. Only very<br />

5 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

few studies concerning the protein patterns observed<br />

with salinity stressed D. <strong>salina</strong> cells have been described<br />

(Liska et al. 2004, Katz et al. 2007). <strong>The</strong>se studies revealed<br />

changes in multiple biochemical pathways (e.g., signal<br />

transduction, redox energy production, protein synthesis,<br />

membrane stabilization) in response to salt stress,<br />

suggesting that more than one mechanism may be important<br />

for the unique capacity of salinity tolerance of<br />

D. <strong>salina</strong> cells. In addition, a more recent study investigated<br />

the flagellar proteome (Jia et al. 2010). A total of<br />

520 groups of proteins from D. <strong>salina</strong> flagella have been<br />

found by shotgun proteomics, but only a limited number<br />

of these proteins were identified due, in part, to the lack<br />

of a fully sequenced reference genome.<br />

A B<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 6<br />

SALT STRESS AND ITS REGULATION IN<br />

DUNALIELLA SALINA<br />

<strong>Algae</strong> of the genus <strong>Dunaliella</strong> appear to be unique in<br />

their ability to grow in saturated brine solutions <strong>as</strong> well <strong>as</strong><br />

withstand dr<strong>as</strong>tic changes in salinity due to use of glycerol<br />

and glycine betaine <strong>as</strong> intracellular osmotic metabolites<br />

(Ben-Amotz and Avron 1973, Avron 1986, Chitlaru<br />

and Pick 1991, Mishra et al. 2008, Chen and Jiang 2009).<br />

Consequently, various species of <strong>Dunaliella</strong> (e.g., D. parva,<br />

D. viridis, D. tertiolecta, D. <strong>salina</strong> and D. bioculata)<br />

were used in the p<strong>as</strong>t to elucidate the cellular response<br />

to changes in medium osmolarity (Ben-Amotz and Avron<br />

1973, Borowitzka and Brown 1974, Ahmed and Zidan<br />

Fig. 2. Diagram of the proposed cellular response mechanisms of <strong>Dunaliella</strong> <strong>salina</strong> to abiotic stress, in which a single, large chloropl<strong>as</strong>t occupying<br />

most of the cellular volume is shown. <strong>The</strong> nucleus (Nuc) and mitochondria (M) are drawn in light blue and brown, respectively. Cell adaptation<br />

to carotenogenic conditions such <strong>as</strong> salt upshifts (A) involves an earlier, f<strong>as</strong>t response (drawn in red) to changes in osmolarity that apparently<br />

does not need active transcription to be induced. This response results in the immediate accumulation of compatible solutes such <strong>as</strong> glycerol. A<br />

second, slower response to salt stress (A), nutrient limitation and high light (B) involves signal perception by primary sensors and the activation<br />

of signaling-transduction pathways on the pl<strong>as</strong>ma membrane and photosynthetic apparatus, which in turn alters gene expression in the nucleus<br />

and cytopl<strong>as</strong>m. Translated gene products (e.g., enzymes) are imported into the chloropl<strong>as</strong>t leading to incre<strong>as</strong>ed neutral lipid and isoprenoid<br />

production, the latter via the pl<strong>as</strong>tidial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. <strong>The</strong> concomitant induction of the carotenoid biosynthetic<br />

pathway results in the accumulation of carotenoids in multiple lipid droplets in the stroma, chiefly in the vicinity of thylakoids. <strong>The</strong>re is<br />

evidence that kin<strong>as</strong>es, transcription factors (TF), reactive oxygen species (ROS), and changes in the redox state of the cell (e.g., over-reduction of<br />

the pl<strong>as</strong>toquinone [PQ] pool upon exposure to high light) along with unknown factors (X) may be part of the molecular network regulating the<br />

response of <strong>Dunaliella</strong> <strong>salina</strong> to abiotic stress. A more detailed explanation of the <strong>model</strong> and respective references is given in the text.


1987, Goyal 2007, Mishra et al. 2008). <strong>The</strong> adaptation of D.<br />

<strong>salina</strong> to salt stress (Fig. 2) can be divided into two stages:<br />

i) rapid adjustment of the intracellular concentration of<br />

glycerol and glycine betaine, resembling the osmoregulatory<br />

mechanisms common in fungi and higher plants,<br />

respectively; and ii) a long-term response that might<br />

include neutral lipid biosynthesis and carotenoid overaccumulation.<br />

<strong>The</strong> early rapid response w<strong>as</strong> demonstrated<br />

to be independent of de novo protein biosynthesis<br />

(Sadka et al. 1989). Fluctuations in medium osmolarity<br />

are <strong>as</strong>sumed to result in changes of pl<strong>as</strong>ma membrane<br />

lipid order, thus triggering activation of a protein kin<strong>as</strong>e<br />

c<strong>as</strong>cade similar to that found in fungi (Pick 1998) and ultimately<br />

leading to conversion of starch into glycerol in<br />

the chloropl<strong>as</strong>t. At this time it remains unknown how the<br />

signal is transduced from the cytosol into the chloropl<strong>as</strong>t.<br />

In contr<strong>as</strong>t, long-term acclimation to higher salinities is<br />

thought to include changes in gene expression events<br />

through an <strong>as</strong> yet unidentified transcription factor or factors<br />

followed by de novo protein biosynthesis (Lers et al.<br />

1990). Known salt stress-induced gene products include<br />

transcripts and proteins involved in carbon and iron <strong>as</strong>similation<br />

<strong>as</strong> well <strong>as</strong> carotenoid biosynthesis (Fisher et al.<br />

1997, 1998, Coesel et al. 2008, Ramos et al. 2008, 2009).<br />

Salt stress-induced homologues of proteins playing a<br />

role in amino acid and pyrimidine turnover, protein biosynthesis<br />

and degradation, <strong>as</strong> well <strong>as</strong> Na + extrusion have<br />

also been identified (Liska et al. 2004, Katz et al. 2007).<br />

<strong>The</strong>se results suggest that the late responses of D. <strong>salina</strong><br />

to high salinity are geared towards its survival in these extreme<br />

environmental conditions, <strong>as</strong> lack of CO 2 and iron<br />

are thought to be two major impediments for growth in<br />

aquatic environments (Fisher et al. 1997, 1998). On the<br />

other hand, concomitant carotenoid accumulation may<br />

provide cross-protection against other forms of abiotic<br />

stress (e.g., high light) (Wang et al. 2003) common in saltworks,<br />

a natural habitat of this <strong>alga</strong>.<br />

ISOPRENOID BIOSYNTHESIS AND ITS<br />

REGULATION IN DUNALIELLA SALINA<br />

<strong>The</strong> large group of secondary metabolites known <strong>as</strong><br />

isoprenoids or terpenoids includes several biological and<br />

economical important compounds such <strong>as</strong> carotenoids<br />

(Stahl and Sies 2005). In all living organisms isoprenoids<br />

are synthesized from isopentenyl diphosphate (IPP) and<br />

dimethylallyl diphosphate (DMAPP) obtained from either<br />

a cytosolic mevalonate (MVA) pathway and / or a pl<strong>as</strong>tidial<br />

2-C-methyl-D-erythritol 4-phosphate (MEP) pathway,<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

which is also known <strong>as</strong> the non-MVA or 1-deoxy-D-xylulose-5-phosphate<br />

(DXP) pathway, respectively (Rohmer<br />

et al. 1993, Sacchettini and Poulter 1997, Rohdich et al.<br />

2003, Rohmer 2003). In <strong>green</strong> <strong>alga</strong>e only the pl<strong>as</strong>tid localized<br />

MEP pathway provides the precursors for the biosynthesis<br />

of all isoprenoids, regardless of whether they<br />

are synthesized in the cytosol, such <strong>as</strong> squalene, or in<br />

the pl<strong>as</strong>tid, such <strong>as</strong> carotenoids, chlorophylls, tocopherols<br />

and certain hormones (Chappell 1995, Schwender et<br />

al. 1996, Lichtenthaler et al. 1997, Eisenreich et al. 1998,<br />

2001, Bach et al. 1999, Lichtenthaler 1999, 2000, 2010,<br />

Rohmer 1999). In spite of the physical separation of these<br />

two pathways in distinct cell compartments, several researchers<br />

have reported an apparent crosstalk between<br />

them (K<strong>as</strong>ahara et al. 2002, Bick and Lange 2003, Hemmerlin<br />

et al. 2003, Laule et al. 2003, Dudareva et al. 2005,<br />

Hampel et al. 2005). With only the MEP pathway operating<br />

in D. <strong>salina</strong> (Capa-Robles et al. 2009) to provide<br />

the precursor metabolites IPP and DMAPP for further<br />

isoprenoid biosynthesis, crosstalk is essential to balance<br />

the metabolic needs of different cellular compartments.<br />

Further, crosstalk is necessary not only between the cytosol<br />

and pl<strong>as</strong>tids, but also between isoprenoid and lipid<br />

metabolic pathways (Rabbani et al. 1998), <strong>as</strong> secondary<br />

carotenoids in D. <strong>salina</strong> are sequestered in lipid globules<br />

within the chloropl<strong>as</strong>t, where<strong>as</strong> triacylglycerides are<br />

stored in cytosolic oil bodies (Katz et al. 1995). Currently,<br />

the mechanisms underlying the interactions between<br />

carotenoid and lipid biosynthesis <strong>as</strong> well <strong>as</strong> synthesis of<br />

proteins required to stabilize the carotene-containing<br />

lipid globules in D. <strong>salina</strong> are unknown. Consequently,<br />

further research is necessary not only to understand the<br />

mechanisms involved in the transport of isoprenoid precursor<br />

molecules across membranes, but also to dissect<br />

the biological mechanisms of regulatory communication<br />

between these pathways (Rodríguez-Concepción 2010).<br />

In the particular c<strong>as</strong>e of D. <strong>salina</strong> the molecular information<br />

regarding the isoprenoid biosynthesis pathway is<br />

still very limited and incomplete (Ye et al. 2008), <strong>as</strong> discussed<br />

in the following sections. Hence, an integrated<br />

genomics, proteomics and metabolomics approach will<br />

be required not only to unravel the stress-induced overaccumulation<br />

of carotenoids, but also to study the overall<br />

response of D. <strong>salina</strong> to different abiotic stresses.<br />

MEP pathway<br />

<strong>The</strong> MEP pathway w<strong>as</strong> discovered only in the late 1980s<br />

and since then w<strong>as</strong> identified in several prokaryotic (eubacteria,<br />

cyanobacteria) and eukaryotic (<strong>alga</strong>e and high-<br />

7 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

er plants) organisms (Lichtenthaler 1999, 2010, Rohmer<br />

1999). Green <strong>alga</strong>e (Chlorophyta), including D. <strong>salina</strong>, appear<br />

to have lost the cytosolic MVA pathway (Schwender<br />

et al. 2001, Capa-Robles et al. 2009). In contr<strong>as</strong>t to the cytosolic<br />

MVA pathway, which requires three molecules of<br />

acetyl-coenzyme A (acetyl-CoA) for IPP generation, the<br />

MEP pathway uses pyruvate and glyceraldehyde-3-phosphate<br />

<strong>as</strong> substrates and involves eight pl<strong>as</strong>tid-localized<br />

enzymes (Fig. 3) (Hsieh et al. 2008), which use different<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 8<br />

cofactors and metal ions (Hunter 2007). For higher plants<br />

all the MEP genes, which are encoded in the nucleus, and<br />

the intermediary pathway products have been identified<br />

(Rohdich et al. 2001, Eisenreich et al. 2004). Further, the<br />

MEP pathway in plants w<strong>as</strong> reported to contain at le<strong>as</strong>t<br />

two rate-determining steps and two key enzymes, at the<br />

level of the 1-deoxy-D-xylulose 5-phosphate synth<strong>as</strong>e<br />

(DXS) / 4-hydroxy-3-methylbut-2-enyl diphosphate reduct<strong>as</strong>e<br />

(HDR) and DXS / 1-deoxy-D-xylulose 5-phos-<br />

Fig. 3. Schematic overview of proposed isoprenoid biosynthesis for the micro<strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> (according to published data on higher<br />

plants). GA-3P, glyceraldehyde-3-phosphate; DXS, 1-deoxy-D-xylulose 5-phosphate synth<strong>as</strong>e; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomer<strong>as</strong>e;<br />

MCT, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransfer<strong>as</strong>e; CMK, 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kin<strong>as</strong>e; MDS,<br />

2-C-methyl-D-erythritol 2,4-cyclodiphosphate synth<strong>as</strong>e; HDS, 4-hydroxy-3-methylbut-2-enyl diphosphate synth<strong>as</strong>e; HDR, 4-hydroxy-3-methylbut-<br />

2-enyl diphosphate reduct<strong>as</strong>e; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; IPI1 & 2, isopentenyl pyrophosphate isomer<strong>as</strong>e;<br />

GPP, geranyl diphosphate; GPS, GPP synth<strong>as</strong>e; FPP, farnesyl diphosphate; FPS, FPP synth<strong>as</strong>e; GGPP, geranyl geranyl diphosphate; GGPS, GGPP<br />

synth<strong>as</strong>e; PSY, phytoene synth<strong>as</strong>e; PDS, phytoene desatur<strong>as</strong>e; CrtISO, carotenoid isomer<strong>as</strong>e; ZDS, ζ-carotene desatur<strong>as</strong>e; ZISO, 15-cis-ζ-isomer<strong>as</strong>e;<br />

LCY-b, lycopene β-cycl<strong>as</strong>e; LCY-e, lycopene ε-cycl<strong>as</strong>e; CHY1, carotene β-hydroxyl<strong>as</strong>e; CHY2, carotene ε-hydroxyl<strong>as</strong>e; VDE, violaxanthin deepoxid<strong>as</strong>e;<br />

ZE, zeoxanthin epoxid<strong>as</strong>e; NSY, neoxanthin synth<strong>as</strong>e.


phate reductoisomer<strong>as</strong>e (DXR), respectively (Estévez et<br />

al. 2001, Botella-Pavía et al. 2004, Rodríguez-Concepción<br />

2006, Zulak and Bohlmann 2010). However, the regulatory<br />

mechanisms involved in this biochemical pathway<br />

require further clarification.<br />

For D. <strong>salina</strong>, MEP pathway genes and their regulatory<br />

mechanisms were unknown until recently. All D. <strong>salina</strong><br />

MEP genes have been identified (partial or full-length)<br />

and their respective characterization is now ongoing<br />

(Ramos and Varela unpublished results, Polle and Tran<br />

unpublished results). Considering the clear importance<br />

of this pathway in plant cell biology and the existence of<br />

a coordinated regulation between the MEP pathway and<br />

other downstream pl<strong>as</strong>tidial isoprenoid pathways (Bouvier<br />

et al. 1998, Lois et al. 2000, Rodríguez-Concepción et<br />

al. 2003, Botella-Pavía et al. 2004, Wille et al. 2004, Rodríguez-Concepción<br />

2010, Sun et al. 2010), identification of<br />

genes involved in the MEP pathway in <strong>Dunaliella</strong> represent<br />

the first step in further investigation of isoprenoid<br />

biosynthesis regulation in this <strong>alga</strong>.<br />

In accordance with the finding that de novo protein<br />

biosynthesis is required for carotene over-accumulation<br />

(<strong>as</strong> discussed above), abiotic stresses, specifically nutrient<br />

limitation and high light, seem to be important factors<br />

in the transcriptional regulation of DXS and HDR<br />

(GenBank accession numbers: FJ469276 and FJ040210)<br />

(Ramos et al. 2009). Similarly to its close relative, C. reinhardtii<br />

(Lohr et al. 2005), D. <strong>salina</strong> appears to have<br />

only one nuclear gene coding for each of DXS and HDR.<br />

In contr<strong>as</strong>t to DXS and HDR, DXR (GenBank accession<br />

number: FJ469277) is apparently unresponsive to stress<br />

and also only represented by one gene in the genome<br />

(Ramos and Varela unpublished results, Tran and Polle<br />

unpublished results).<br />

Carotenoid biosynthesis<br />

<strong>The</strong> carotenoid biosynthetic pathway (Fig. 3), <strong>as</strong> an<br />

essential biological and biotechnologically relevant process,<br />

h<strong>as</strong> been extensively investigated in bacteria, fungi,<br />

plants, and some <strong>alga</strong>e. Thus, elucidation and characterization<br />

of genes, enzymes, metabolic intermediates and<br />

regulatory mechanisms have been reported for several<br />

plants and other organisms including <strong>alga</strong>e (Bartley et al.<br />

1994, Sandmann 1994, Hirschberg et al. 1997, Cunningham<br />

and Gantt 1998, Cunningham 2002, Römer and Fr<strong>as</strong>er<br />

2005, Liang et al. 2006, Vidhyavathi et al. 2008).<br />

In pl<strong>as</strong>tids, after the formation of IPP by the MEP pathway<br />

<strong>as</strong> described above, three consecutive condensation<br />

reactions, which are catalyzed by prenyltransfer<strong>as</strong>es (Fig.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

3), lead to the formation of geranylgeranyl diphosphate<br />

(GGPP), which is the precursor of all carotenoids. <strong>The</strong> first<br />

step of carotenoid biosynthesis consists of the condensation<br />

of two molecules of GGPP (C 20 ), by the enzyme phytoene<br />

synth<strong>as</strong>e (PSY), into phytoene (Sandmann 2001).<br />

Subsequent steps then involve several membrane-<strong>as</strong>sociated<br />

or membrane-integrated enzymes performing a<br />

sequence of desaturation (phytoene desatur<strong>as</strong>e [PDS]<br />

and ζ-carotene desatur<strong>as</strong>e [ZDS]) and isomerisation<br />

(carotenoid isomer<strong>as</strong>e [CrtISO] and 15-cis-ζ-isomer<strong>as</strong>e<br />

[ZISO]) reactions (Li et al. 2007) leading to lycopene. Following<br />

ring-formation by cycl<strong>as</strong>es (lycopene ε-cycl<strong>as</strong>e<br />

[LCY-e] and / or lycopene β-cycl<strong>as</strong>e [LCY-b]) synthesis<br />

of α- and β-carotene and further hydroxylation reactions<br />

lead to lutein or violanxanthin from which other endproduct<br />

carotenoids can be formed (Lichtenthaler 1999,<br />

2000, Bouvier et al. 2005). As previously demonstrated for<br />

other <strong>green</strong> <strong>alga</strong>e such <strong>as</strong> C. reinhardtii (Lohr et al. 2005),<br />

it is expected that the ongoing USDA-DOE genome sequencing<br />

project for D. <strong>salina</strong> will show that b<strong>as</strong>ic carotenoid<br />

biosynthesis in D. <strong>salina</strong> is similar to that in higher<br />

plants. However, regardless of this expected similarity of<br />

the b<strong>as</strong>ic biosynthesis pathway, it remains unknown how<br />

9-cis β-carotene is produced by D. <strong>salina</strong> (Ben-Amotz<br />

and Shaish 1992).<br />

To date, few sequences have been published for genes<br />

that code for enzymes involved in the carotenoid biosynthesis<br />

pathway in D. <strong>salina</strong>. Known genes are PSY (Gen-<br />

Bank acession number: AY601075) (Yan et al. 2005), PDS<br />

(GenBank acession number: AY954517) (Zhu et al. 2005)<br />

and ZDS (GenBank acession number: HM754265) (Ye<br />

and Jiang 2010), LCY-b (EU327876) (Ramos et al. 2008).<br />

<strong>The</strong> molecular b<strong>as</strong>is of carotenogenesis in this <strong>alga</strong> is<br />

currently under investigation with several remaining<br />

pathway genes being fully or partially known <strong>as</strong> part of<br />

the current genome sequencing effort.<br />

Abiotic stress (nutrient limitation, high light and salt)<br />

experiments performed revealed that transcriptional<br />

regulation is likely to be an important control step of this<br />

pathway (Ramos et al. 2009). PSY, PDS and LCY-b present<br />

similar expression patterns and nutrient availability<br />

appears to be a crucial inductive factor for β-carotene<br />

accumulation in this micro<strong>alga</strong>. <strong>The</strong>refore, up-regulation<br />

of carotenoid biosynthetic pathway genes may occur in<br />

response to abiotic stress conditions (Coesel et al. 2008,<br />

Ramos et al. 2008), although earlier results indicated the<br />

contrary (see below; Rabbani et al. 1998, Sánchez-Estudillo<br />

et al. 2006). Previous conflicting results that were<br />

published regarding the regulation of PSY and PDS at the<br />

transcript and protein levels might be explained by the<br />

9 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

finding that, in contr<strong>as</strong>t to other known chlorophytes, the<br />

<strong>alga</strong> D. bardawil contains multiple PSY genes (Tran et al.<br />

2009). As in some higher plants (Li et al. 2008a, 2008b)<br />

differential expression of multiple PSY genes might regulate<br />

biosynthesis of carotenoids in <strong>Dunaliella</strong>.<br />

<strong>The</strong> evident complexity of carotenoid biosynthesis observed<br />

in other photosynthetic organisms highlights the<br />

need for an integrated research effort to further understand<br />

the regulation of this pathway in D. <strong>salina</strong> (Lamers<br />

et al. 2008). Results of previous work indicated that<br />

stress-induced carotenoid biosynthesis is regulated at<br />

le<strong>as</strong>t at the level of transcription (Lers et al. 1990). However,<br />

comprehensive examination of transcriptional,<br />

posttranscriptional and metabolic regulatory factors<br />

such <strong>as</strong> redox control (Liska et al. 2004), key control pathway<br />

enzymes, and signaling molecules (e.g., reactive<br />

oxygen species [ROS], SOS pathway and transcription<br />

factors) (Shaish et al. 1993, Xiong et al. 2002, Aarts and Fiers<br />

2003), is fundamental to dissecting the mechanism(s)<br />

that lead to stress-induced β-carotene over-accumulation<br />

in D. <strong>salina</strong> and the development of transgenic strategies<br />

for the use of this <strong>alga</strong> in metabolic engineering of<br />

the carotenoid biosynthesis.<br />

LIPID BIOSYNTHESIS AND ITS APPLICATION<br />

<strong>Dunaliella</strong> species have been found to have unusually<br />

high contents of total lipids, carotenoids and polyunsaturated<br />

fatty acid (PUFA) such <strong>as</strong> 16 : 4 <strong>as</strong> well <strong>as</strong> 18<br />

: 3 (Tornabene et al. 1980, Ben-Amotz et al. 1982, Evans<br />

et al. 1982, Evans and Kates 1984, Mendoza et al. 1999).<br />

<strong>The</strong>se properties of <strong>Dunaliella</strong> species have prompted an<br />

interest in the accumulation of lipids (including sterols)<br />

<strong>as</strong>sociated or not with carotenoid biosynthesis for commercial<br />

use.<br />

D. <strong>salina</strong> exposed to stress conditions, such <strong>as</strong> high<br />

light intensity or nutrient starvation, accumulate<br />

β-carotene in pl<strong>as</strong>tid lipid globules <strong>as</strong> the sequestering<br />

structure (Ben-Amotz and Avron 1983, Jiménez and<br />

Pick 1994, Rabbani et al. 1998). This mechanism is not<br />

unique to <strong>Dunaliella</strong>, <strong>as</strong> a number of micro<strong>alga</strong>e exposed<br />

to stress growth conditions (i.e., high irradiance and nitrogen<br />

starvation) accumulate intra- or extra-pl<strong>as</strong>tidic<br />

lipid bodies composed of both triacylglycerols (TAG) and<br />

carotenoids (Ben-Amotz and Avron 1983, Jiménez and<br />

Pick 1994, Thompson 1996, Rabbani et al. 1998, Boussiba<br />

2000). In D. bardawil the interrelationship between lipid<br />

synthesis, β-carotene accumulation, and chloropl<strong>as</strong>t<br />

lipid globule formation w<strong>as</strong> demonstrated (Rabbani et al.<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 10<br />

1998). In this investigation, carotenoid biosynthetic enzymes,<br />

including PSY or PDS, were not enhanced at the<br />

transcriptional and translational levels under β-carotene<br />

overproducing conditions, where<strong>as</strong> the activity of a key<br />

lipid biosynthesis regulatory enzyme, acetyl-CoA carboxyl<strong>as</strong>e,<br />

incre<strong>as</strong>ed dramatically. Additionally glycerol-<br />

3-phosphate acyltransfer<strong>as</strong>e w<strong>as</strong> enhanced about 8-fold<br />

compared with control conditions. Thus, β-carotene synthesis<br />

might be driven by lipid deposition, or vice versa,<br />

resulting in the sequestration and storage of carotenoid<br />

biosynthetic pathway end products.<br />

Abiotic stress is able to change not only the total content<br />

of fatty acid, but also the composition of the fatty<br />

acids in D. <strong>salina</strong>. Incre<strong>as</strong>ed fatty acid content under<br />

stress conditions (e.g., high irradiance, high salt or nitrogen<br />

starvation) h<strong>as</strong> been described (Cho and Thompson<br />

1986, Mendoza et al. 1999, Abd El-Baky et al. 2004, Lamers<br />

et al. 2010). <strong>The</strong> main PUFA, 18 : 3 (n - 3) and 16 : 4<br />

(n - 3), comprised almost 70% of the total fatty acids in<br />

D. <strong>salina</strong>, where<strong>as</strong> the proportion of 16 : 0 and 18 : 1 incre<strong>as</strong>ed<br />

at the expense of the PUFAs 16 : 4 (n - 3) and 18<br />

: 3 (n - 3) under high irradiance (Mendoza et al. 1999).<br />

Whether or not the observed changes in the 16 : 0 / 16 : 4<br />

fatty acid ratio is related to alterations in the balance between<br />

storage and photosynthetic related fatty acid during<br />

the adaptation to high light remains unclear.<br />

Recently <strong>alga</strong>l-b<strong>as</strong>ed biofuels are gaining widespread<br />

attention and micro<strong>alga</strong>e have been studied for the<br />

production of hydrogen, oils (triglycerides, for biodiesel)<br />

and bioethanol (Ghirardi et al. 2000, Metzger and<br />

Largeau 2005, Miao and Wu 2006, Chisti 2008, Rosenberg<br />

et al. 2008, Wijffels 2008, Greenwell et al. 2010). <strong>The</strong><br />

broadest evaluation of <strong>alga</strong>l species w<strong>as</strong> performed by<br />

the US Department of Energy’s Aquatic Species Program<br />

(ASP) to develop micro<strong>alga</strong>e <strong>as</strong> a source of biodiesel.<br />

ASP scientists screened a large number of micro<strong>alga</strong>e for<br />

growth rate and oil production <strong>as</strong> well <strong>as</strong> composition.<br />

Throughout this project, the ASP recognized that species<br />

selection, optimal cultivation, and genetic diversity, in<br />

addition to metabolic engineering, were critical for commercial<br />

viability (Sheehan et al. 1998).<br />

<strong>Dunaliella</strong> species, including D. <strong>salina</strong>, are candidate<br />

feedstocks for biofuel production (Huesemann and Benemann<br />

2009), because m<strong>as</strong>s production systems for this<br />

<strong>alga</strong> have been established already worldwide. D. <strong>salina</strong><br />

can produce high amounts of lipids in the range from 38<br />

to 44% in terms of dry weight (Abd El-Baky et al. 2004,<br />

Weldy and Huesemann 2007). D. <strong>salina</strong> can be manipulated<br />

e<strong>as</strong>ily for either fatty acid content or composition<br />

by high irradiance, salinity stress and N-deprivation.


However, information about the enzymes related to the<br />

biosynthesis, desaturation and elongation of fatty acids<br />

is limited for the rational manipulation of lipid quantity<br />

and quality. Furthermore, unlike cells under nutrient<br />

stress, exponentially growing D. <strong>salina</strong> displays low lipid<br />

levels. <strong>The</strong>refore, optimal lipid production might involve<br />

a first stage of rapid cell division in hybrid photo-bioreactors<br />

followed by imposition of nutritional stress in outdoor<br />

ponds.<br />

GENETIC MANIPULATION AND BIOTECHNO-<br />

LOGICAL APPLICATIONS<br />

Micro<strong>alga</strong>l strains, either novel or genetically improved,<br />

are indispensable tools for <strong>alga</strong>l biotechnology<br />

companies. Although only non-transgenic strains of D.<br />

<strong>salina</strong> have been used commercially to date, recent development<br />

of tools and methods for genetic engineering<br />

(e.g., electroporation, gl<strong>as</strong>s beads, silicon carbide whiskers,<br />

particle bombardment, Agrobacterium tumefaciensmediated<br />

gene transfer) of micro<strong>alga</strong>e h<strong>as</strong> allowed the<br />

stable transformation of more than 30 different strains<br />

including several Chlorophyta (e.g., C. reinhardtii, Volvox<br />

carteri, Chlorella kessleri) (Fuhrmann 2002, Walker et al.<br />

2005b, Coll 2006, León et al. 2007, Radakovits et al. 2010).<br />

One species that h<strong>as</strong> recently attracted great attention regarding<br />

genetic engineering is D. <strong>salina</strong>.<br />

<strong>The</strong> development of a stable, efficient and reproducible<br />

transformation system depends on several critical<br />

factors such <strong>as</strong> the availability of suitable, highly active<br />

promoters, selective markers (dominant or recessive),<br />

reporter genes and stable transformation methods (Coll<br />

2006, Hallmann 2007). Regarding <strong>Dunaliella</strong>, the species<br />

D. <strong>salina</strong>, D. tertiolecta, and D. viridis have been the main<br />

focus of genetic transformation experiments (Geng et al.<br />

2003, 2004, Sun et al. 2005, 2006, Tan et al. 2005, Walker et<br />

al. 2005a, Feng et al. 2009, Polle and Song 2009).<br />

Early engineering attempts resulted in stable transformation<br />

of D. <strong>salina</strong> with the selective ble gene marker<br />

(zeocin antibiotic resistance) by gl<strong>as</strong>s bead agitation;<br />

however, no evidence of genome integration w<strong>as</strong> presented<br />

(Jin et al. 2001). Subsequently, this problem w<strong>as</strong><br />

overcome by Geng et al. (2003, 2004), who reported nuclear<br />

transformation of D. <strong>salina</strong> by means of electroporation<br />

and stable foreign expression of hepatitis B surface<br />

antigen (HbsAg) under the control of maize ubiquitin<br />

(Ubil-Ω) promoter <strong>as</strong> well <strong>as</strong> the chloramphenicol acetyltransfer<strong>as</strong>e<br />

(CAT) selectable gene under the control of<br />

simian virus 40 (SV40) promoter.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

In addition, the micro-particle bombardment transformation<br />

method w<strong>as</strong> used with the bar gene providing<br />

the selective marker, which encodes for phosphinothricin<br />

acetyltransfer<strong>as</strong>e (PAT) and confers B<strong>as</strong>ta herbicide<br />

tolerance (Walker et al. 2005b, Coll 2006). Three distinct<br />

promoters were tested in different reports: carbonic anhydr<strong>as</strong>e<br />

gene (DCA1) (Lü et al. 2004), actin (Jiang et al.<br />

2005) and Cauliflower mosaic virus 35S promoter (CaM-<br />

V35S) (Tan et al. 2005). <strong>The</strong> latter w<strong>as</strong> the only report<br />

without evidence of stable genome incorporation. Additionally,<br />

another expression system w<strong>as</strong> described in<br />

which the heterologous gene (bar) expression could be<br />

regulated by an inducible promoter. For this purpose, a<br />

D. <strong>salina</strong> nitrate redut<strong>as</strong>e (NR) gene promoter-terminator<br />

c<strong>as</strong>sette with the bar gene w<strong>as</strong> constructed. D. <strong>salina</strong><br />

cells were transformed with this c<strong>as</strong>sette by electroporation<br />

and the bar control expression w<strong>as</strong> observed. Furthermore,<br />

gene integration into the <strong>alga</strong>l genome in the<br />

stable transformants w<strong>as</strong> confirmed (Li et al. 2007).<br />

Recently, three D. <strong>salina</strong> transformation methods were<br />

tested, namely gl<strong>as</strong>s beads, particle bombardment and<br />

electroporation, using GUS (coding for beta-glucuronid<strong>as</strong>e)<br />

gene expression detection. <strong>The</strong> gl<strong>as</strong>s bead transformation<br />

method presented many advantages (simplicity,<br />

low expenses and short transformation time) and the<br />

highest transformation efficiency and reproducibility<br />

(Feng et al. 2009). Development of highly efficient transformation<br />

systems for stable gene expression is necessary<br />

for commercially interesting <strong>alga</strong>e strains such <strong>as</strong><br />

D. <strong>salina</strong>, especially for the improvement of carotenoid<br />

biosynthesis. Genetic engineering of this pathway with<br />

a mutated PDS gene in Haematococcus pluvialis led to<br />

incre<strong>as</strong>ed carotenoid and rapid <strong>as</strong>taxanthin accumulation<br />

(Steinbrenner and Sandmann 2006). <strong>The</strong> PDS gene<br />

w<strong>as</strong> also used in a double-stranded RNA interference<br />

approach for gene expression analysis in D. <strong>salina</strong> electroporated<br />

cells. This gene silencing method proved to<br />

be useful for understanding gene function analysis in<br />

this <strong>alga</strong> (Sun et al. 2008). However, further research in<br />

D. <strong>salina</strong> transgenics is essential for the improvement of<br />

this <strong>alga</strong> <strong>as</strong> a bioreactor and also <strong>as</strong> a molecular toolkit.<br />

<strong>The</strong> recent elucidation of the pl<strong>as</strong>tid genome (Smith et<br />

al. 2010) is a significant step towards this goal and it can<br />

be predicted that stable and routine chloropl<strong>as</strong>t transformation<br />

will be reported soon.<br />

CONCLUSIONS AND FUTURE PERSPECTIVES<br />

<strong>The</strong> progress of modern genomics h<strong>as</strong> led in recent<br />

11 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

years to the complete genome sequencing of about a dozen<br />

micro<strong>alga</strong>l species and a number of genome projects<br />

are currently in progress for several other <strong>alga</strong>e (http://<br />

www.jgi.doe.gov). Indeed one of the earliest <strong>alga</strong>l genomes<br />

sequenced, C. reinhardtii’s, serve <strong>as</strong> an important<br />

reference and a guidepost for further molecular analyses<br />

(Grossman et al. 2007, Merchant et al. 2007). Research on<br />

this <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> and two diatom species, whose<br />

genomes have recently been sequenced, are now in the<br />

post-genomics stage (Armbrust et al. 2004, Montsant et<br />

al. 2007, Siaut et al. 2007). Despite the considerable available<br />

molecular data regarding these microscopic photosynthetic<br />

organisms, further biotechnology development<br />

is necessary for overall <strong>alga</strong>l commercial exploitation.<br />

With the recent publication of the mitochondrial and<br />

pl<strong>as</strong>tid genomes of D. <strong>salina</strong> (Smith et al. 2010) and the<br />

forthcoming rele<strong>as</strong>e of the nuclear genome by JGI, genome-b<strong>as</strong>ed<br />

and other approaches will become possible<br />

in the near future. For example, development of microarrays<br />

or deep cDNA sequencing methods (Margulies et al.<br />

2005) can be expected to follow in short order and allow<br />

comparative analysis of the transcriptome of cells exposed<br />

to various environmental conditions. <strong>The</strong>se techniques<br />

will allow the study of multiple cellular processes<br />

at the molecular level <strong>as</strong>, for example, the dissection of<br />

the regulatory mechanisms involved in carotenogenesis<br />

and glycerol metabolism. Furthermore, combining genomics<br />

of D. <strong>salina</strong> with proteomics will facilitate analysis<br />

of the structure and function of the unique glycocalyx<br />

and the pl<strong>as</strong>ma membrane of this halotolerant organism.<br />

In comparison to the <strong>alga</strong> C. reinhardtii, more genomic<br />

tool development is still necessary for its close relative,<br />

D. <strong>salina</strong>. At this time highly efficient transformation<br />

systems are not available and genetic crosses cannot be<br />

performed on a routine b<strong>as</strong>is. However, with the genome<br />

sequence becoming available soon, the <strong>alga</strong> D. <strong>salina</strong> <strong>as</strong><br />

a <strong>model</strong> system is about to undergo a major transformation.<br />

<strong>The</strong> short-term outcome of research on this industrially<br />

important species will allow not only an enhanced<br />

understanding of complex metabolic networks, but also<br />

further development of transgenic <strong>alga</strong>l strains for particular<br />

commercial applications (e.g., production of carotenoids<br />

and recombinant proteins).<br />

ACKNOWLEDGEMENTS<br />

AR w<strong>as</strong> supported by the Fundação para a Ciência<br />

e Tecnologia, Portugal, with the studentship SFRH/<br />

BD/13937/2003. Part of the work here described w<strong>as</strong><br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 12<br />

financed by the Portuguese National Budget and the<br />

projects POCTI/MAR/15237/99 and INTERREG159-SAL-<br />

Atlantic Salt Ponds awarded to JCV; by funding from the<br />

Department of Transportation SunGrant Initiative (to<br />

JCC) and NIH Grant P20 RR-016464 from the INBRE Program<br />

of the National Center for Research Resources supporting<br />

the Nevada Genomics, Proteomics and Bioinformatics<br />

Center, and the Nevada Agricultural Experiment<br />

Station; and w<strong>as</strong> supported in part by a grant from the<br />

Development of Marine-Bioenergy program funded by<br />

Ministry of Land, Transport and Maritime Affairs of the<br />

Korean Government.<br />

REFERENCES<br />

Aarts, M. G. M. & Fiers, M. W. E. J. 2003. What drives plant<br />

stress genes? Trends Plant Sci. 8:99-102.<br />

Abd El-Baky, H. H., El-Baz, F. K. & El-Baroty, G. S. 2004. Pro-<br />

duction of lipids rich in omega 3 fatty acids from the<br />

halotolerant <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong>. Biotechnology<br />

3:102-108.<br />

Ahmed, A. M. & Zidan, M. A. 1987. Glycerol production by<br />

<strong>Dunaliella</strong> bioculata. J. B<strong>as</strong>ic Microbiol. 27:419-425.<br />

Alkayal, F., Albion, R. L., Tillett, R. L., Hathwaik, L. T., Lemos,<br />

M. S. & Cushman, J. C. 2010. Expressed sequence tag<br />

(EST) profiling in hyper saline shocked <strong>Dunaliella</strong> sali-<br />

na reveals high expression of protein synthetic appara-<br />

tus components. Plant Sci. 179:437-449.<br />

Amtmann, A. 2009. Learning from evolution: <strong>The</strong>llungiella<br />

generates new knowledge on essential and critical com-<br />

ponents of abiotic stress tolerance in plants. Mol. Plant<br />

2:3-12.<br />

Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Marti-<br />

nez, D., Putnam, N. H., Zhou, S., Allen, A. E., Apt, K. E.,<br />

Bechner, M., Brzezinski, M. A., Chaal, B. K., Chiovitti, A.,<br />

Davis, A. K., Demarest, M. S., Detter, J. C., Glavina, T.,<br />

Goodstein, D., Hadi, M. Z., Hellsten, U., Hildebrand, M.,<br />

Jenkins, B. D., Jurka, J., Kapitonov, V. V., Kröger, N., Lau,<br />

W. W. Y., Lane, T. W., Larimer, F. W., Lippmeier, J. C., Luc<strong>as</strong>,<br />

S., Medina, M., Montsant, A., Obornik, M., Parker, M. S.,<br />

Palenik, B., Pazour, G. J., Richardson, P. M., Rynearson,<br />

T. A., Saito, M. A., Schwartz, D. C., Thamatrakoln, K., Val-<br />

entin, K., Vardi, A., Wilkerson, F. P. & Rokhsar, D. S. 2004.<br />

<strong>The</strong> genome of the diatom Thal<strong>as</strong>siosira pseudonana:<br />

ecology, evolution, and metabolism. Science 306:79-86.<br />

Avron, M. 1986. <strong>The</strong> osmotic components of halotolerant al-<br />

gae. Trends Biochem. Sci. 11:5-6.<br />

Avron, M. & Ben-Amotz, A. 1992. <strong>Dunaliella</strong>: physiology, bio-<br />

chemistry, and biotechnology. CRC Press, Boca Raton,


FL, 256 pp.<br />

Bach, T. J., Boronat, A., Campos, N., Ferrer, A. & Vollack, K. U.<br />

1999. Mevalonate biosynthesis in plants. Crit. Rev. Bio-<br />

chem. Mol. Biol. 34:107-122.<br />

Baisakh, N., Subudhi, P. K. & Varadwaj, P. 2008. Primary re-<br />

sponses to salt stress in a halophyte, smooth cordgr<strong>as</strong>s<br />

(Spartina alterniflora Loisel.). Funct. Integr. Genomics<br />

8:287-300.<br />

Bartley, G. E., Scolnik, P. A. & Giuliano, G. 1994. Molecular<br />

biology of carotenoid biosynthesis in plants. Annu. Rev.<br />

Plant Physiol. Plant Mol. Biol. 45:287-301.<br />

Ben-Amotz, A. & Avron, M. 1973. <strong>The</strong> role of glycerol in the<br />

osmotic regulation of the halophilic <strong>alga</strong> <strong>Dunaliella</strong><br />

parva. Plant Physiol. 51:875-878.<br />

Ben-Amotz, A. & Avron, M. 1983. On the factors which deter-<br />

mine m<strong>as</strong>sive β-carotene accumulation in the halotoler-<br />

ant <strong>alga</strong> <strong>Dunaliella</strong> bardawil. Plant Physiol. 72:593-597.<br />

Ben-Amotz, A. & Avron, M. 1990. <strong>The</strong> biotechnology of culti-<br />

vating the halotolerant <strong>alga</strong> <strong>Dunaliella</strong>. Trends Biotech-<br />

nol. 8:121-126.<br />

Ben-Amotz, A., Katz, A. & Avron, M. 1982. Accumulation of<br />

β-carotene in halotolerant <strong>alga</strong>e: purification and char-<br />

acterization of β-carotene-rich globules from Dunaliel-<br />

la bardawil (Chlorophyceae). J. Phycol. 18:529-537.<br />

Ben-Amotz, A. & Shaish, A. 1992. β-carotene biosynthesis. In<br />

Avron, M. & Ben-Amotz, A. (Eds.) <strong>Dunaliella</strong>: Physiology,<br />

Biochemistry and Biotechnology. CRC Press, Boca Ra-<br />

ton, FL, pp. 206-216.<br />

Bhosale, P. 2004. Environmental and cultural stimulants in<br />

the production of carotenoids from microorganisms.<br />

Appl. Microbiol. Biotechnol. 63:351-361.<br />

Bick, J. A. & Lange, B. M. 2003. Metabolic cross talk between<br />

cytosolic and pl<strong>as</strong>tidial pathways of isoprenoid biosyn-<br />

thesis: unidirectional transport of intermediates across<br />

the chloropl<strong>as</strong>t envelope membrane. Arch. Biochem.<br />

Biophys. 415:146-154.<br />

Borowitzka, L. J. & Brown, A. D. 1974. <strong>The</strong> salt relations of<br />

marine and halophilic species of the <strong>unicellular</strong> <strong>green</strong><br />

<strong>alga</strong>, <strong>Dunaliella</strong>: the role of glycerol <strong>as</strong> a compatible sol-<br />

ute. Arch. Microbiol. 96:37-52.<br />

Borowitzka, M. A. 1999. Commercial production of microal-<br />

gae: ponds, tanks, tubes and fermenters. J. Biotechnol.<br />

70:313-321.<br />

Borowitzka, M. A. & Borowitzka, L. J. 1988. <strong>Dunaliella</strong>. In<br />

Borowitzka, M. A. & Borowitzka, L. J. (Eds.) Micro-<strong>alga</strong>l<br />

Biotechnology. Cambridge University Press, Cambridge,<br />

pp. 27-58.<br />

Borowitzka, M. A., Borowitzka, L. J. & Kessly, D. 1990. Effects<br />

of salinity incre<strong>as</strong>e on carotenoid accumulation in the<br />

<strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong>. J. Appl. Phycol. 2:111-119.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

Borowitzka, M. A. & Siva, C. J. 2007. <strong>The</strong> taxonomy of the<br />

genus <strong>Dunaliella</strong> (Chlorophyta, <strong>Dunaliella</strong>les) with<br />

emph<strong>as</strong>is on the marine and halophilic species. J. Appl.<br />

Phycol. 19:567-590.<br />

Botella-Pavía, P., Besumbes, Ó., Phillips, M. A., Carretero-<br />

Paulet, L., Boronat, A. & Rodríguez-Concepción, M.<br />

2004. Regulation of carotenoid biosynthesis in plants:<br />

evidence for a key role of hydroxymethylbutenyl di-<br />

phosphate reduct<strong>as</strong>e in controlling the supply of pl<strong>as</strong>-<br />

tidial isoprenoid precursors. Plant J. 40:188-199.<br />

Boussiba, S. 2000. Carotenogenesis in the <strong>green</strong> <strong>alga</strong> Hae-<br />

matococcus pluvialis: cellular physiology and stress re-<br />

sponse. Physiol. Plant. 108:111-117.<br />

Bouvier, F., d’Harlingue, A., Suire, C., Backhaus, R. A. & Ca-<br />

mara, B. 1998. Dedicated roles of pl<strong>as</strong>tid transketol<strong>as</strong>es<br />

during the early onset of isoprenoid biogenesis in pep-<br />

per fruits. Plant Physiol. 117:1423-1431.<br />

Bouvier, F., Rahier, A. & Camara, B. 2005. Biogenesis, molecu-<br />

lar regulation and function of plant isoprenoids. Prog.<br />

Lipid Res. 44:357-429.<br />

Capa-Robles, W., Paniagua-Michel, J. & Soto, J. O. 2009. <strong>The</strong><br />

biosynthesis and accumulation of β-carotene in Du-<br />

naliella <strong>salina</strong> proceed via the glyceraldehyde 3-phos-<br />

phate/pyruvate pathway. Nat. Prod. Res. 23:1021-1028.<br />

Chapin, F. S. III. 1991. Integrated responses of plants to<br />

stress. BioScience 41:29-36.<br />

Chappell, J. 1995. Biochemistry and molecular biology of the<br />

isoprenoid biosynthetic pathway in plants. Annu. Rev.<br />

Plant Physiol. Plant Mol. Biol. 46:521-547.<br />

Chen, H. & Jiang, J. -G. 2009. Osmotic responses of Dunaliel-<br />

la to the changes of salinity. J. Cell Physiol. 219:251-258.<br />

Chisti, Y. 2008. Biodiesel from micro<strong>alga</strong>e beats bioethanol.<br />

Trends Biotechnol. 26:126-131.<br />

Chitlaru, E. & Pick, U. 1991. Regulation of glycerol synthe-<br />

sis in response to osmotic changes in <strong>Dunaliella</strong>. Plant<br />

Physiol. 96:50-60.<br />

Cho, S. H. & Thompson, G. A. Jr. 1986. Properties of a fatty<br />

acid hydrol<strong>as</strong>e preferentially attacking monogalactosyl-<br />

diacylglycerols in <strong>Dunaliella</strong> <strong>salina</strong> chloropl<strong>as</strong>ts. Bio-<br />

chim. Biophys. Acta 878:353-359.<br />

Cifuentes, A. S., González, M. A., Inostroza, I. & Aguilera,<br />

A. 2001. Reappraisal of physiological attributes of nine<br />

strains of <strong>Dunaliella</strong> (Chlorophyceae): growth and pig-<br />

ment content across salinity gradient. J. Phycol. 37:334-<br />

344.<br />

Cifuentes, A. S., González, M. A. & Parra, O. O. 1996. <strong>The</strong> ef-<br />

fect of salinity on the growth and carotenogenesis in two<br />

Chilean strains of <strong>Dunaliella</strong> <strong>salina</strong> <strong>Teod</strong>oresco. Biol.<br />

Res. 29:227-236.<br />

Coesel, S. N., Baumgartner, A. C., Teles, L. M., Ramos, A.<br />

13 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

A., Henriques, N. M., Cancela, L. & Varela, J. C. S. 2008.<br />

Nutrient limitation is the main regulatory factor for ca-<br />

rotenoid accumulation and for Psy and Pds steady state<br />

transcript levels in <strong>Dunaliella</strong> <strong>salina</strong> (Chlorophyta)<br />

exposed to high light and salt stress. Mar. Biotechnol.<br />

10:602-611.<br />

Coll, J. M. 2006. Methodologies for transferring DNA into eu-<br />

karyotic micro<strong>alga</strong>e. Span. J. Agric. Res. 4:316-330.<br />

Cowan, A. K., Rose, P. D. & Horne, L. G. 1992. <strong>Dunaliella</strong> sa-<br />

lina: a <strong>model</strong> system for studying the response of plant<br />

cells to stress. J. Exp. Bot. 43:1535-1547.<br />

Cunningham, F. X. Jr. 2002. Regulation of carotenoid syn-<br />

thesis and accumulation in plants. Pure Appl. Chem.<br />

74:1409-1417.<br />

Cunningham, F. X. Jr. & Gantt, E. 1998. Genes and enzymes<br />

of carotenoid biosynthesis in plants. Annu. Rev. Plant<br />

Physiol. Plant Mol. Biol. 49:557-583.<br />

Cushman, J. C. & Bohnert, H. J. 2000. Genomic approaches<br />

to plant stress tolerance. Curr. Opin. Plant Biol. 3:117-<br />

124.<br />

Cushman, J. C., Tillett, R. L., Wood, J. A., Branco, J. M. &<br />

Schlauch, K. A. 2008. Large-scale mRNA expression<br />

profiling in the common ice plant, Mesembryanthe-<br />

mum crystallinum, performing C 3 photosynthesis<br />

and Cr<strong>as</strong>sulacean acid metabolism (CAM). J. Exp. Bot.<br />

59:1875-1894.<br />

Del Campo, J. A., García-González, M. & Guerrero, M. G.<br />

2007. Outdoor cultivation of micro<strong>alga</strong>e for carotenoid<br />

production: current state and perspectives. Appl. Mi-<br />

crobiol. Biotechnol. 74:1163-1174.<br />

Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt,<br />

M., Rhodes, D., Boland, W. & Gershenzon, J. 2005. <strong>The</strong><br />

nonmevalonate pathway supports both monoterpene<br />

and sesquiterpene formation in snapdragon flowers.<br />

Proc. Natl. Acad. Sci. U. S. A. 102:933-938.<br />

Dunahay, T. G., Jarvis, E. E., Dais, S. S. & Roessler, P. G.<br />

1996. Manipulation of micro<strong>alga</strong>l lipid production us-<br />

ing genetic engineering. Appl. Biochem. Biotechnol.<br />

57/58:223-231.<br />

Eisenreich, W., Bacher, A., Arigoni, D. & Rohdich, F. 2004. Bio-<br />

synthesis of isoprenoids via the non-mevalonate path-<br />

way. Cell. Mol. Life Sci. 61:1401-1426.<br />

Eisenreich, W., Rohdich, F. & Bacher, A. 2001. Deoxyxylulose<br />

phosphate pathway to terpenoids. Trends Plant Sci.<br />

6:78-84.<br />

Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D.,<br />

Zenk, M. H. & Bacher, A. 1998. <strong>The</strong> deoxyxylulose phos-<br />

phate pathway of terpenoid biosynthesis in plants and<br />

microorganisms. Chem. Biol. 5:R221-R233.<br />

Estévez, J. M., Cantero, A., Reindl, A., Reichler, S. & Léon, P.<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 14<br />

2001. 1-Deoxy-D-xylulose-5-phosphate synth<strong>as</strong>e, a lim-<br />

iting enzyme for pl<strong>as</strong>tidic isoprenoid biosynthesis in<br />

plants. J. Biol. Chem. 276:22901-22909.<br />

Evans, R. W. & Kates, M. 1984. Lipid composition of halo-<br />

philic species of <strong>Dunaliella</strong> from the Dead Sea. Arch.<br />

Microbiol. 140:50-56.<br />

Evans, R. W., Kates, M., Ginzburg, M. & Ginzburg, B. -Z. 1982.<br />

Lipid composition of halotolerant <strong>alga</strong>e, <strong>Dunaliella</strong> par-<br />

va Lerche and <strong>Dunaliella</strong> tertiolecta. Biochim. Biophys.<br />

Acta 712:186-195.<br />

Feng, S., Xue, L., Liu, H. & Lu, P. 2009. Improvement of ef-<br />

ficiency of genetic transformation for <strong>Dunaliella</strong> <strong>salina</strong><br />

by gl<strong>as</strong>s beads method. Mol. Biol. Rep. 36:1433-1439.<br />

Fisher, M., Gokhman, I., Pick, U. & Zamir, A. 1997. A struc-<br />

turally novel transferrin-like protein accumulates in<br />

the pl<strong>as</strong>ma membrane of the <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> Du-<br />

naliella <strong>salina</strong> grown in high salinities. J. Biol. Chem.<br />

272:1565-1570.<br />

Fisher, M., Zamir, A. & Pick, U. 1998. Iron uptake by the halo-<br />

tolerant <strong>alga</strong> <strong>Dunaliella</strong> is mediated by a pl<strong>as</strong>ma mem-<br />

brane transferrin. J. Biol. Chem. 273:17553-17558.<br />

Fletcher, S. P., Muto, M. & Mayfield, S. P. 2007. Optimization<br />

of recombinant protein expression in the chloropl<strong>as</strong>ts<br />

of <strong>green</strong> <strong>alga</strong>e. Adv. Exp. Med. Biol. 616:90-98.<br />

Fuhrmann, M. 2002. Expanding the molecular toolkit for<br />

Chlamydomon<strong>as</strong> reinhardtii: from history to new fron-<br />

tiers. Protist 153:357-364.<br />

Geng, D., Wang, Y., Wang, P., Li, W. & Sun, Y. 2003. Stable ex-<br />

pression of hepatitis B surface antigen gene in Dunaliel-<br />

la <strong>salina</strong> (Chlorophyta). J. Appl. Phycol. 15:451-456.<br />

Geng, D. -G., Han, Y., Wang, Y. -Q., Wang, P., Zhang, L. -M., Li,<br />

W. -B. & Sun, Y. -R. 2004. Construction of a system for the<br />

stable expression of foreign genes in <strong>Dunaliella</strong> <strong>salina</strong>.<br />

Acta Bot. Sin. 46:342-346.<br />

Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M.,<br />

Greenbaum, E. & Melis, A. 2000. Micro<strong>alga</strong>e: a <strong>green</strong><br />

source of renewable H 2 . Trends Biotechnol. 18:506-511.<br />

Gómez, P. I. & González, M. A. 2004. Genetic variation among<br />

seven strains of <strong>Dunaliella</strong> <strong>salina</strong> (Chlorophyta) with<br />

industrial potential, b<strong>as</strong>ed on RAPD banding patterns<br />

and on nuclear ITS rDNA sequences. Aquaculture<br />

233:149-162.<br />

González, M. A., Coleman, A. W., Gómez, P. I. & Montoya, R.<br />

2001. Phylogenetic relationship among various strains<br />

of <strong>Dunaliella</strong> (Chlorophyceae) b<strong>as</strong>ed on nuclear ITS<br />

rDNA sequences. J. Phycol. 37:604-611.<br />

González, M. A., Gómez, P. I. & Polle, J. E. W. 2009. Taxonomy<br />

and phylogeny of the Genus <strong>Dunaliella</strong>. In Ben-Amotz,<br />

A., Polle, J. E. W. & Subba Rao, D. V. (Eds.) <strong>The</strong> Alga Du-<br />

naliella: Biodiversity, Physiology, Genomics and Biotech-


nology. Science Publishers, Einfield, NH, pp.15-44.<br />

Goyal, A. 2007. Osmoregulation in <strong>Dunaliella</strong>, Part I: Effects<br />

of osmotic stress on photosynthesis, dark respiration<br />

and glycerol metabolism in <strong>Dunaliella</strong> tertiolecta and its<br />

salt-sensitive mutant (HL 25/8). Plant Physiol. Biochem.<br />

45:696-704.<br />

Greenwell, H. C., Laurens, L. M. L., Shields, R. J., Lovitt, R. W.<br />

& Flynn, K. J. 2010. Placing micro<strong>alga</strong>e on the biofuels<br />

priority list: a review of the technological challenges. J.<br />

R. Soc. Interface 7:703-726.<br />

Grossman, A. R., Croft, M., Gladyshev, V. N., Merchant, S. S.,<br />

Posewitz, M. C., Prochnik, S. & Spalding, M. H. 2007.<br />

Novel metabolism in Chlamydomon<strong>as</strong> through the lens<br />

of genomics. Curr. Opin. Plant Biol. 10:190-198.<br />

Grossman, A. R., Harris, E. E., Hauser, C., Lefebvre, P. A., Mar-<br />

tinez, D., Rokhsar, D., Shrager, J., Silflow, C. D., Stern, D.,<br />

Vallon, O. & Zhang, Z. 2003. Chlamydomon<strong>as</strong> reinhardtii<br />

at the crossroads of genomics. Eukaryot. Cell 2:1137-<br />

1150.<br />

Hallmann, A. 2007. Algal transgenics and biotechnology.<br />

Transgenic Plant J. 1:81-98.<br />

Hampel, D., Mosandl, A. & Wüst, M. 2005. Biosynthesis of<br />

mono- and sesquiterpenes in carrot roots and leaves<br />

(Daucus carota L.): metabolic cross talk of cytosolic<br />

mevalonate and pl<strong>as</strong>tidial methylerythritol phosphate<br />

pathways. Phytochemistry 66:305-311.<br />

Harris, E. H. 2001. Chlamydomon<strong>as</strong> <strong>as</strong> a <strong>model</strong> organism.<br />

Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:363-406.<br />

Hejazi, M. A., Barzegari, A., Gharajeh, N. H. & Hejazi, M. S.<br />

2010. Introduction of a novel 18S rDNA gene arrange-<br />

ment along with distinct ITS region in the saline water<br />

micro<strong>alga</strong> <strong>Dunaliella</strong>. Saline Systems 6:4.<br />

Hejazi, M. A. & Wijffels, R. H. 2004. Milking of micro<strong>alga</strong>e.<br />

Trends Biotechnol. 22:189-194.<br />

Hema, R., Senthil-Kumar, M., Shivakumar, S., Chan-<br />

dr<strong>as</strong>ekhara Reddy, P. & Udayakumar, M. 2007. Chlam-<br />

ydomon<strong>as</strong> reinhardtii, a <strong>model</strong> system for functional<br />

validation of abiotic stress responsive genes. Planta<br />

226:655-670.<br />

Hemmerlin, A., Hoeffler, J. -F., Meyer, O., Tritsch, D., Kagan,<br />

I. A., Grosdemange-Billiard, C., Rohmer, M. & Bach, T. J.<br />

2003. Cross-talk between the cytosolic mevalonate and<br />

the pl<strong>as</strong>tidial methylerythritol phosphate pathways in<br />

tobacco bright yellow-2 cells. J. Biol. Chem. 278:26666-<br />

26676.<br />

Hicks, G. R., Hironaka, C. M., Dauvillee, D., Funke, R. P.,<br />

D’Hulst, C., Waffenschmidt, S. & Ball, S. G. 2001. When<br />

simpler is better. Unicellular <strong>green</strong> <strong>alga</strong>e for discovering<br />

new genes and functions in carbohydrate metabolism.<br />

Plant Physiol. 127:1334-1338.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

Hirschberg, J., Cohen, M., Harker, M., Lotan, T., Mann, V. &<br />

Pecker, I. 1997. Molecular genetics of the carotenoid<br />

biosynthesis pathway in plants and <strong>alga</strong>e. Pure Appl.<br />

Chem. 69:2151-2158.<br />

Hsieh, M. -H., Chang, C. -Y., Hsu, S. -J. & Chen, J. -J. 2008.<br />

Chloropl<strong>as</strong>t localization of methylerythritol 4-phos-<br />

phate pathway enzymes and regulation of mitochondri-<br />

al genes in ispD and ispE albino mutants in Arabidopsis.<br />

Plant Mol. Biol. 66:663-673.<br />

Huesemann, M. H. & Benemann, J. R. 2009. Biofuels from<br />

micro<strong>alga</strong>e: review of products, processes and potential,<br />

with special focus on <strong>Dunaliella</strong> sp. In Ben-Amotz, A.,<br />

Polle, J. E. W. & Subba Rao, D. V. (Eds.) <strong>The</strong> Alga Dunaliel-<br />

la: Biodiversity, Physiology, Genomics and Biotechnology.<br />

Science Publishers, Einfield, NH, pp. 445-474.<br />

Hunter, W. N. 2007. <strong>The</strong> non-mevalonate pathway of isopren-<br />

oid precursor biosynthesis. J. Biol. Chem. 282:21573-<br />

21577.<br />

Jain, M., Shrager, J., Harris, E. H., Halbrook, R., Grossman, A.<br />

R., Hauser, C. & Vallon, O. 2007. EST <strong>as</strong>sembly supported<br />

by a draft genome sequence: an analysis of the Chlam-<br />

ydomon<strong>as</strong> reinhardtii transcriptome. Nucleic Acids Res.<br />

35:2074-2083.<br />

Jia, Y., Xue, L., Li, J. & Liu, H. 2010. Isolation and proteomic<br />

analysis of the halotolerant <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> fla-<br />

gella using shotgun strategy. Mol. Biol. Rep. 37:711-716.<br />

Jiang, G. -Z., Lü, Y. -M., Niu, X. -L. & Xue, L. -X. 2005. <strong>The</strong> ac-<br />

tin gene promoter-driven bar <strong>as</strong> a dominant selectable<br />

marker for nuclear transformation of <strong>Dunaliella</strong> <strong>salina</strong>.<br />

Acta Genet. Sin. 32:424-433.<br />

Jiménez, C. & Pick, U. 1993. Differential reactivity of<br />

β-carotene isomers from <strong>Dunaliella</strong> bardawil toward<br />

oxygen radicals. Plant Physiol. 101:385-390.<br />

Jiménez, C. & Pick, U. 1994. Differential stereoisomer com-<br />

position of β, β-carotene in thylakoids and in pigment<br />

globules in <strong>Dunaliella</strong>. J. Plant Physiol. 143:257-263.<br />

Jin, E. & Polle, J. E. W. 2009. Carotenoid biosynthesis in Du-<br />

naliella (Chlorophyta). In Ben-Amotz, A., Polle, J. E. W. &<br />

Subba Rao, D. V. (Eds.) <strong>The</strong> Alga <strong>Dunaliella</strong>: Biodiversity,<br />

Physiology, Genomics and Biotechnology. Science Pub-<br />

lishers, Einfield, NH, pp. 147-172.<br />

Jin, E., Polle, J. E. W. & Melis, A. 2001. Involvement of zeaxan-<br />

thin and of the Cbr protein in the repair of photosystem<br />

II from photoinhibition in the <strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> sa-<br />

lina. Biochim. Biophys. Acta 1506:244-259.<br />

K<strong>as</strong>ahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya,<br />

Y. & Yamaguchi, S. 2002. Contribution of the mevalonate<br />

and methylerythritol phosphate pathways to the bio-<br />

synthesis of gibberellins in Arabidopsis. J. Biol. Chem.<br />

277:45188-45194.<br />

15 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

Katz, A., Jiménez, C. & Pick, U. 1995. Isolation and charac-<br />

terization of a protein <strong>as</strong>sociated with carotene globules<br />

in the <strong>alga</strong> <strong>Dunaliella</strong> bardawil. Plant Physiol. 108:1657-<br />

1664.<br />

Katz, A., Waridel, P., Shevchenko, A. & Pick, U. 2007. Salt-in-<br />

duced changes in the pl<strong>as</strong>ma membrane proteome of<br />

the halotolerant <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong> <strong>as</strong> revealed by<br />

blue native gel electrophoresis and nano-LC-MS/MS<br />

analysis. Mol. Cell. Proteomics 6:1459-1472.<br />

Kore-eda, S., Cushman, M. A., Akselrod, I., Bufford, D., Fred-<br />

rickson, M., Clark, E. & Cushman, J. C. 2004. Transcript<br />

profiling of salinity stress responses by large-scale ex-<br />

pressed sequence tag analysis in Mesembryanthemum<br />

crystallinum. Gene 341:83-92.<br />

Lamers, P. P., Janssen, M., De Vos, R. C. H., Bino, R. J. & Wi-<br />

jffels, R. H. 2008. Exploring and exploiting carotenoid<br />

accumulation in <strong>Dunaliella</strong> <strong>salina</strong> for cell-factory ap-<br />

plications. Trends Biotechnol. 26:631-638.<br />

Lamers, P. P., van de Laak, C. C. W., Ka<strong>as</strong>enbrood, P. S., Lorier,<br />

J., Janssen, M., De Vos, R. C. H., Bino, R. J. & Wijffels, R.<br />

H. 2010. Carotenoid and fatty acid metabolism in light-<br />

stressed <strong>Dunaliella</strong> <strong>salina</strong>. Biotechnol. Bioeng. 106:638-<br />

648.<br />

Laule, O., Fürholz, A., Chang, H. -S., Zhu, T., Wang, X., Heif-<br />

etz, P. B., Gruissem, W. & Lange, M. 2003. Crosstalk be-<br />

tween cytosolic and pl<strong>as</strong>tidial pathways of isoprenoid<br />

biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad.<br />

Sci. U. S. A. 100:6866-6871.<br />

Lefebvre, P. A. & Silflow, C. D. 1999. Chlamydomon<strong>as</strong>: the cell<br />

and its genomes. Genetics 151:9-14.<br />

León, R., Galván, A. & Fernández, E. 2007. Transgenic micro-<br />

<strong>alga</strong>e <strong>as</strong> <strong>green</strong> cell factories: advances in experimental<br />

medicine and biology. Springer-Verlag, New York, 125<br />

pp.<br />

León-Bañares, R., González-Ballester, D., Galván, A. &<br />

Fernández, E. 2004. Transgenic micro<strong>alga</strong>e <strong>as</strong> <strong>green</strong> cell-<br />

factories. Trends Biotechnol. 22:45-52.<br />

Lers, A., Biener, Y. & Zamir, A. 1990. Photoinduction of m<strong>as</strong>-<br />

sive β-carotene accumulation by the <strong>alga</strong> <strong>Dunaliella</strong><br />

bardawil: kinetics and dependence on gene activation.<br />

Plant Physiol. 93:389-395.<br />

Li, F., Vallabhaneni, R. & Wurtzel, E. T. 2008a. PSY3, a new<br />

member of the phytoene synth<strong>as</strong>e gene family con-<br />

served in the Poaceae and regulator of abiotic stress-<br />

induced root carotenogenesis. Plant Physiol. 146:1333-<br />

1345.<br />

Li, F., Vallabhaneni, R., Yu, J., Rocheford, T. & Wurtzel, E. T.<br />

2008b. <strong>The</strong> maize phytoene synth<strong>as</strong>e gene family: over-<br />

lapping roles for carotenogenesis in endosperm, pho-<br />

tomorphogenesis, and thermal stress tolerance. Plant<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 16<br />

Physiol. 147:1334-1346.<br />

Li, J., Xue, L., Yana, H., Wang, L., Liu, L., Lu, Y. & Xie, H. 2007.<br />

<strong>The</strong> nitrate reduct<strong>as</strong>e gene-switch: a system for regulat-<br />

ed expression in transformed cells of <strong>Dunaliella</strong> <strong>salina</strong>.<br />

Gene 403:132-142.<br />

Liang, C., Zhao, F., Wei, W., Wen, Z. & Qin, S. 2006. Carotenoid<br />

biosynthesis in cyanobacteria: structural and evolution-<br />

ary scenarios b<strong>as</strong>ed on comparative genomics. Int. J.<br />

Biol. Sci. 2:197-207.<br />

Lichtenthaler, H. K. 1999. <strong>The</strong> 1-deoxy-D-xylulose-5-phos-<br />

phate pathway of isoprenoid biosynthesis in plants.<br />

Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:47-65.<br />

Lichtenthaler, H. K. 2000. Non-mevalonate isoprenoid bio-<br />

synthesis: enzymes, genes and inhibitors. Biochem. Soc.<br />

Trans. 28:785-789.<br />

Lichtenthaler, H. K. 2010. <strong>The</strong> non-mevalonate DOXP/MEP<br />

(deoxyxylulose 5-phosphate/mehtylerythritol 4-phos-<br />

phate) pathway of chloropl<strong>as</strong>t isoprenoid and pigment<br />

biosynthesis. In Rebeiz, C. A., Benning, C., Bohnert, H.<br />

J., Daniell, H., Hoober, J. K., Lichtenthaler, H. K., Portis,<br />

A. R. & Tripathy, B. C. (Eds.) Advances in Photosynthesis<br />

and Respiration, Vol 31. <strong>The</strong> Chloropl<strong>as</strong>ts: B<strong>as</strong>ics and Ap-<br />

plications. Springer, Dordrecht, pp. 95-118.<br />

Lichtenthaler, H. K., Schwender, J., Disch, A. & Rohmer, M.<br />

1997. Biosynthesis of isoprenoids in higher plant chlo-<br />

ropl<strong>as</strong>ts proceeds via a mevalonate independent path-<br />

way. FEBS Lett. 400:271-274.<br />

Liska, A. J., Shevchenko, A., Pick, U. & Katz, A. 2004. Enhanced<br />

photosynthesis and redox energy production contribute<br />

to salinity tolerance in <strong>Dunaliella</strong> <strong>as</strong> revealed by homol-<br />

ogy-b<strong>as</strong>ed proteomics. Plant Physiol. 136:2806-2817.<br />

Loeblich, L. A. 1982. Photosynthesis and pigments influ-<br />

enced by light intensity and salinity in the halophile<br />

<strong>Dunaliella</strong> <strong>salina</strong> (Chlorophyta). J. Mar. Biol. Assoc. U.<br />

K. 62:493-508.<br />

Lohr, M., Im, C. -S., & Grossman, A. R. 2005. Genome-b<strong>as</strong>ed<br />

examination of chlorophyll and carotenoid biosyn-<br />

thesis in Chlamydomon<strong>as</strong> reinhardtii. Plant Physiol.<br />

138:490-515.<br />

Lois, L. M., Rodríguez-Concepción, M., Gallego, F., Campos,<br />

N. & Boronat, A. 2000. Carotenoid biosynthesis during<br />

tomato fruit development: regulatory role of 1-deoxy-D-<br />

xylulose 5-phosphate synth<strong>as</strong>e. Plant J. 22:503-513.<br />

Lü, Y. -M., Jiang, G. -Z., Niu, X. -L., Hou, G. -Q., Zhang, G. -X.<br />

& Xue, L. -X. 2004. Cloning and functional analyses of<br />

promoters of two carbonic anhydr<strong>as</strong>e genes from Du-<br />

naliella <strong>salina</strong>. Acta Genet. Sin. 31:1157-1166.<br />

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader,<br />

J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y.<br />

-J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X.


V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk,<br />

G. P., Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage,<br />

K. B., Kim, J. -B., Knight, J. R., Lanza, J. R., Leamon, J.<br />

H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H.,<br />

Makhijani, V. B., McDade, K. E., McKenna, M. P., My-<br />

ers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B.<br />

P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F.,<br />

Simpson, J. W., Sriniv<strong>as</strong>an, M., Tartaro, K. R., Tom<strong>as</strong>z, A.,<br />

Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner,<br />

M. P., Yu, P., Begley, R. F. & Rothberg, J. M. 2005. Genome<br />

sequencing in microfabricated high-density picolitre<br />

reactors. Nature 437:376-380.<br />

Mayfield, S. P., Manuell, A. L., Chen, S., Wu, J., Tran, M., Siefk-<br />

er, D., Muto, M. & Marin-Navarro, J. 2007. Chlamydomo-<br />

n<strong>as</strong> reinhardtii chloropl<strong>as</strong>ts <strong>as</strong> protein factories. Curr.<br />

Opin. Biotechnol. 18:126-133.<br />

Mendoza, H., Martel, A., Jiménez del Río, M. & García Reina,<br />

G. 1999. Oleic acid is the main fatty acid related with<br />

carotenogenesis in <strong>Dunaliella</strong> <strong>salina</strong>. J. Appl. Phycol.<br />

11:15-19.<br />

Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Kar-<br />

powicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-<br />

Laylin, L. K., Maréchal-Drouard, L., Marshall, W. F., Qu,<br />

L. -H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H.,<br />

Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro,<br />

H., Luc<strong>as</strong>, S. M., Grimwood, J., Schmutz, J., Cardol, P.,<br />

Cerutti, H., Chanfreau, G., Chen, C. -L., Cognat, V., Croft,<br />

M. T., Dent, R., Dutcher, S., Fernández, E., Fukuzawa,<br />

H., González-Ballester, D., González-Halphen, D., Hall-<br />

mann, A., Hanikenne, M., Hippler, M., Inwood, W., Jab-<br />

bari, K., Kalanon, M., Kur<strong>as</strong>, R., Lefebvre, P. A., Lemaire,<br />

S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets,<br />

L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley,<br />

J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S.<br />

V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J. -P., Riaño-<br />

Pachón, D. M., Riekhof, W., Rymarquis, L., Schroda, M.,<br />

Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S.<br />

L., Allmer, J., Balk, J., Bisova, K., Chen, C. -J., Eli<strong>as</strong>, M.,<br />

Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long,<br />

J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W.,<br />

Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P.,<br />

Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N.,<br />

Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber,<br />

B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I.,<br />

Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo,<br />

Y., Martínez, D., Ngau, W. C. A., Otillar, B., Poliakov, A.,<br />

Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev,<br />

I. V., Rokhsar, D. S. & Grossman, A. R. 2007. <strong>The</strong> Chlam-<br />

ydomon<strong>as</strong> genome reveals the evolution of key animal<br />

and plant functions. Science 318:245-250.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

Metzger, P. & Largeau, C. 2005. Botryococcus braunii: a rich<br />

source for hydrocarbons and related ether lipids. Appl.<br />

Microbiol. Biotechnol. 66:486-496.<br />

Miao, X. & Wu, Q. 2006. Biodiesel production from heterotro-<br />

phic micro<strong>alga</strong>l oil. Bioresour. Technol. 97:841-846.<br />

Mishra, A., Mandoli, A. & Jha, B. 2008. Physiological charac-<br />

terization and stress-induced metabolic responses of<br />

<strong>Dunaliella</strong> <strong>salina</strong> isolated from salt pan. J. Ind. Micro-<br />

biol. Biotechnol. 35:1093-1101.<br />

Montsant, A., Allen, A. E., Coesel, S., De Martino, A., Falcia-<br />

tore, A., Mangogna, M., Siaut, M., Heijde, M., Jabbari, K.,<br />

Maheswari, U., Rayko, E., Vardi, A., Apt, K. E., Berges, J.<br />

A., Chiovitti, A., Davis, A. K., Thamatrakoln, K., Hadi, M.<br />

Z., Lane, T. W., Lippmeier, J. C., Martinez, D., Parker, M.<br />

S., Pazour, G. J., Saito, M. A., Rokhsar, D. S., Armbrust,<br />

E. V. & Bowler, C. 2007. Identification and comparative<br />

genomic analysis of signaling and regulatory compo-<br />

nents in the diatom Thal<strong>as</strong>siosira pseudonana. J. Phy-<br />

col. 43:585-604.<br />

Murthy, K. N. C., Vanitha, A., Rajesha, J., Swamy, M. M., Sow-<br />

mya, P. R. & Ravishankar, G. A. 2005. In vivo antioxidant<br />

activity of carotenoids from <strong>Dunaliella</strong> <strong>salina</strong>: a <strong>green</strong><br />

micro<strong>alga</strong>. Life Sci. 76:1381-1390.<br />

Olmos, J., Ochoa, L., Paniagua-Michel, J. & Contrer<strong>as</strong>, R. 2009.<br />

DNA fingerprinting differentiation between β-carotene<br />

hyperproducer strains of <strong>Dunaliella</strong> from around the<br />

world. Saline Systems 5:5.<br />

Olmos, J., Paniagua, J. & Contrer<strong>as</strong>, R. 2000. Molecular iden-<br />

tification of <strong>Dunaliella</strong> sp. utilizing the 18S rDNA gene.<br />

Lett. Appl. Microbiol. 30:80-84.<br />

Olmos-Soto, J., Paniagua-Michel, J., Contrer<strong>as</strong>, R. & Trujillo,<br />

L. 2002. Molecular identification of β-carotene hyper-<br />

producing strains of <strong>Dunaliella</strong> from saline environ-<br />

ments using species-specific oligonucleotides. Biotech-<br />

nol. Lett. 24:365-369.<br />

Oren, A. 2005. A hundred years of <strong>Dunaliella</strong> research: 1905-<br />

2005. Saline Systems 1:2.<br />

Oren, A. 2010. Industrial and environmental applications of<br />

halophilic microorganisms. Environ. Technol. 31:825-<br />

834.<br />

Park, S., Polle, J. E. W., Melis, A., Lee, T. K. & Jin, E. 2006. Up-<br />

regulation of photoprotection and PSII-repair gene ex-<br />

pression by irradiance in the <strong>unicellular</strong> <strong>green</strong> <strong>alga</strong> Du-<br />

naliella <strong>salina</strong>. Mar. Biotechnol. 8:120-128.<br />

Pick, U. 1998. <strong>Dunaliella</strong>: a <strong>model</strong> extremophilic <strong>alga</strong>. Israel<br />

J. Plant Sci. 46:131-139.<br />

Polle, J. E. W. & Song, Q. 2009. Development of genetics and<br />

molecular tool kits for species of the <strong>unicellular</strong> <strong>green</strong><br />

<strong>alga</strong> <strong>Dunaliella</strong> (Chlorophyta). In Ben-Amotz, A., Polle,<br />

J. E. W. & Subba Rao, D. V. (Eds.) <strong>The</strong> Alga <strong>Dunaliella</strong>: Bio-<br />

17 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

diversity, Physiology, Genomics and Biotechnology. Sci-<br />

ence Publishers, Einfield, NH, pp. 403-422.<br />

Polle, J. E. W., Tran, D., & Ben-Amotz, A. 2009. History, dis-<br />

tribution, and habitats of <strong>alga</strong>e of the genus <strong>Dunaliella</strong><br />

<strong>Teod</strong>oresco (Chlorophyceae). In Ben-Amotz, A., Polle, J.<br />

E. W. & Subba Rao, D. V. (Eds.) <strong>The</strong> Alga <strong>Dunaliella</strong>: Bio-<br />

diversity, Physiology, Genomics and Biotechnology. Sci-<br />

ence Publishers, Einfield, NH, pp. 1-14.<br />

Potvin, G. & Zhang, Z. 2010. Strategies for high-level recom-<br />

binant protein expression in transgenic micro<strong>alga</strong>e: a<br />

review. Biotechnol. Adv. 28:910-918.<br />

Pulz, O. 2001. Photobioreactors: production systems for<br />

phototrophic microorganisms. Appl. Microbiol. Bio-<br />

technol. 57:287-293.<br />

Pulz, O. & Gross, W. 2004. Valuable products from biotech-<br />

nology of micro<strong>alga</strong>e. Appl. Microbiol. Biotechnol.<br />

65:635-648.<br />

Rabbani, S., Beyer, P., Lintig, J. v., Hugueney, P. & Kleinig, H.<br />

1998. Induced β-carotene synthesis driven by triacyl-<br />

glycerol deposition in the <strong>unicellular</strong> <strong>alga</strong> <strong>Dunaliella</strong><br />

bardawil. Plant Physiol. 116:1239-1248.<br />

Radakovits, R., Jinkerson, R. E., Darzins, A. & Posewitz, M. C.<br />

2010. Genetic engineering of <strong>alga</strong>e for enhanced biofuel<br />

production. Eukaryot. Cell 9:486-501.<br />

Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S. & Ren-<br />

g<strong>as</strong>amy, R. 2008. A perspective on the biotechnological<br />

potential of micro<strong>alga</strong>e. Crit. Rev. Microbiol. 34:77-88.<br />

Raja, R., Hemaiswarya, S. & Reng<strong>as</strong>amy, R. 2007a. Exploita-<br />

tion of <strong>Dunaliella</strong> for β-carotene production. Appl. Mi-<br />

crobiol. Biotechnol. 74:517-523.<br />

Raja, R., Iswarya, S. H., Bal<strong>as</strong>ubramanyam, D. & Reng<strong>as</strong>amy,<br />

R. 2007b. PCR-identification of <strong>Dunaliella</strong> <strong>salina</strong> (Vol-<br />

vocales, Chlorophyta) and its growth characteristics.<br />

Microbiol. Res. 162:168-176.<br />

Ramos, A., Coesel, S., Marques, A., Rodrigues, M., Baumgart-<br />

ner, A., Noronha, J., Rauter, A., Brenig, B. & Varela, J.<br />

2008. Isolation and characterization of a stress-induc-<br />

ible <strong>Dunaliella</strong> <strong>salina</strong> Lcy-β gene encoding a functional<br />

lycopene β-cycl<strong>as</strong>e. Appl. Microbiol. Biotechnol. 79:819-<br />

828.<br />

Ramos, A. A., Marques, A. R., Rodrigues, M., Henriques, N.,<br />

Baumgartner, A., C<strong>as</strong>tilho, R., Brenig, B. & Varela, J. C.<br />

2009. Molecular and functional characterization of a<br />

cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphos-<br />

phate reduct<strong>as</strong>e from <strong>Dunaliella</strong> <strong>salina</strong>. J. Plant Physiol.<br />

166:968-977.<br />

Rochaix, J. -D. 2002. Chlamydomon<strong>as</strong>, a <strong>model</strong> system for<br />

studying the <strong>as</strong>sembly and dynamics of photosynthetic<br />

complexes. FEBS Lett. 529:34-38.<br />

Rochaix, J. -D. 2004. Genetics of the biogenesis and dynam-<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 18<br />

ics of the photosynthetic machinery in eukaryotes.<br />

Plant Cell 16:1650-1660.<br />

Rodríguez-Concepción, M. 2006. Early steps in isoprenoid<br />

biosynthesis: multilevel regulation of the supply of com-<br />

mon precursors in plant cells. Phytochem. Rev. 5:1-15.<br />

Rodríguez-Concepción, M. 2010. Supply of precursors for<br />

carotenoid biosynthesis in plants. Arch. Biochem. Bio-<br />

phys. 504:118-122.<br />

Rodríguez-Concepción, M., Querol, J., Lois, L. M., Impe-<br />

rial, S. & Boronat, A. 2003. Bioinformatic and molecular<br />

analysis of hydroxymethylbutenyl diphosphate syn-<br />

th<strong>as</strong>e (GCPE) gene expression during carotenoid accu-<br />

mulation in ripening tomato fruit. Planta 217:476-482.<br />

Rohdich, F., Kis, K., Bacher, A. & Eisenreich, W. 2001. <strong>The</strong> non-<br />

mevalonate pathway of isoprenoids: genes, enzymes<br />

and intermediates. Curr. Opin. Chem. Biol. 5:535-540.<br />

Rohdich, F., Zepeck, F., Adam, P., Hecht, S., Kaiser, J., Laupitz,<br />

R., Grāwert, T., Amslinger, S., Eisenreich, W., Bacher, A. &<br />

Arigoni, D. 2003. <strong>The</strong> deoxyxylulose phosphate pathway<br />

of isoprenoid biosynthesis: studies on the mechanisms<br />

of the reactions catalyzed by IspG and IspH protein.<br />

Proc. Natl. Acad. Sci. U. S. A. 100:1586-1591.<br />

Rohmer, M. 1999. <strong>The</strong> discovery of a mevalonate-indepen-<br />

dent pathway for isoprenoid biosynthesis in bacteria,<br />

<strong>alga</strong>e and higher plants. Nat. Prod. Rep. 16:565-574.<br />

Rohmer, M. 2003. Mevalonate-independent methylerythri-<br />

tol phosphate pathway for isoprenoid biosynthesis: elu-<br />

cidation and distribution. Pure Appl. Chem. 75:375-387.<br />

Rohmer, M., Knani, M., Simonin, P., Sutter, B. & Sahm, H.<br />

1993. Isoprenoid biosynthesis in bacteria: a novel path-<br />

way for the early steps leading to isopentenyl diphos-<br />

phate. Biochem. J. 295:517-524.<br />

Römer, S. & Fr<strong>as</strong>er, P. D. 2005. Recent advances in carotenoid<br />

biosynthesis, regulation and manipulation. Planta<br />

221:305-308.<br />

Rosenberg, J. N., Oyler, G. A., Wilkinson, L. & Betenbaugh,<br />

M. J. 2008. A <strong>green</strong> light for engineered <strong>alga</strong>e: redirect-<br />

ing metabolism to fuel a biotechnology revolution. Curr.<br />

Opin. Biotechnol. 19:430-436.<br />

Sacchettini, J. C. & Poulter, C. D. 1997. Creating isoprenoid<br />

diversity. Science 277:1788-1789.<br />

Sadka, A., Lers, A., Zamir, A. & Avron, M. 1989. A critical ex-<br />

amination of the role of de novo protein synthesis in the<br />

osmotic adaptation of the halotolerant <strong>alga</strong> <strong>Dunaliella</strong>.<br />

FEBS Lett. 244:93-98.<br />

Sánchez-Estudillo, L., Freile-Pelegrin, Y., Rivera-Madrid, R.,<br />

Robledo, D. & Narváez-Zapata, J. A. 2006. Regulation<br />

of two photosynthetic pigment-related genes during<br />

stress-induced pigment formation in the <strong>green</strong> <strong>alga</strong>,<br />

<strong>Dunaliella</strong> <strong>salina</strong>. Biotechnol. Lett. 28:787-791.


Sandmann, G. 1994. Carotenoid biosynthesis in microor-<br />

ganisms and plants. Eur. J. Biochem. 223:7-24.<br />

Sandmann, G. 2001. Carotenoid biosynthesis and biotech-<br />

nological application. Arch. Biochem. Biophys. 385:4-<br />

12.<br />

Schwender, J., Gemünden, C. & Lichtenthaler, H. K. 2001.<br />

Chlorophyta exclusively use the 1-deoxyxylulose<br />

5-phosphate/2-C-methylerythritol 4-phosphate path-<br />

way for the biosynthesis of isoprenoids. Planta 212:416-<br />

423.<br />

Schwender, J., Seemann, M., Lichtenthaler, H. K. & Rohmer,<br />

M. 1996. Biosynthesis of isoprenoids (carotenoids, ste-<br />

rols, prenyl side-chains of chlorophylls and pl<strong>as</strong>toqui-<br />

none) via a novel pyruvate/glyceraldehyde 3-phosphate<br />

non-mevalonate pathway in the <strong>green</strong> <strong>alga</strong> Scenedes-<br />

mus obliquus. Biochem. J. 316:73-80.<br />

Shaish, A., Avron, M., Pick, U. & Ben-Amotz, A. 1993. Are ac-<br />

tive oxygen species involved in induction of β-carotene<br />

in <strong>Dunaliella</strong> bardawil? Planta 190:363-368.<br />

Shaish, A., Ben-Amotz, A. & Avron, M. 1992. Biosynthesis of<br />

β-carotene in <strong>Dunaliella</strong>. Methods Enzymol. 213:439-<br />

444.<br />

Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. 1998.<br />

A look back at the U. S. Department of Energy’s Aquatic<br />

Species Program: biodiesel from <strong>alga</strong>e. NREL/TP-580-<br />

24190. National Renewable Energy Laboratory, Golden,<br />

CO, 328 pp.<br />

Shrager, J., Hauser, C., Chang, C. -W., Harris, E. H., Davies,<br />

J., McDermott, J., Tamse, R., Zhang, Z. & Grossman, A.<br />

R. 2003. Chlamydomon<strong>as</strong> reinhardtii genome project: a<br />

guide to the generation and use of the cDNA informa-<br />

tion. Plant Physiol. 131:401-408.<br />

Siaut, M., Heijde, M., Mangogna, M., Montsant, A., Coesel,<br />

S., Allen, A., Manfredonia, A., Falciatore, A. & Bowler, C.<br />

2007. Molecular toolbox for studying diatom biology in<br />

Phaeodactylum tricornutum. Gene 406:23-35.<br />

Smith, D. R., Lee, R. W., Cushman, J. C., Magnuson, J. K., Tran,<br />

D. & Polle, J. E. W. 2010. <strong>The</strong> <strong>Dunaliella</strong> <strong>salina</strong> organelle<br />

genomes: large sequences, inflated with intronic and in-<br />

tergenic DNA. BMC Plant Biol. 10:83.<br />

Spolaore, P., Joannis-C<strong>as</strong>san, C., Duran, E. & Isambert, A.<br />

2006. Commercial applications of micro<strong>alga</strong>e. J. Biosci.<br />

Bioeng. 101:87-96.<br />

Stahl, W. & Sies, H. 2005. Bioactivity and protective effects of<br />

natural carotenoids. Biochim. Biophys. Acta 1740:101-<br />

107.<br />

Steinbrenner, J. & Sandmann, G. 2006. Transformation of the<br />

<strong>green</strong> <strong>alga</strong> Haematococcus pluvialis with a phytoene de-<br />

satur<strong>as</strong>e for accelerated <strong>as</strong>taxanthin biosynthesis. Appl.<br />

Environ. Microbiol. 72:7477-7484.<br />

Ramos et al. <strong>Dunaliella</strong> <strong>salina</strong> Biotechnology<br />

Sun, G., Zhang, X., Sui, Z. & Mao, Y. 2008. Inhibition of pds<br />

gene expression via the RNA interference approach<br />

in <strong>Dunaliella</strong> <strong>salina</strong> (Chlorophyta). Mar. Biotechnol.<br />

10:219-226.<br />

Sun, T. -H., Liu, C. -Q., Hui, Y. -Y., Wu, W. -K., Zhou, Z. -G. &<br />

Lu, S. 2010. Coordinated regulation of gene expression<br />

for carotenoid metabolism in Chlamydomon<strong>as</strong> rein-<br />

hardtii. J. Integr. Plant Biol. 52:868-878.<br />

Sun, Y., Gao, X., Li, Q., Zhang, Q. & Xu, Z. 2006. Functional<br />

complementation of a nitrate reduct<strong>as</strong>e defective mu-<br />

tant of a <strong>green</strong> <strong>alga</strong> <strong>Dunaliella</strong> viridis by introducing the<br />

nitrate reduct<strong>as</strong>e gene. Gene 377:140-149.<br />

Sun, Y., Yang, Z., Gao, X., Li, Q., Zhang, Q. & Xu, Z. 2005. Ex-<br />

pression of foreign genes in <strong>Dunaliella</strong> by electropora-<br />

tion. Mol. Biotechnol. 30:185-192.<br />

Taji, T., Komatsu, K., Katori, K., Kaw<strong>as</strong>aki, Y., Sakata, Y., Tana-<br />

ka, S., Kobay<strong>as</strong>hi, M., Toyoda, A., Seki, M. & Shinozaki,<br />

K. 2010. Comparative genomic analysis of 1047 com-<br />

pletely sequenced cDNAs from an Arabidopsis-related<br />

<strong>model</strong> halophyte, <strong>The</strong>llungiella halophila. BMC Plant<br />

Biol. 10:261.<br />

Tan, C., Qin, S., Zhang, Q., Jiang, P. & Zhao, F. 2005. Establish-<br />

ment of a micro-particle bombardment transformation<br />

system for <strong>Dunaliella</strong> <strong>salina</strong>. J. Microbiol. 43:361-365.<br />

<strong>Teod</strong>oresco, E. C. 1905. Organisation et developpement du<br />

<strong>Dunaliella</strong>, nouveau genre de Volvocacee-Polyblephari-<br />

dee. Beih. z. Bot. Centralbl. 18:215-232.<br />

Thompson, G. A. Jr. 1996. Lipids and membrane function in<br />

<strong>green</strong> <strong>alga</strong>e. Biochim. Biophys. Acta 1302:17-45.<br />

Tornabene, T. G., Holzer, G. & Peterson, S. L. 1980. Lipid pro-<br />

file of the halophilic <strong>alga</strong>, <strong>Dunaliella</strong> <strong>salina</strong>. Biochim.<br />

Biophys. Res. Commun. 96:1349-1356.<br />

Tran, D., Haven, J., Qiu, W. -G. & Polle, J. E. W. 2009. An up-<br />

date on carotenoid biosynthesis in <strong>alga</strong>e: phylogenetic<br />

evidence for the existence of two cl<strong>as</strong>ses of phytoene<br />

synth<strong>as</strong>e. Planta 229:723-729.<br />

Tseng, C. K. 2001. Algal biotechnology industries and re-<br />

search activities in China. J. Appl. Phycol. 13:375-380.<br />

Urano, K., Kurihara, Y., Seki, M. & Shinozaki, K. 2010. ‘Omics’<br />

analyses of regulatory networks in plant abiotic stress<br />

responses. Curr. Opin. Plant Biol. 13:132-138.<br />

Vidhyavathi, R., Venkatachalam, L., Sarada, R. & Ravishan-<br />

kar, G. A. 2008. Regulation of carotenoid biosynthetic<br />

genes expression and carotenoid accumulation in the<br />

<strong>green</strong> <strong>alga</strong> Haematococcus pluvialis under nutrient<br />

stress conditions. J. Exp. Bot. 59:1409-1418.<br />

Vorst, P., Baard, R. L., Mur, L. R., Korthals, H. J. & van den<br />

Ende, H. 1994. Effect of growth arrest on carotene accu-<br />

mulation and photosynthesis in <strong>Dunaliella</strong>. Microbiol-<br />

ogy 140:1411-1417.<br />

19 http://e-<strong>alga</strong>e.kr


<strong>Algae</strong> 2011, 26(1): 3-20<br />

Walker, T. L., Becker, D. K., Dale, J. L. & Collet, C. 2005a. To-<br />

wards the development of a nuclear transformation<br />

system for <strong>Dunaliella</strong> tertiolecta. J. Appl. Phycol. 17:363-<br />

368.<br />

Walker, T. L., Collet, C. & Purton, S. 2005b. Algal transgenics<br />

in the genomic era. J. Phycol. 41:1077-1093.<br />

Walker, T. L., Purton, S., Becker, D. K. & Collet, C. 2005c. Mi-<br />

cro<strong>alga</strong>e <strong>as</strong> bioreactors. Plant Cell Rep. 24:629-641.<br />

Wang, B., Zarka, A., Trebst, A. & Boussiba, S. 2003. Astaxan-<br />

thin accumulation in Haematococcus pluvialis (Chlo-<br />

rophyceae) <strong>as</strong> an active photoprotective process under<br />

high irradiance. J. Phycol. 39:1116-1124.<br />

Weldy, C. S. & Huesemann, M. 2007. Lipid production by Du-<br />

naliella <strong>salina</strong> in batch culture: effects of nitrogen limi-<br />

tation and light intensity. U. S. Department of Energy<br />

Journal of Undergraduate Research 7:115-122.<br />

Wijffels, R. H. 2008. Potential of sponges and micro<strong>alga</strong>e for<br />

marine biotechnology. Trends Biotechnol. 26:26-31.<br />

Wille, A., Zimmermann, P., Vranová, E., Fürholz, A., Laule,<br />

O., Bleuler, S., Hennig, L., Prelić, A., von Rohr, P., Thiele,<br />

L., Zitzler, E., Gruissem, W. & Bühlmann, P. 2004. Sparse<br />

graphical Gaussian <strong>model</strong>ing of the isoprenoid gene<br />

network in Arabidopsis thaliana. Genome Biol. 5:R92.<br />

Xiong, L., Schumaker, K. S. & Zhu, J. -K. 2002. Cell Signal-<br />

DOI: 10.4490/<strong>alga</strong>e.2011.26.1.003 20<br />

ing during cold, drought, and salt stress. Plant Cell 14<br />

Suppl:S165-S183.<br />

Xue, L., Pan, W., Jiang, G. & Wang, J. 2003. Transgenic Du-<br />

naliella <strong>salina</strong> <strong>as</strong> a bioreactor. USA Patent Application<br />

2003/0066107.<br />

Yan, Y., Zhu, Y. -H., Jiang, J. -G. & Song, D. -L. 2005. Cloning<br />

and sequence analysis of the phytoene synth<strong>as</strong>e gene<br />

from a <strong>unicellular</strong> chlorophyte, <strong>Dunaliella</strong> <strong>salina</strong>. J. Ag-<br />

ric. Food Chem. 53:1466-1469.<br />

Ye, Z. -W. & Jiang, J. -G. 2010. Analysis of an essential caro-<br />

tenogenic enzyme: ζ-carotene desatur<strong>as</strong>e from uni-<br />

cellular <strong>alga</strong> <strong>Dunaliella</strong> <strong>salina</strong>. J. Agric. Food Chem.<br />

58:11477-11482.<br />

Ye, Z. -W., Jiang, J. -G. & Wu, G. -H. 2008. Biosynthesis and<br />

regulation of carotenoids in <strong>Dunaliella</strong>: progresses and<br />

prospects. Biotechnol. Adv. 26:352-360.<br />

Zhu, Y. -H., Jiang, J. -G., Yan, Y. & Chen, X. -W. 2005. Isola-<br />

tion and characterization of phytoene desatur<strong>as</strong>e cDNA<br />

involved in the β-carotene biosynthetic pathway in Du-<br />

naliella <strong>salina</strong>. J. Agric. Food Chem. 53:5593-5597.<br />

Zulak, K.G. & Bohlmann, J. 2010. Terpenoid biosynthesis and<br />

specialized v<strong>as</strong>cular cells of conifer defense. J. Integr.<br />

Plant Biol. 52:86-97.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!