14.06.2013 Views

The Effect of Zr-Doping and Crystallite Size on the Mechanical ...

The Effect of Zr-Doping and Crystallite Size on the Mechanical ...

The Effect of Zr-Doping and Crystallite Size on the Mechanical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

4. Compressing Materials: Equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> change in volume <str<strong>on</strong>g>of</str<strong>on</strong>g> a material with changing pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature<br />

depends <strong>on</strong> <strong>the</strong> isobaric <strong>the</strong>rmal expansi<strong>on</strong> α as well as <strong>the</strong> iso<strong>the</strong>rmal compressibility β<br />

such that:<br />

VT,P = V1, 298 [1+ α(T-298) – β(P-1)] (3)<br />

where α <str<strong>on</strong>g>and</str<strong>on</strong>g> β are not c<strong>on</strong>stant but approximate to a certain value, resulting in finite<br />

strain. <str<strong>on</strong>g>The</str<strong>on</strong>g> iso<strong>the</strong>rmal volume change up<strong>on</strong> compressi<strong>on</strong> can be described by a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> State (EoS). Here, <strong>the</strong> Birch-Murnaghan EoS for finite strain was used.<br />

It is based up<strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong> strain energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid undergoing compressi<strong>on</strong><br />

can be expressed as a Taylor series in <strong>the</strong> finite strain, f. <str<strong>on</strong>g>The</str<strong>on</strong>g> Birch-Murnaghan EoS<br />

[190] is based up<strong>on</strong> <strong>the</strong> Eulerian strain:<br />

fE =0.5 [(V0/V) 2/3 -1]/2 (4)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> expansi<strong>on</strong> to third order in <strong>the</strong> strain yields <strong>the</strong> Birch-Munraghan EoS:<br />

P = 1.5 K0 [(V0/V) 7/3 - (V0/V) 5/3 ]·{1 - 0.75 (4- K0’)·[(V0/V) 2/3 -1]} (5)<br />

with K0 = iso<strong>the</strong>rmal bulk modulus (K0 = 1/β (dP/dV)T) <str<strong>on</strong>g>and</str<strong>on</strong>g> K0’ = dK0/dP. In this study,<br />

pressure-volume data up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples were gained during diam<strong>on</strong>d<br />

anvil cell experiments. <str<strong>on</strong>g>The</str<strong>on</strong>g> data were <strong>the</strong>n fitted to a third order Birch Murnaghan EoS<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> for some instances to a sec<strong>on</strong>d order EoS with K0’ fixed to 4, which is typical for<br />

most materials. In order to yield estimates for <strong>the</strong> EoS parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir uncertainties<br />

in a least square refinement, applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a weighing scheme was necessary. For each<br />

data point i, <strong>the</strong> weight wi was assigned such that:<br />

wi = σ -2 (6)<br />

where σ² is <strong>the</strong> true variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data point, comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> from<br />

uncertainties in <strong>the</strong> pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> volume measurements.<br />

In order to express <strong>the</strong> relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P <str<strong>on</strong>g>and</str<strong>on</strong>g> V linearly, <strong>the</strong> F-f plot was used. Here, Birch’s<br />

normalized pressure F was plotted versus <strong>the</strong> Eulerian strain fE with:<br />

F = P/(3 fE (2 fE +1)) 5/2 (7)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> data are described by a third order truncati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EoS <str<strong>on</strong>g>and</str<strong>on</strong>g> as an<br />

advantage, K0 <str<strong>on</strong>g>and</str<strong>on</strong>g> K0’ can be fitted as parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear functi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

a fit equals 3K0(K0’−4)/2. To calculate fE (equati<strong>on</strong> 4), V0 was gained from<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!