15.06.2013 Views

RB - Università degli Studi della Tuscia

RB - Università degli Studi della Tuscia

RB - Università degli Studi della Tuscia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Cdc28 Regulate Many Cell Cycle<br />

Events<br />

Synchronized cdc28 ts cells can’t<br />

initiate S-phase<br />

Cdc28 drives entry into S-phase as<br />

well as Mitosis<br />

How can one enzyme regulate<br />

multiple cell cycle events?<br />

1


Cells Use Multiple Cyclins to Regulate<br />

Different Cell Cycle Events<br />

Cicline M<br />

Cicline G1<br />

2


Il complesso MPF regola l’ingresso mitotico<br />

(studi su S. S. pombe) pombe<br />

Il complesso MPF è formato da<br />

Cdc28/cicline mitotiche in S. cerevisiae e<br />

Cdc2/Cdc13 in S. pombe<br />

Il complesso SPF regola l’ingresso in S<br />

(studi su S. S. cerevisiae)<br />

cerevisiae<br />

Il complesso SPF è formato da<br />

Cdc28/cicline G1 in S. cerevisiae<br />

3


Modello di azione del complesso Cdc28/cicline<br />

in S. S. cerevisiae<br />

4


Cyclin<br />

G1 Cyclins<br />

Cln1<br />

Cln2<br />

Cln3<br />

B-type Cyclins<br />

Clb1<br />

Clb2<br />

Clb3<br />

Clb4<br />

Clb5<br />

Clb6<br />

Budding Yeast Cyclin Genes<br />

Identification<br />

mutant<br />

mutant<br />

mutant<br />

Homology<br />

Homology<br />

Homology<br />

Homology<br />

Accidental<br />

Accidental<br />

Expression<br />

G1<br />

G1<br />

G1<br />

M<br />

M<br />

S<br />

S<br />

G1<br />

G1<br />

Function<br />

START<br />

START<br />

START<br />

Mitosis<br />

Mitosis<br />

Spindle<br />

Spindle<br />

S-phase entry<br />

S-phase entry<br />

5


Cyclins Nomenclature<br />

All contain “cyclin box” domain cdc2 binding domain<br />

Cyclin A<br />

Cyclin B’s<br />

S. pombe cdc13...<br />

S. cerevisiae CLB1,2,3,4,5,6<br />

G1 Cyclins<br />

S. cerevisiae CLN1,2,3<br />

A and B’s closely related<br />

- destruction box<br />

- required for S and M<br />

- “A” accumulates earlier,<br />

- degraded earlier<br />

- G1’s more similar to each other<br />

-PEST domains (Pro,Glu,SerThr)<br />

6


Cyclins can be grouped by expression patterns<br />

[Cyclin]<br />

- CLN1 and CLN2 and CLB5 and CLB6 -<br />

- CLB3 and CLB4<br />

- CLB 1 and CLB2<br />

CLN1,2,CLB5,6<br />

CLB3,4<br />

CLN3<br />

G1 Start Metaphase<br />

CLB1,2<br />

7


Yeast Cyclin Genes: CLNs and CLBs<br />

Clb3,4<br />

Activate replication<br />

origins<br />

Clb5,6<br />

G1 entry<br />

Triple cln1,2,3 mutant<br />

Quadruple clb1,2 mutant<br />

CLN1,2,3<br />

Sense cell size, commit to division<br />

Dominant CLN Mutations<br />

Clb1,2<br />

Spindle assembly<br />

anaphase


Vertebrate Cells, like budding yeast,<br />

express multiple cyclins, but they<br />

also express several CDK’s<br />

9


Regulation of G1/S transition (start/restriction point)<br />

Identification of mammalian G1 cyclins<br />

Human cDNA libraries screened for ability to complement CLN3 mutant<br />

lead to cloning of three human G1 cyclins:<br />

Cyclin C<br />

Cyclin D1<br />

Cyclin E<br />

Cyclin D2 and Cyclin D3 subsequently<br />

identified<br />

D-type cyclins: respond to growth factors<br />

G 0 to G1 transition<br />

E-type cyclin: expression is periodic<br />

peaks at G1/S transition<br />

controls ability of mammalian cells<br />

to enter S-phase<br />

10


Regulation of G1/S transition (start/restriction point)<br />

Identification of mammalian cyclin-dependent kinases (CDKs)<br />

Human cDNA libraries screened for ability to complement budding yeast<br />

CDC28 mutant<br />

Three cDNA clones identified which could complement CDC28 mutant<br />

Mammalian cdk1 acts at G2/M transition<br />

cdk2 acts at G1/S transition<br />

cdk3 unknown function<br />

Cdk4 identified in an anti-cyclin D coimmunoprecipitation<br />

experiment<br />

Unable to complement CDC28<br />

11


Punti di controllo del ciclo cellulare<br />

START PUNTO DI RESTRIZIONE<br />

Budding yeast Mammiferi<br />

13


Restriction point (START)<br />

Point at which cell is irreversibly<br />

committed to traversing the cell cycle<br />

Mammals: restriction point<br />

Yeast: START<br />

Cell cycle proceeds without influence<br />

from environment (only stopped by<br />

damage)<br />

Late in G 1<br />

14


To divide or not to divide:<br />

that is the question<br />

Yeast cells make decision based on<br />

cell size, which is dependent on<br />

nutrient availability<br />

Mammalian cells make decision based<br />

on the presence of protein growth<br />

factors called mitogens that<br />

stimulate cell growth<br />

15


In assenza di fattori di crescita le<br />

cellule di mammifero si arrestano in<br />

G0 (cellule cellule quiescenti);<br />

quiescenti<br />

L’aggiunta di mitogeni causa il<br />

passaggio attraverso il punto di<br />

restrizione (dopo dopo 14-16 ore); ore<br />

Le cellule in proliferazione entrano in<br />

S (dopo dopo altre 6-8 ore)<br />

ore<br />

16


Cyclin D is required to pass restriction point<br />

R point<br />

Colorazione 16 ore dopo la microiniezione<br />

e l’aggiunta di<br />

BrdU al mezzo.<br />

Colorante per DNA<br />

Anticorpi anti-BrdU<br />

Anticorpi anti-cicl.D<br />

17


Continous expression of Cyclin E shortens G1<br />

18


Attività dei complessi<br />

Cdk/ciclina dei mammiferi<br />

All’inizio <strong>della</strong> fase S le<br />

cicline D ed E vengono<br />

degradate. I livelli di Cdk4<br />

e 6 crollano repentinamente<br />

All’inizio <strong>della</strong> fase S viene<br />

sintetizzata la ciclina A che si<br />

associa a Cdk2. La distruzione <strong>della</strong><br />

ciclina A o una sua modificazione<br />

inibiscono la sintesi di DNA.<br />

Queste proteine non sono<br />

necessarie per la progressione<br />

nella fase S<br />

Il complesso Cdk2/ciclina A è<br />

indispensabile per la<br />

progressione nella fase S<br />

19


Cell-cycle phase-specific<br />

Three classes:<br />

G 1 Cdk complexes<br />

Cdk complexes<br />

S-phase Cdk complexes<br />

Mitotic Cdk complexes (also known as MPF)<br />

Cell-cycle phase specificity determined by<br />

cyclin type and, in some cells, Cdk type<br />

20


Controllo del ciclo cellulare dei mammiferi<br />

Ingresso in fase M (complesso MPF)<br />

Cdk1/ciclina A<br />

Cdk1/ciclina B<br />

Ingresso in fase S (complesso SPF)<br />

Cdk4,6/ciclina D punto di restrizione<br />

Cdk2/ciclina E<br />

Progressione in fase S<br />

Cdk2/ciclina A<br />

ingresso in S<br />

21


In addition to forming complexes between<br />

specific Cdks and their cyclin binding<br />

partners, all complexes require<br />

phosphorylation and dephosphorylation to<br />

become fully active<br />

phosphorylation of thr160/161 is<br />

important for the activation of all major<br />

Cdk/cyclin complexes<br />

catalysed by Cdk activating kinase CAK<br />

22


Regolazione <strong>della</strong> Cdk1 mediante<br />

fosforilazione-defosforilazione<br />

Siti di inattivazione<br />

Sito di attivazione<br />

Equilibrio tra fosfatasi (Cdc25) e kinasi (Wee1)<br />

23


Another mechanism by which<br />

CDKs can<br />

regulate Multiple Transitions<br />

is by using<br />

different CDK inhibitors<br />

(CKI’s)<br />

24


CDK activity is controlled by chemical modification,<br />

cyclin synthesis/proteolysis, and:<br />

CKIs (Cyclin-dependent kinase Inhibitors)<br />

25


CKI’s can be specific for particular CDK<br />

complexes because their binding can depend upon<br />

a specific cyclin<br />

CDK<br />

CKI<br />

T-Loop<br />

Cyclin<br />

26


Sic1<br />

Down-regulation of a CKI can, in turn, be<br />

regulated by a CDK-mediated phosphorylation<br />

because its ubiquitin-dependent proteolysis<br />

can be regulated by its phosphorylation state<br />

Cdc28/Cln1,2<br />

27


We can add another limb to our regulation tree<br />

Wee1 kinases<br />

Cdc25 phosphatases<br />

Kap1 phosphatases<br />

Phosphorylation<br />

Control<br />

Transcriptional<br />

Control<br />

Y15<br />

T160<br />

Ubiquitin-dependent<br />

Proteolytic Control<br />

Cdk-Activating<br />

Kinases (CAK)<br />

Cyclin-dependent Kinase<br />

Inhibitors (CKI’s)<br />

Transcriptional<br />

Control<br />

28


Inibitori delle Cdk<br />

Membri diversi di questa famiglia inibiscono Cdk diverse<br />

Inibitore cellule animali<br />

p15, p16<br />

p21, p27<br />

Inibitore lievito<br />

Far1<br />

P40<br />

Cyclin-Cdk complex<br />

Cdk4/ciclinaD<br />

Cdk6/ciclinaD<br />

Cdk4/ciclinaD<br />

Cdk6/ciclinaD<br />

Cdk2/ciclinaE<br />

Cdk2/ciclinaA<br />

Cdc2/Cln<br />

Cdc2/Clb<br />

29


Meccanismi di controllo dell’attività<br />

dei complessi ciclina/CDK<br />

Concentrazione delle cicline<br />

-livello di sintesi tramite controllo trascrizionale<br />

-proteolisi<br />

-localizzazione cellulare<br />

Fosforilazione delle CDK<br />

Inibitori delle CDK<br />

30


Situazioni biologiche in cui la proliferazione è controllata<br />

Embriogenesi: proliferazione attiva<br />

cicli cellulari brevi<br />

rapida successione di fasi di replicazione (S) e mitosi (M)<br />

crescita "logaritmica".<br />

Differenziamento: graduale attivazione di funzioni specializzate<br />

espansione clonale di cellule che si specializzano.<br />

contemporaneamente il ciclo di divisione viene modulato.<br />

Differenziamento terminale: arresto programmato del ciclo (GO).<br />

Reversibilità: cellule differenziate possono ripristinare il programma di<br />

divisione in risposta a stimoli (danni meccanici, agenti fisici etc.).<br />

Proliferazione neoplastica: innesco <strong>della</strong> proliferazione in assenza di<br />

programma, per mutazione di un gene cellulare o infezione di virus<br />

31


2 principali livelli di controllo <strong>della</strong> proliferazione di cellule eucariotiche:<br />

controllo <strong>della</strong> scelta tra destino proliferativo / entrata in quiescenza<br />

(G0) ed eventuale differenziamento <strong>della</strong> cellula.<br />

REGOLATO DALL’ ESTERN0<br />

controllo delle fasi del ciclo e coordinamento tra i diversi eventi necessari<br />

alla divisione cellulare.<br />

Controllo del ciclo cellulare e controllo <strong>della</strong><br />

proliferazione<br />

MECCANISMI DI CONTROLLO INTRINSECI<br />

32


Regulation of cell cycle<br />

A cell continues through the cell cycle after passing<br />

the restriction point (START START) unless it encounters<br />

genetic damage<br />

If the cell receives a go-ahead signal, it completes the<br />

cell cycle and divides otherwise it switches to a<br />

nondividing state, the G 0 phase. Most human cells are<br />

in this phase. Liver cells can be “called back” to the<br />

cell cycle by external cues (growth factors), but highly<br />

specialized nerve and muscle cells never divide.<br />

Progress though the cell cycle is monitored at four<br />

checkpoints<br />

33


Cell cycle checkpoints<br />

ensure integrity of the genome<br />

cell does not enter mitosis until DNA replication is<br />

complete and DNA damage is repaired<br />

ensure chromosome segregation does not occur if<br />

chromosomes are incorrectly aligned on the mitotic<br />

spindle and spindle formation is inhibited<br />

during the cell cycle a number of processes take<br />

place and they need to be co-ordinated<br />

each process involves synthesis, assembly and<br />

correct function; all the changes that take place<br />

during the cell cycle have to integrated and correctly<br />

regulated<br />

34


Checkpoint machinery<br />

Look out for defect<br />

and emit a signal<br />

Transmission of signals throughout<br />

the nucleus or cell and amplification<br />

SENSORS<br />

TRANSDUCERS<br />

Delay cell-cycle progression EFFECTORS<br />

35


Four checkpoints<br />

36


THE G1/S CHECKPOINT<br />

37


GROWTH FACTORS ARE INVOLVED<br />

IN PASSING THE G1 CHECKPOINT<br />

1. Arrival of<br />

growth factors<br />

from other cells.<br />

Cyclin<br />

Cyclin<br />

Cyclin<br />

Cyclin<br />

2. Growth factors<br />

cause increase in<br />

cyclin concentration.<br />

CdK<br />

CdK<br />

Cyclin<br />

Cyclin<br />

3. Cyclin activates<br />

cyclin-dependent<br />

kinase.<br />

ATP<br />

ADP<br />

CdK<br />

P i<br />

Cyclin<br />

Target<br />

protein<br />

4. Kinases activate S<br />

phase proteins, leading<br />

to cell division.<br />

38


Growth factor signalling and<br />

transcription<br />

Growth factors increase the expression of specific<br />

genes:<br />

1. early response genes:<br />

rapid increase in mRNA and protein levels<br />

include transcription factors such as E2F, c-myc, cfos,<br />

c-jun<br />

2. delayed response genes:<br />

include cell cycle proteins such as Cdks, cyclins<br />

expression regulated by early response genes<br />

39


Regulated expression of two classes of<br />

genes returns G0 G mammalian cells to<br />

the cell cycle<br />

Early-response<br />

genes:<br />

Transcription factors<br />

(E2F)<br />

Delayed-response<br />

genes:<br />

CyclinD, E<br />

Cdk2, 4, 6<br />

40


Il passagggio attraverso il punto di<br />

restrizione dipende dalla attivazione di<br />

fattori di trascrizione E2F<br />

I fattori E2F attivi stimolano la propria<br />

sintesi e quella <strong>della</strong> Cdk2 e <strong>della</strong> Ciclina E;<br />

Il complesso Cdk2/CyclE porta all’aumento di<br />

fattori E2F attivi<br />

41


E2F is a transcription factor that by itself<br />

activates transcription<br />

E2F<br />

However, Rb binds to E2F and represses its<br />

activation function<br />

Rb<br />

gene expression<br />

42


P<br />

P P<br />

Rb<br />

E2F<br />

P<br />

Rb repression is regulated by<br />

early G 1 Cyclins-CDKs<br />

S-phase gene transcription<br />

When Rb repression is inhibited by phosphorylation of Rb by<br />

early G 1 Cyclin-CDK protein kinases (Cyclin D-CDK4/6), E2F<br />

stimulates the expression of genes required for S-phase,<br />

including genes encoding DNA polymerases and other proteins<br />

required for DNA synthesis, enzymes that synthesize<br />

dNTPs, and genes encoding late G 1 Cyclin-CDKs (Cyclin E and<br />

CDK2) and the major S-phase Cyclin (Cyclin A).<br />

43


The G1/S transition in human cells: Rb (retinoblastoma<br />

protein) regulates E2F proteins, which are transcription<br />

factors for S phase genes<br />

44


Tumor-suppressor genes<br />

Genes capable of suppressing the tumorforming<br />

potential of transformed cells<br />

Tumor suppressor genes normally function<br />

to suppress cell growth and division.<br />

Tumor-suppressor genes encode :<br />

Regulatory proteins eg rb, rb p53<br />

Intra-cellular signaling proteins (nf1-<br />

Neurofibrosarcomas)<br />

Cell adhesion proteins (dcc–colon carcinomas)<br />

45


Tumor-suppressor genes<br />

Cells become malignant by losing tumor<br />

suppressor gene activity.<br />

These act as Mendelian recessive traits.<br />

A cell has to be homozygous for a<br />

nonfunctional (or missing) tumor<br />

suppressor gene for it to have an effect.<br />

Analogy<br />

Tumor suppressor brake pedal<br />

Lack of suppressor no brake pedal<br />

46


Gene oncosoppressore Rb<br />

• Raro tumore dell’occhio che<br />

colpisce circa un bambino<br />

su 14000 nati<br />

• Provocato da due mutazioni<br />

consecutive che<br />

interessano entrambe le<br />

copie del gene Rb<br />

47


What is the defect in hereditary retinoblastoma?<br />

Rb Rb<br />

Normal person:<br />

2 good copies of<br />

Rb gene<br />

Compromise this good one, then problems!<br />

or<br />

Rb<br />

Hereditary retinoblastoma<br />

patient: 1 good copy of<br />

Rb gene, 1 defective copy<br />

48


Il retinoblastoma erediatrio viene ereditato<br />

come carattere autosomico dominante<br />

Poiché il gene Rb è localizzato sul cromosoma 13<br />

sia i maschi che le femmine hanno la stessa<br />

predisposizione alla malattia<br />

49


Perdita dell’eterozigosi <strong>degli</strong> antioncogeni<br />

50


Meccanismi genetici alla base del<br />

retinoblastoma<br />

51


Retinoblastoma and the “Two-hit”<br />

model of carcinogenesis<br />

Knudsons “two-hit” hypothesis:<br />

familial cases (high frequency, early onset):<br />

retinoblastoma caused by a germline mutation of<br />

one Rb allele + an acquired somatic mutation of<br />

the remaining allele of the Rb gene = both<br />

inactivated<br />

sporadic cases (low frequency, late onset):<br />

retinoblastom caused by two acquired somatic<br />

mutations in both alleles = both inactivated<br />

52


Knudson’s 2-hit mutation model for retinoblastoma<br />

53


<strong>RB</strong> = tumor suppressor gene<br />

<strong>RB</strong> was the first tumor<br />

suppressor to be<br />

identified.<br />

<strong>RB</strong> is absent or mutated<br />

in at least one-third of<br />

all human tumors.<br />

Cloning of the retinoblastoma gene<br />

mapped to 13q14 (loss of heterozygosity)<br />

rb-1 gene cloned 1986-87<br />

Mutated or lost in all cases of retinoblastomas<br />

Also found mutated in osteosarcoma and small-cell lung cancer<br />

54


Il gene Rb-1<br />

Genetica<br />

Frequenza del tumore: 1/14.000 nascite<br />

Le cellule tumorali sono prive di entrambi gli alleli Rb-1 funzionali<br />

Assetto più frequente: una piccola delezione trasmessa dalla linea germinale, poi<br />

una mutazione di senso sull’allele omologo dà origine a un clone somatico<br />

Associazione di molti casi di tumore con la delezione <strong>della</strong> banda 13q1.4<br />

Trasmissione mendeliana semplice:<br />

predisposizione allo sviluppo di tumori dominante: un cromosoma "difettivo"<br />

predispone tutti i portatori a sviluppare tumori;<br />

sviluppo di tumori recessivo: il tumore si sviluppa in completa assenza del<br />

prodotto, quando entrambi gli alleli sono deleti e/o mutati<br />

<strong>Studi</strong> in sistemi modello<br />

trasfezione del gene Rb1 in cellule proliferanti,<br />

microiniezione di proteina pRb,<br />

inibiscono il superamento <strong>della</strong> transizioneG1/S<br />

Topo Rb-/- : letale (difetti nell’eritropoiesi e nei tessuti neuronali)<br />

55


<strong>RB</strong> - structure of gene and protein<br />

Gene<br />

– Highly complex: 200 kb with 27 exons and introns from<br />

80bp to 60kb<br />

Protein<br />

– multiple bands Mw= 110-116 kDa<br />

– nuclear phosphoprotein<br />

– binds DNA non-specifically<br />

Rb contains several functional domains<br />

– Domains A and B are highly conserved from humans to<br />

plants, and they interact with each other along an<br />

extended interdomain interface to form the central<br />

“pocket”, which is critical to the tumour suppressor<br />

function of Rb<br />

56


Caratteristiche strutturali di Rb<br />

La proteina Rb può essere suddivisa in quattro domini. Il dominio N<br />

è responsabile dell’oligomerizzazione <strong>della</strong> proteina in vitro. I<br />

domini A e B, detti “A/B pocket”, sono responsabili del legame di<br />

Rb a vari fattori trascrizionali, come E2F e varie oncoproteine<br />

virali, e risultano spesso mutati in vari tumori. Il quarto dominio,<br />

detto “C pocket” è un sito di legame per c-Abl .<br />

57


<strong>RB</strong> FAMILY<br />

p105 <strong>RB</strong>; p107; p130<br />

p<strong>RB</strong> binds to the transcriptional activation<br />

domain of E2F and blocks activation<br />

E2Fs transactivate expression of genes<br />

that are important for S phase:<br />

dihydrofolate dihydrofolate reductase<br />

thymidine thymidine kinase<br />

polymerase<br />

polymerase <br />

histones histones<br />

58


<strong>RB</strong>´s function: “a signal transducer<br />

connecting the cell cycle clock with the<br />

transcriptional machinery”<br />

Cell cycle clock<br />

G2<br />

S<br />

M<br />

G1<br />

Rb<br />

Transcriptional apparatus<br />

<strong>RB</strong> constitutively expressed and relatively stable<br />

half-life ≥ 12 hours<br />

Still induced increase in levels<br />

resting G0 cells + mitogenic stimuli = <strong>RB</strong> level increased 4-6x<br />

<strong>RB</strong> modified by phosphorylation during cell cycle<br />

59


G0<br />

CycC-Cdk3<br />

pRb<br />

Rb a substrate of<br />

CycD-CDK<br />

CycE-CDK<br />

CycA-CDK<br />

60


<strong>RB</strong> is active only within a limited time<br />

window during the cell cycle<br />

Before the R-point in G1:<br />

Rb hypophosphorylated = active repressor<br />

of growth (inhibits cell cycle progression)<br />

SDS-PAGE: 110 kDa<br />

After the R-point in G1:<br />

Rb hyperphosphorylated = inactive<br />

repressor of growth (facilitates cell cycle<br />

progression)<br />

SDS-PAGE: 112 - 116 kDa<br />

Rb is dephosphorylated at the<br />

end of mitosis<br />

G2<br />

S<br />

M<br />

G1<br />

active<br />

repressor<br />

Rb<br />

Rb<br />

R<br />

P P P PPP<br />

Inactive<br />

repressor<br />

61<br />

P


Gate-keeper model for <strong>RB</strong><br />

The R-point functions as a door that is kept closed by Rb<br />

G1 arrest upon overexpression of Rb<br />

Under conditions favourable for proliferation ⇒ Rb phosphorylated<br />

⇒ R-door is opened<br />

In cells with lost Rb-function the door is left open all the time<br />

Such cells will also have lost the ability to respond to growthpromoting/-inhibitory<br />

signals<br />

Mitogenes (+), TGFβ (-), contact-inhibition (-)<br />

Two key elements in this model:<br />

upstream signals ⇒ Rb´s phosphorylation status<br />

Rb´s phosphorylations status ⇒ downstream effects<br />

Rb as “signal transducer”<br />

Cell cycle-clock ⇒ <strong>RB</strong>´s phosphorylation status<br />

<strong>RB</strong>´s phosphorylation status ⇒ transcription apparatus involved<br />

in proliferation<br />

62


G2<br />

P<br />

P<br />

S<br />

P<br />

M<br />

Gate keeper model<br />

G1<br />

P<br />

P<br />

R<br />

P<br />

P<br />

Cdk4/6<br />

Cyclin D<br />

Rb<br />

E2F released<br />

S-phase genes expressed<br />

63


E2F liberated by Rb inactivation<br />

• Rb excert its effects through E2F TFs<br />

Rb = active repressor<br />

R-point<br />

Rb = inactivated<br />

E2F = activated!<br />

64


<strong>RB</strong>´s phosphorylation status<br />

⇒ a signal to the transcription apparatus<br />

• Hypophosphorylated <strong>RB</strong> binds and<br />

inactivates the transcription factor<br />

E2F/DP<br />

• Hyperphosphorylation of <strong>RB</strong> ➨ E2F/DP<br />

liberated and free to activate genes<br />

necessary for proliferation<br />

65


E2F/DP<br />

dimers<br />

The functional state of the retinoblastoma protein<br />

(pRb) controls cell proliferation<br />

pRb<br />

GFs, mitogens...<br />

cyclin D1<br />

synthesis<br />

5’..TTTCCGCG…3’<br />

wt pRb represses transcription of cell cycle genes<br />

Cell cycle genes off<br />

G0<br />

cyclin D1<br />

cdk4/6<br />

Active cyclin/kinase<br />

complex<br />

Phosho-pRb becomes inactive<br />

P<br />

Cell cycle progression<br />

G1<br />

P<br />

RNA pol<br />

II<br />

5’..TTTCCGCG…3’<br />

66


Target genes controlled by<br />

activating E2Fs<br />

E2F sites<br />

common consensus binding site: TTTCGCGC<br />

No difference in sequence preference between different<br />

E2Fs<br />

target genes: E2F controls the transcription of cellular genes<br />

that are essential for cell division:<br />

cell cycle regulators<br />

such as cyclin E, cyclin A, Cdc2, Cdc25A, <strong>RB</strong> and E2F1,<br />

enzymes that are involved in nucleotide biosynthesis<br />

such as dihydrofolate reductase, thymidylate synthetase<br />

and thymidine kinase<br />

67


E2F/DP only active in a window<br />

of the cell cycle (late G1 ➜ early S)<br />

• Early G1: active <strong>RB</strong> ➜ E2F/DP turned OFF<br />

• The R-point: inactivated <strong>RB</strong> ➜ E2F/DP turned ON<br />

– E2F/DP liberated ➜ activation of E2F-dependent<br />

promoters<br />

• Late S: E2F/DP turned OFF again<br />

– cyclin A/cdk2 ➜ phosphorylation of E2F/DP ➜ reduced<br />

DNA-binding ➜ target genes turned off<br />

68


HOW ARE S PHASE PROTEINS ACTIVATED?<br />

Rb<br />

E2F<br />

1. In normal cells,<br />

Rb protein binds<br />

to E2F and shuts<br />

down the cell cycle.<br />

ATP<br />

ADP<br />

CdK<br />

P i<br />

Cyclin<br />

Rb<br />

E2F<br />

2. If growth factors arrive and<br />

activate the cyclin-CdK<br />

complex, Rb becomes<br />

phosphorylated.<br />

P i<br />

Rb<br />

E2F<br />

3. E2F is<br />

released<br />

E2F<br />

S Phase<br />

proteins<br />

mRNA<br />

DNA<br />

4. E2F stimulates the<br />

production of S phase<br />

proteins.<br />

When Rb is mutated, no “tie-up” of E2F, so constant S phase turn on<br />

69


Effetti delle mutazioni del Gene Rb<br />

Osteosarcomi<br />

Carcinomi:<br />

1) Polmonari<br />

2) Mammari<br />

3) Prostatici<br />

70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!