27.06.2013 Views

Palladium- and Copper-Catalyzed Aryl Halide Amination ...

Palladium- and Copper-Catalyzed Aryl Halide Amination ...

Palladium- and Copper-Catalyzed Aryl Halide Amination ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

REVIEW 1<br />

<strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> <strong>Aryl</strong> <strong>Halide</strong> <strong>Amination</strong>, Etherification <strong>and</strong><br />

Thioetherification Reactions in the Synthesis of Aromatic Heterocycles<br />

<strong>Palladium</strong>- Jessie <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis E. R. Sadig, Michael C. Willis*<br />

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK<br />

Fax +44(1865)285002; E-mail: michael.willis@chem.ox.ac.uk<br />

Received 4 August 2010; revised 13 August 2010<br />

Abstract: This article reviews the use of palladium- <strong>and</strong> coppercatalyzed<br />

aryl halide amination, etherification <strong>and</strong> thioetherification<br />

processes in the synthesis of heteroaromatic molecules. The review<br />

is structured by the nature of the key C–X bond being formed,<br />

<strong>and</strong> then by heterocycle type. Where applicable individual heterocycles<br />

are further divided into syntheses based on intermolecular,<br />

intramolecular <strong>and</strong> cascade processes. In order to limit the length of<br />

the article, processes that do not deliver an aromatic heterocycle<br />

from the key C–X bond-forming event are excluded. Processes for<br />

the functionalization of intact heteroaromatics are also not included.<br />

1 Introduction<br />

2 Carbon–Nitrogen Bond Formation<br />

2.1 Indoles<br />

2.2 Carbazoles<br />

2.3 Benzimidazoles <strong>and</strong> Benzimidazolones<br />

2.4 Indazoles <strong>and</strong> Indazolones<br />

2.5 Pyrroles<br />

2.6 Pyrazoles<br />

2.7 Oxazoles<br />

2.8 Quinolones<br />

2.9 Quinazolines, Quinazolinones <strong>and</strong> Quinazolinediones<br />

2.10 Phenazines<br />

2.11 Cinnolines<br />

3 Carbon–Oxygen Bond Formation<br />

3.1 Benzofurans<br />

3.2 Benzoxazoles<br />

3.3 Isocoumarins<br />

4 Carbon–Sulfur Bond Formation<br />

4.1 Benzothiophenes<br />

4.2 Benzothiazoles<br />

4.3 Oxathioles<br />

5 Conclusion<br />

Key words: palladium catalysis, copper catalysis, aromatic heterocycles,<br />

amination, etherification<br />

1 Introduction<br />

Given the numerous applications of aromatic heterocycles<br />

in medicine, agriculture <strong>and</strong> materials, it is not surprising<br />

that a whole host of methods have been developed for<br />

their preparation. Prominent amongst these are routes<br />

based on transition metal catalyzed transformations. 1–8 Indeed,<br />

many transition metal catalyzed processes have<br />

been developed with the explicit goal of delivering new<br />

synthetic routes to heteroaromatics. This forging of new<br />

SYNTHESIS 2011, No. 1, pp 0001–0022xx.xx.2010<br />

Advanced online publication: 12.10.2010<br />

DOI: 10.1055/s-0030-1258294; Art ID: E27810SS<br />

© Georg Thieme Verlag Stuttgart · New York<br />

routes, allowing the introduction of new classes of starting<br />

materials, or access to alternative substitution patterns, is<br />

one of the key advantages offered by transition metal catalysis.<br />

The last fifteen years has seen the development of<br />

efficient <strong>and</strong> user-friendly methods, based on both palladium<br />

<strong>and</strong> copper catalysis, for the formation of carbon–<br />

nitrogen, carbon–oxygen <strong>and</strong> carbon–sulfur bonds using<br />

aryl halide substrates. Collectively, these processes<br />

present almost ideal tools for aromatic heterocycle synthesis,<br />

as witnessed by the rapidly increasing number of<br />

applications that have been published during this time.<br />

For example, reference to the first edition of Li <strong>and</strong><br />

Gribble’s excellent treatise on the use of palladium catalysis<br />

in heterocyclic chemistry, 1 published in 2000, shows<br />

only a h<strong>and</strong>ful of examples of palladium-catalyzed aryl<br />

amination reactions being employed in the synthesis of aromatic<br />

heterocycles. This is certainly not the case today.<br />

Migita described the palladium-catalyzed coupling of<br />

aminostannanes with aryl halides as early as 1983; 9 however,<br />

it was not until the report of tin-free catalytic amination<br />

reactions, by Buchwald10 <strong>and</strong> Hartwig, 11 that the<br />

synthetic potential of these processes began to be realized.<br />

<strong>Copper</strong>-based aryl halide amination (<strong>and</strong> amidation)<br />

chemistry has an even longer history, dating back to the<br />

original reports by Ullmann12 <strong>and</strong> Goldberg, 13 but again,<br />

it was not until the development of mild catalytic variants<br />

of these reactions that the majority of applications began<br />

to be developed. In recent years both processes have undergone<br />

enormous development <strong>and</strong> now encompass a<br />

myriad of different nitrogen nucleophiles <strong>and</strong> aryl halide<br />

(<strong>and</strong> equivalent) coupling partners. Advances to carbon–<br />

oxygen <strong>and</strong> carbon–sulfur bond-forming variants have<br />

also been achieved. It is beyond the scope of this review<br />

to examine the development <strong>and</strong> mechanistic details of<br />

these underpinning catalytic methods, but extensive reviews<br />

of both the palladium14–17 <strong>and</strong> copper18–23 chemistries<br />

exist. The following discussion is divided by the key<br />

catalytic bond construction – carbon–nitrogen, carbon–<br />

oxygen or carbon–sulfur – <strong>and</strong> then by heterocycle type.<br />

Where appropriate, individual heterocycles are then subdivided<br />

into intermolecular, intramolecular or cascade<br />

processes. The review is focused on the formation of aromatic<br />

heterocyles, <strong>and</strong> accordingly we have not included<br />

reports of the functionalization of intact heterocyclic<br />

cores, nor processes that lead to non-aromatic systems.


2 J. E. R. Sadig, M. C. Willis REVIEW<br />

2 Carbon–Nitrogen Bond Formation<br />

2.1 Indoles<br />

A number of new indole syntheses based on aryl halide<br />

amination have been developed; however, one of the first<br />

heterocycle syntheses to be reported using palladiumcatalyzed<br />

amination chemistry was concerned with intercepting<br />

reaction intermediates from a very well established<br />

route to indoles. 24 In 1998 Buchwald demonstrated<br />

that a variety of aryl halides could be combined with benzophenone<br />

hydrazone using intermolecular palladiumcatalyzed<br />

amination reactions to generate the corresponding<br />

N-arylhydrazones (1, Scheme 1). 25 A palladium(II)<br />

acetate/XantPhos (2) catalyst system, in combination with<br />

sodium tert-butoxide, was found to be optimal. The Narylhydrazones<br />

could either be isolated or, after simple<br />

filtration through a silica plug, treated directly with an<br />

enolizable ketone under acid hydrolysis conditions. The<br />

ensuing Fischer cyclization provided the corresponding<br />

indoles in good to excellent yields. Variations to access either<br />

N-alkyl- or N-arylindoles were also developed, although<br />

in these cases functionalization of the isolated Narylhydrazones<br />

was necessary.<br />

A limitation of the benzophenone hydrazone methodology<br />

is the difficulty in removing benzophenone from the<br />

final indole products, particularly in large-scale<br />

applications. Cho <strong>and</strong> Lim reported a related procedure, in<br />

which N-Boc arylhydrazines were employed in Fischer<br />

cyclizations. 26 The required N-Boc arylhydrazines were<br />

prepared using palladium-catalyzed amination chemistry,<br />

but in these cases were isolated before indole formation.<br />

The use of intramolecular carbon–nitrogen bond formation<br />

onto an aryl halide has proved to be a popular method<br />

to achieve indole synthesis. In one of the first routes based<br />

Biographical Sketches<br />

Jessie Sadig received her<br />

MChem degree from the<br />

University of Oxford in July<br />

2008, where she carried out<br />

her final year project under<br />

Michael Willis received his<br />

undergraduate education at<br />

Imperial College London,<br />

<strong>and</strong> his PhD from the University<br />

of Cambridge working<br />

with Prof. Steven V.<br />

Ley, FRS. After a postdoctoral<br />

stay with Prof. David<br />

A. Evans at Harvard University,<br />

as a NATO/Royal<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

on this approach, Watanabe et al. demonstrated that N,Ndimethylhydrazones<br />

derived from o-chloroarylacetaldehydes<br />

(4) underwent cyclization under the action of palladium<br />

catalysis to provide the corresponding N-aminoindoles<br />

(Scheme 2). 27 Tri(tert-butyl)phosphine <strong>and</strong> the<br />

ferrocene derivative 5 were found to be the optimal<br />

lig<strong>and</strong>s. The authors went on to demonstrate that if an appropriately<br />

functionalized substrate was employed, then a<br />

second palladium-catalyzed transformation could be<br />

achieved in the reactions. For example, dichloride 6 could<br />

N<br />

Ph Ph<br />

NH2<br />

+<br />

MeO<br />

MeO<br />

Scheme 1<br />

65%<br />

Br<br />

Me<br />

N<br />

H<br />

Me Me<br />

PPh 2<br />

the supervision of Dr. Jeremy<br />

Robertson. She then<br />

joined the Willis group <strong>and</strong><br />

is currently working towards<br />

her DPhil degree. Her<br />

Society Research Fellow, he<br />

was appointed to a lectureship<br />

at the University of<br />

Bath in November 1997. In<br />

January 2007 he moved to<br />

the University of Oxford,<br />

where he is a University<br />

Lecturer <strong>and</strong> Fellow of<br />

Lincoln College. He was<br />

awarded an EPSRC Ad-<br />

O<br />

i) Pd(OAc) 2 (0.1 mol%)<br />

XantPhos (0.11 mol%)<br />

NaOt-Bu, toluene, 80 °C<br />

ii) TsOH.<br />

H2O, EtOH<br />

reflux<br />

O<br />

Me<br />

Me<br />

Pent<br />

Ph<br />

Ph<br />

N<br />

HN<br />

Me<br />

1<br />

PPh 2<br />

N<br />

H<br />

Ph Ph<br />

79%<br />

Pent<br />

N<br />

H<br />

Pent<br />

N<br />

H<br />

Me<br />

Me<br />

70% 70%<br />

(BINAP used as lig<strong>and</strong>)<br />

XantPhos (2) (rac)-BINAP (3)<br />

PPh2<br />

PPh2<br />

research focuses on palladium-<br />

<strong>and</strong> copper-catalyzed<br />

cascade processes for heterocycle<br />

synthesis.<br />

vanced Research Fellowship<br />

in 2005 <strong>and</strong> the 2008<br />

AstraZeneca Research<br />

Award for Organic Chemistry.<br />

His group’s research interests<br />

are based on the<br />

development <strong>and</strong> application<br />

of new catalytic processes<br />

for organic synthesis.


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 3<br />

be reacted under the st<strong>and</strong>ard conditions but with the addition<br />

of phenyl boronic acid, to provide 4-phenylindole<br />

7, resulting from t<strong>and</strong>em carbon–carbon <strong>and</strong> carbon–<br />

nitrogen bond formation. In addition to aryl boronic acids<br />

being introduced by Suzuki couplings, a range of azoles<br />

<strong>and</strong> amines could also be effectively incorporated via a<br />

second carbon–nitrogen bond-forming process.<br />

F<br />

Cl<br />

4<br />

6<br />

Scheme 2<br />

Doye <strong>and</strong> co-workers demonstrated that N-alkyl imines<br />

corresponding to hydrazones 4 can also be effectively cyclized<br />

under the action of palladium catalysis to provide<br />

N-alkylindoles. 28 In their approach, the imine substrates<br />

were prepared from the corresponding alkynes using a<br />

titanium-catalyzed hydroamination process. In this onepot<br />

protocol, the imines were then subjected to palladium<br />

catalysis to deliver the indole products. Scheme 3 shows<br />

an example in which alkyne 8 was converted in a one-pot<br />

process into indole 9. N-Heterocyclic carbene (NHC)<br />

lig<strong>and</strong> 10 was most effective. Substrates containing a tethered<br />

amine nucleophile could also be included, leading to<br />

the formation of N–C2 annulated indoles.<br />

Scheme 3<br />

H<br />

N<br />

Cl NMe2<br />

H<br />

N<br />

Cl NMe2<br />

Pd(dba) 2 (3 mol%)<br />

5 (4.5 mol%)<br />

NaOt-Bu<br />

o-xylene, 120 °C<br />

PhB(OH) 2<br />

Pd(dba)2 (5 mol%)<br />

5 (7.5 mol%)<br />

Cs 2CO 3<br />

o-xylene, 120 °C<br />

Fe<br />

NMe2 Pt-Bu2<br />

5<br />

N<br />

60% NMe2 N<br />

NMe2 7, 56%<br />

10<br />

8<br />

MeO<br />

Pr i) [Cp2TiMe2] (5 mol%)<br />

toluene<br />

110 °C, 24 h<br />

MeO<br />

+ H2N Me<br />

ii) Pd2(dba)3 (5 mol%)<br />

Cl Me<br />

Me<br />

(10 mol%)<br />

KOt-Bu, dioxane 9, 65%<br />

N<br />

Pr<br />

Me<br />

110 °C<br />

Me Me<br />

Me<br />

Me<br />

Isolated dehydrohalophenylalinate derivatives have been<br />

converted into indoles using related cyclizations. For example,<br />

Brown was the first to report the cyclization of<br />

enamines such as 11 (Scheme 4) into the corresponding<br />

indole-2-carboxylates. In this report from 2000, a simple<br />

dppf-derived catalyst was employed in combination with<br />

F<br />

Ph<br />

Me Me Me<br />

Cl<br />

N N<br />

Me<br />

–<br />

10<br />

+<br />

potassium acetate as base. 29 Kondo <strong>and</strong> co-workers subsequently<br />

showed that polymer-supported substrates corresponding<br />

to 11 can also be cyclized effectively. 30<br />

O 2N<br />

Scheme 4<br />

11<br />

HN<br />

I<br />

Br<br />

CO2Et<br />

PdCl 2(dppf)<br />

(5 mol%)<br />

KOAc, DMF<br />

90 °C<br />

PPh 2<br />

Fe dppf (12)<br />

PPh2<br />

O2N 83%<br />

Br<br />

Lautens <strong>and</strong> co-workers established gem-dihalovinylanilines<br />

as versatile substrates for indole synthesis based<br />

on a series of t<strong>and</strong>em metal-catalyzed processes. The substrates<br />

were readily accessed from the relevant o-nitrobenzaldehyde<br />

derivatives via Ramirez olefinations<br />

followed by reduction of the nitro group. The early chemistry<br />

focused on t<strong>and</strong>em palladium-catalyzed intramolecular<br />

amination reactions <strong>and</strong> intermolecular Suzuki<br />

couplings to deliver a series of variously substituted indoles.<br />

31a,b For example, reaction of gem-dibromoaniline<br />

13 with thienyl-3-boronic acid delivered the expected<br />

indole in 86% yield (Scheme 5). The electron-rich<br />

biphenyl-based phosphine SPhos (14), developed by<br />

Buchwald, proved to be optimal. Significant variation in<br />

the substitution pattern of the substrates <strong>and</strong> in the type of<br />

organoboron coupling partner was possible. For example,<br />

it was possible to prepare indoles with individual substituents<br />

at positions C2–C7; N-aryl substrates could also be<br />

employed. <strong>Aryl</strong>, alkenyl <strong>and</strong> alkyl boron reagents were all<br />

used successfully. For many of the examples it was possible<br />

to use palladium loadings of only 1 mol%. Although<br />

no reaction intermediates were detected, a brief mechanistic<br />

investigation suggested that the intramolecular amination<br />

reaction preceded the intermolecular Suzuki<br />

coupling. It is interesting to note that the amination reactions<br />

took place on alkenyl halides, 32 as opposed to the<br />

usual aryl halide substrates. To demonstrate the synthetic<br />

utility of the method, indole 15, prepared in 86% yield<br />

from the corresponding gem-dibromovinylaniline <strong>and</strong> 2methoxyquinoline<br />

boronic acid, was utilized in a short<br />

synthesis of KDR kinase inhibitors. 31c Bisseret <strong>and</strong> coworkers<br />

also reported a single example of the synthesis of<br />

a 2-arylindole using a similar strategy. 33<br />

In an elegant extension of this chemistry the same group<br />

was able to demonstrate that the corresponding pyridinederived<br />

substrates could be utilized to access azaindoles.<br />

31d The example shown in Scheme 6 illustrates the<br />

preparation of a 7-azaindole using reaction conditions almost<br />

identical to those for the parent indole series. An important<br />

modification from the parent system, needed to<br />

achieve high yields, was the use of a nitrogen-protecting<br />

group. It was also possible to extend the chemistry to the<br />

preparation of 6-azaindoles; however, the synthesis of the<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

N<br />

CO2Et


4 J. E. R. Sadig, M. C. Willis REVIEW<br />

BnO<br />

13<br />

+<br />

(HO) 2B<br />

MeO<br />

O<br />

Scheme 5<br />

N<br />

Scheme 6<br />

Br<br />

NH2<br />

S<br />

Br<br />

Pd(OAc) 2 (1 mol%)<br />

SPhos (2 mol%) S<br />

N<br />

H<br />

Ph<br />

NH<br />

Me<br />

Me<br />

N<br />

86% 73%<br />

77%<br />

15, 86%<br />

(2 mol% Pd)<br />

Br<br />

NH<br />

Bn<br />

Br<br />

+<br />

N<br />

H<br />

MeO<br />

(HO) 2B Ph<br />

K3PO .<br />

4 H2O toluene, 90 °C<br />

regioisomeric 5- <strong>and</strong> 4-azaindoles was more challenging<br />

<strong>and</strong> required the use of N-oxide substrates. Thienopyrroles<br />

could also be prepared starting from the corresponding<br />

thiophene-derived substrates.<br />

The same gem-dihalovinylaniline substrates have been<br />

utilized in a number of different t<strong>and</strong>em processes. For example,<br />

as Scheme 7 illustrates, the initial intramolecular<br />

amination reactions have been partnered with a number of<br />

alternative reactions, including Heck olefinations (16 →<br />

17), 31e carbonylations (16 → 18) 34 <strong>and</strong> Sonogashira couplings<br />

(16 → 19), 31f to deliver acrylate-, ester- <strong>and</strong> alkynesubstituted<br />

indoles, respectively. Bisseret <strong>and</strong> co-workers<br />

used the same substrates in t<strong>and</strong>em palladium-catalyzed<br />

amination/phosphonation sequences to deliver 2-phosphonate-substituted<br />

indoles. 33 Tethered substrates were<br />

used in the Heck chemistry to provide polycyclic products<br />

via an intramolecular second step. 31e Related tethered substrates,<br />

invoking a second intramolecular amination reaction,<br />

31g or an intramolecular direct arylation reaction, 31h<br />

were also developed to access alternative polycyclic scaffolds.<br />

It is interesting to note that the double amination<br />

processes were achieved using copper catalysis. Lautens<br />

<strong>and</strong> co-workers also demonstrated that the reactivity of<br />

gem-dibromovinylanilines can be controlled to allow access<br />

to 2-bromoindoles by a single (as opposed to a t<strong>and</strong>em)<br />

palladium-catalyzed intramolecular amination<br />

reaction. 31i<br />

The Willis research group has developed cascade catalytic<br />

amination strategies to access a range of indole deriva-<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

N<br />

Me<br />

Pd(OAc) 2 (3 mol%)<br />

SPhos (14) (6 mol%)<br />

K3PO .<br />

4 H2O toluene, 100 °C<br />

N<br />

H<br />

Me<br />

86%<br />

(dichloro substrate)<br />

Cy2P OMe<br />

MeO<br />

SPhos (14)<br />

N<br />

N<br />

Bn<br />

74%<br />

Ph<br />

t-BuO 2C<br />

Scheme 7<br />

Br<br />

NH<br />

16<br />

R<br />

SiMe 3<br />

Pd(OAc) 2 (4 mol%)<br />

Me4NCl (100 mol%)<br />

K3PO4 .<br />

H2O, Et3N<br />

toluene, reflux<br />

Br<br />

PdCl2(PPh3) 2<br />

Ph3P (10 mol%)<br />

CO (10 atm)<br />

DIPEA, THF<br />

MeOH, 110 °C<br />

P(p-MeOC6H4)3 (8 mol%)<br />

Pd/C (2 mol%)<br />

CuI (4 mol%)<br />

i-Pr2NH, toluene, 100 °C<br />

tives. They focused on the use of 2-(2-haloalkenyl)aryl<br />

halides, together with the corresponding alkenyl triflates,<br />

as indole substrates. 35a,b Scheme 8 shows examples of<br />

both the aryl halide/alkenyl triflate (20) <strong>and</strong> the aryl halide/alkenyl<br />

halide (21) substrates in palladium-catalyzed<br />

indole-forming reactions. Both reactions feature an initial<br />

intermolecular amination reaction followed by an intramolecular<br />

amination as the second step of the cascade,<br />

to deliver N-functionalized indole products. The authors<br />

noted that it was possible to employ either Z- or E-configured<br />

alkene isomers in the process, a consequence of the<br />

initial amination reaction taking place at the alkenyl halide<br />

<strong>and</strong> generating a configurationally unstable enamine<br />

intermediate. Reactions employing the triflate substrates<br />

were best achieved using DPEPhos (22) or XantPhos (2)<br />

lig<strong>and</strong>s, while the dihalide substrates delivered best yields<br />

with the Buchwald diphenyl lig<strong>and</strong>s, such as SPhos (14).<br />

By selecting the appropriate class of substrate it was possible<br />

to access a number of indole substitution patterns.<br />

Significant variation of the nitrogen coupling partner was<br />

possible, with examples of aniline, amine, amide, hydrazine<br />

<strong>and</strong> sulfonamide nucleophiles all being reported.<br />

Sterically dem<strong>and</strong>ing nitrogen nucleophiles, such as tertbutylamine,<br />

could also be introduced; 35c the ability to access<br />

indoles bearing bulky N-substituents was exploited<br />

in a synthesis of the natural product demethylasterriquinone<br />

A, in which N-(reverse prenyl)indole 23 was utilized as<br />

a key intermediate. A recent extension of the chemistry<br />

has seen trihalogenated substrates employed, allowing access<br />

to 4-, 5-, 6- <strong>and</strong> 7-chloroindoles. 35d The Li research<br />

group has adapted the method to encompass trifluoromethyl-substituted<br />

substrates in order to prepare a series<br />

of N-aryl-2-trifluoromethyl-substituted indoles. 36 A related<br />

intramolecular amination reaction between an aniline <strong>and</strong><br />

an alkenyl triflate was employed by Smith <strong>and</strong> co-workers<br />

in their synthesis of the nodulisporic acids tetracycle. 37<br />

The Willis research group also demonstrated that similar<br />

palladium-catalyzed cascade processes can be achieved<br />

using pyridine-derived substrates to provide access to the<br />

corresponding azaindole products. 35e For example, reaction<br />

of dihalopyridine substrate 24 with p-anisidine, using<br />

a DPEPhos-derived catalyst, delivered the corresponding<br />

N<br />

Bn<br />

17, 79%<br />

CO2t-Bu<br />

CO2Me N<br />

18, 70%<br />

Bn<br />

N<br />

H<br />

SiMe3<br />

19, 57%


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 5<br />

Br OTf<br />

Cl<br />

+<br />

20 H2N<br />

N<br />

71%<br />

Ph<br />

Scheme 8<br />

7-azaindole in good yield (Scheme 9). The process was<br />

shown to work well for 7-azaindoles; however, access to<br />

the remaining regioisomers was less successful.<br />

Scheme 9<br />

The 2-(2-haloalkenyl)aryl halide substrates have also<br />

been shown to undergo cascade copper-catalyzed amination<br />

reactions to deliver N-functionalized indoles. 35f An<br />

example featuring a carbamate coupling partner is shown<br />

in Scheme 10. Although some overlap in scope with the<br />

palladium-catalyzed version of the process was established,<br />

there were also significant differences in reactivity.<br />

In general, the copper-catalyzed variant was more<br />

limited, with chloro-substituted substrates performing<br />

poorly; however, greater success was achieved with<br />

amide nucleophiles, relative to the palladium system.<br />

Scheme 10<br />

Pd2(dba)3 (2.5 mol%)<br />

DPEPhos (6 mol%)<br />

Cs2CO3 toluene, 100 °C<br />

Br Cl<br />

Ph<br />

21, E/Z 2:7<br />

+ H2N<br />

Ph<br />

Pd2(dba)3 (2.5 mol%)<br />

SPhos (14) (7.5 mol%)<br />

NaOt-Bu<br />

toluene, 80 °C<br />

N Cl Br<br />

+<br />

O<br />

OEt<br />

24<br />

H2N OMe<br />

O<br />

PPh2 PPh2<br />

DPEPhos (22)<br />

N<br />

Ph 81%<br />

OMe<br />

Pd2(dba) 3 (5 mol%)<br />

DPEPhos (22) (12 mol%)<br />

Cs2CO3 toluene, 110 °C<br />

Br Br<br />

25<br />

MeO<br />

CuOAc (10 mol%)<br />

MeO<br />

MeO<br />

H2N<br />

+<br />

Ot-Bu<br />

(20 mol%)<br />

Cs2CO3<br />

toluene, 110 °C<br />

MeO<br />

O<br />

MeN NMe<br />

H H 25<br />

75%<br />

94%<br />

N<br />

N<br />

Ph<br />

N<br />

23, 77%<br />

Me Me<br />

N<br />

83%<br />

N<br />

t-BuO<br />

82%<br />

OEt<br />

O<br />

OMe<br />

N<br />

O<br />

Cl<br />

Ackermann <strong>and</strong> co-workers developed efficient indole<br />

syntheses based on a cascade amination process starting<br />

from o-alkynylhaloarenes. 38 In his original report,<br />

Ackermann described both palladium- <strong>and</strong> copper-catalyzed<br />

variants of the process (Scheme 11). 38a For example,<br />

the combination of o-alkynylchloroarene 26 with<br />

benzylamine under the action of an NHC-derived palladium<br />

catalyst delivered indole 27 in 66% yield. The original<br />

copper-catalyzed protocol simply employed copper(I) iodide<br />

to combine o-alkynylchoroarenes with anilines furnishing<br />

the corresponding N-arylindoles in good yields.<br />

The reactions proceed via initial intermolecular N-arylation,<br />

followed by cyclization onto the alkyne. The two<br />

different metal systems were shown to display differing,<br />

<strong>and</strong> complementary, reactivities; for example, the palladium-catalyzed<br />

methods were effective for N-alkyl <strong>and</strong> Naryl<br />

nucleophiles, while the copper system tolerated Naryl<br />

<strong>and</strong> N-acyl substrates. 38b The N-acyl systems required<br />

the use of diamine lig<strong>and</strong> 25. Scheme 11 shows several<br />

examples of products obtained using the copper methodology,<br />

including an N-acyl indole, as well as an azaindole.<br />

An indole corresponding to the Chek1/KDR kinase inhibitor<br />

pharmacophore was also prepared. The palladiumcatalyzed<br />

version of the chemistry was shown to be effective<br />

for the preparation of indoles bearing sterically dem<strong>and</strong>ing<br />

substituents; for example, the adamantylsubstituted<br />

indole 28 was obtained in 94% yield. 38c,d The<br />

Hu 39 <strong>and</strong> Sanz 40 research groups have reported related<br />

indole-forming chemistries.<br />

F3C<br />

Scheme 11<br />

29<br />

26<br />

Hex<br />

Pd(OAc)2 (5 mol%)<br />

(5 mol%)<br />

+<br />

H2N<br />

Cl<br />

Ph<br />

K3PO4<br />

toluene, 105 °C<br />

Bu<br />

i-Pr i-Pr<br />

Cl<br />

+<br />

N N<br />

–<br />

F 3C<br />

N<br />

27, 66% Bn<br />

Hex<br />

H2N<br />

Cl<br />

+ OMe<br />

CuI (10 mol%)<br />

KOt-Bu<br />

toluene, 105 °C<br />

N<br />

Bu<br />

OMe<br />

69%<br />

t-BuO<br />

61%<br />

N<br />

O<br />

S<br />

N<br />

N<br />

t-BuO<br />

86%<br />

O<br />

i-Pr i-Pr<br />

29<br />

Ph<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

N<br />

28, 94%<br />

F


6 J. E. R. Sadig, M. C. Willis REVIEW<br />

The Hsung research group employed related cascade processes<br />

for the synthesis of 2-aminoindoles. 41 Scheme 12<br />

shows an example in which ynamide 30 was combined<br />

with p-toluamine to deliver indole 31 in 85% yield. An<br />

XPhos-derived palladium catalyst was found to be optimal,<br />

<strong>and</strong> a variety of 2-carbamate-substituted indoles<br />

were prepared in good yields. The ynamide substrates<br />

were prepared, in a separate operation, by a copper-catalyzed<br />

amidation of the corresponding bromo-alkynes.<br />

30<br />

Br<br />

Scheme 12<br />

Ackermann <strong>and</strong> colleagues were able to extend their original<br />

methodology to a three-component system, featuring<br />

the in situ formation of the key o-alkynylhaloarenes. 38a,e<br />

The process involved the initial combination of an ochloroiodobenzene<br />

with an alkyne in the presence of a<br />

mixed palladium/copper catalyst system (Scheme 13); after<br />

two hours the required nitrogen nucleophile was introduced<br />

along with additional base, resulting in arylamination<br />

followed by a 5-endo ring closure. A variety of<br />

1,2-disubstituted indoles were obtained in good yields. A<br />

possible limitation of the method is the poor commercial<br />

availability of alternative o-chloroiodobenzene derivatives.<br />

Scheme 13<br />

O<br />

N<br />

O Pd2(dba) 3 (2.5 mol%)<br />

XPhos (5 mol%)<br />

Cs2CO3 +<br />

Ph toluene, 110 °C<br />

H2N p-Tol<br />

Cy2P i-Pr<br />

i-Pr<br />

XPhos (32)<br />

N N<br />

p-Tol<br />

Ph<br />

31, 85%<br />

The Barluenga research group developed a successful cascade<br />

process, based on palladium-catalyzed aza-enolate<br />

a-arylation followed by intramolecular N-arylation, for<br />

the synthesis of a variety of indole derivatives. 42 The process<br />

is outlined in Scheme 14: Initial palladium-catalyzed<br />

aza-enolate arylation joins N-phenylimine 33 with 1,2-dibromobenzene,<br />

to provide imine 34. <strong>Palladium</strong>-catalyzed<br />

intramolecular amination, presumably via enamine intermediate<br />

35, then delivers the expected indole in an excel-<br />

i-Pr<br />

29<br />

I i) Pd(OAc) 2 (10 mol%)<br />

CuI (10 mol%), (10 mol%)<br />

Cs2CO3 Cl toluene, 105 °C<br />

H<br />

+<br />

Ph<br />

ii) KOt-Bu<br />

H2N p-Tol<br />

Ph<br />

65%<br />

Cl<br />

Ph<br />

N<br />

p-Tol<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

O<br />

O<br />

lent 86% yield. The same XPhos-derived catalyst proved<br />

optimal for both steps of the cascade. A wide range of<br />

imine derivatives could be incorporated. The use of mixed<br />

halogen systems, such as 1-bromo-2-iodobenzenes, allowed<br />

the regioselective synthesis of substituted indoles<br />

by exploiting the greater reactivity of the aryl iodide substituent.<br />

The authors were also able to show that mixed<br />

halide/sulfonate substrates were efficient reaction components,<br />

with both triflate <strong>and</strong> nonaflate systems being successfully<br />

employed. The ability to generate the required<br />

sulfonate derivatives from the parent o-chlorophenols significantly<br />

widened the scope of the process <strong>and</strong> allowed<br />

unusual substitution patterns to be accessed, such as the<br />

2,4,6-trisubstituted example 36. 42b Although an N-aryl or<br />

N-alkyl substituent was a requirement of the imine components,<br />

the authors demonstrated that N-tert-butylsubstituted<br />

indoles could be deprotected under a variety of<br />

conditions. For example, the N-H indole derived from Ntert-butylindole<br />

37 was obtained in 97% yield for the indole<br />

formation <strong>and</strong> deprotection (AlCl 3) sequence. The<br />

group also reported a three-component variant of the<br />

methodology, in which an initial palladium-catalyzed alkenyl<br />

halide amination was used to prepare the imine reaction<br />

components.<br />

Scheme 14<br />

33 86%<br />

Br<br />

+<br />

Br Me<br />

N<br />

Ph<br />

Ph<br />

Pd2(dba)3 (2 mol%)<br />

XPhos (32) (4 mol%)<br />

NaOt-Bu, dioxane<br />

110 °C<br />

N<br />

Ph<br />

N<br />

86% Ph<br />

Br Ph<br />

N<br />

2.2 Carbazoles<br />

Ph<br />

Br Ph<br />

HN<br />

34 35<br />

OMe<br />

Catalytic amination chemistry has a number of applications<br />

in carbazole synthesis. Nozaki was one of the first to<br />

exploit cascade amination processes for the preparation of<br />

a wide range of carbazole architectures. 43 An example of<br />

the general process developed by the Nozaki research<br />

group is shown in Scheme 15; the key heterocycle-forming<br />

reaction is a coupling between a nitrogen nucleophile<br />

<strong>and</strong> a doubly activated biphenyl. In this particular example,<br />

ditriflate 37 was coupled with tert-butylcarbamate using<br />

a XantPhos-derived catalyst to deliver carbazole 38 in<br />

70% yield. 43b Deprotection of the Boc group from carbazole<br />

38 revealed the natural product mukinone. The same<br />

group has exploited their methodology in the synthesis of<br />

heteroacenes, 43d,e chiral carbazole variants, 43a as well as<br />

Ph<br />

Ph<br />

36, 74%<br />

N<br />

Ph<br />

Ph<br />

N<br />

37, 91%<br />

Me<br />

Ph<br />

Me<br />

Me<br />

(from Cl/ONf substrate) (from I/Cl substrate)<br />

Cl


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 7<br />

helicenes. 43b The second example shown in Scheme 15<br />

was reported by Chida <strong>and</strong> colleagues, <strong>and</strong> shows that related<br />

strategies developed using dibromobiphenyls are<br />

also effective in carbazole synthesis. 44a The example<br />

shows the preparation of a key intermediate in the synthesis<br />

of the natural product murrayazoline. 44b In order to<br />

achieve an efficient transformation using the sterically dem<strong>and</strong>ing<br />

amine 39, it was necessary to employ a high catalyst<br />

loading (20 mol%). A copper-catalyzed version of<br />

these transformations has also been reported. 45 The cascade<br />

coupling of nitrogen nucleophiles with doubly activated<br />

bi-aromatics has proven to be a powerful method for<br />

carbazole synthesis <strong>and</strong> has been exploited by several other<br />

groups. For example, Samyn <strong>and</strong> co-workers utilized<br />

dibromo-2,2¢-bithiophene substrates to prepare<br />

dithienopyrroles, 46 as did the Barlow research group. 47<br />

MeO<br />

Me<br />

O<br />

37<br />

OMOM<br />

Scheme 15<br />

O<br />

OMe<br />

OTf<br />

OTf<br />

Pd2(dba)3.CHCl3<br />

(5 mol%)<br />

XantPhos (2) (10 mol%)<br />

K3PO4<br />

o-xylene, 100 °C<br />

Br<br />

Pd2(dba) 3 (20 mol%)<br />

XPhos (32) (60 mol%)<br />

Br<br />

H2N +<br />

Me<br />

Me<br />

NaOt-Bu<br />

toluene, 130 °C<br />

O<br />

+<br />

t-BuO<br />

NH2<br />

39<br />

O<br />

MeO2C<br />

Bedford et al. developed a cascade sequence based on intermolecular<br />

aryl-amination followed by intramolecular<br />

direct C–H arylation as a route to carbazole derivatives;<br />

several examples are shown in Scheme 16. 48 The process<br />

combines o-chloroanilines with aryl bromides using palladium<br />

catalysis. Use of the bulky electron-rich tri(tertbutyl)phosphine<br />

lig<strong>and</strong> in combination with palladium(II)<br />

acetate was the optimal catalyst system <strong>and</strong> allowed the<br />

preparation of a range of carbazoles in good yields. Significant<br />

substitution could be tolerated on the coupling<br />

partners, as illustrated by the preparation of the natural<br />

product clausine P (40).<br />

Ackermann et al. developed a related aryl-amination <strong>and</strong><br />

direct C–H arylation sequence for carbazole synthesis. 49<br />

In the Ackermann approach, 1,2-dihaloaromatics were<br />

combined with anilines to deliver carbazole products<br />

(Scheme 17). A combination of palladium(II) acetate <strong>and</strong><br />

Me<br />

N<br />

OMe<br />

Boc<br />

70%<br />

N-Boc mukonine (38)<br />

MOMO<br />

murrayazoline<br />

59%<br />

O O<br />

Me<br />

N<br />

Me<br />

F 3C<br />

Me<br />

Scheme 16<br />

tricyclohexylphosphine was found to be optimal <strong>and</strong> allowed<br />

a wide range of carbazoles to be prepared. Using<br />

this catalyst system it was possible to employ inexpensive<br />

1,2-dichloroarenes as coupling partners, as well as heterocyclic<br />

derivatives, illustrated by the preparation of pyrazine<br />

<strong>and</strong> pyridine derivatives 41 <strong>and</strong> 42. The authors<br />

exploited the methodology in a synthesis of the natural<br />

product murrayafoline A (43). 49b Although less accessible,<br />

1,2-dihaloalkenes could also be employed as substrates,<br />

allowing the same cascade sequence to be applied<br />

to indole synthesis.<br />

+<br />

+<br />

N<br />

H<br />

43%<br />

Cl<br />

H<br />

N<br />

N<br />

Cl<br />

Scheme 17<br />

Ph<br />

N<br />

Ph<br />

41, 93%<br />

Bn<br />

NH<br />

Cl<br />

Br<br />

N<br />

Pd(OAc)2 (4 mol%)<br />

t-Bu3P (5 mol%)<br />

NaOt-Bu<br />

toluene, reflux<br />

OMe<br />

Pd(OAc)2 (5 mol%)<br />

Cy3P (10 mol%)<br />

NaOt-Bu<br />

NMP, 130 °C<br />

N<br />

Ph<br />

42, 93%<br />

N<br />

69% Bn<br />

Kan <strong>and</strong> co-workers reported a palladium-catalyzed cascade<br />

route to carbazoles based on initial intermolecular<br />

Suzuki coupling followed by an intramolecular aryl amination.<br />

A small scoping study was described, although a<br />

possible limitation is the availability of suitably functionalized<br />

boronic acids. 50 Fujii <strong>and</strong> Ohno have also described<br />

a cascade route to carbazoles. In their approach, an intermolecular<br />

aryl amination between an aryl triflate <strong>and</strong> an<br />

aniline was used to construct a diphenylamine which then<br />

underwent an oxidative coupling to generate a carbazole<br />

product. The efficiency of the oxidative step was shown to<br />

be dependent on the substitution pattern of the diphenylamine<br />

intermediates. 51<br />

N<br />

F 3C<br />

MeO<br />

N<br />

H<br />

69%<br />

clausine P (40)<br />

CF 3<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Me<br />

Me<br />

N<br />

Ph<br />

85%<br />

OMe<br />

N<br />

MeO H<br />

murrayafoline A (43)<br />

74% from Br/Cl-Ar<br />

72% from Cl/Cl-Ar<br />

Me<br />

Me


8 J. E. R. Sadig, M. C. Willis REVIEW<br />

2.3 Benzimidazoles <strong>and</strong> Benzimidazolones<br />

A host of approaches to benzimidazoles <strong>and</strong> related derivatives,<br />

featuring inter- <strong>and</strong> intramolecular <strong>and</strong> cascade reactions,<br />

as well as both palladium <strong>and</strong> copper catalysts,<br />

have been reported. Ma <strong>and</strong> co-workers developed a number<br />

of copper-catalyzed routes to these important heterocycles.<br />

52 In 2007, they demonstrated that o-haloacetanilides<br />

could be combined with primary amines to deliver<br />

benzimidazoles (Scheme 18). For example, a copper(I)<br />

iodide/proline catalyst system was effective for the union<br />

of aryl iodide 44 with allylamine, to furnish benzimidazole<br />

45 in 94% yield. 52a When more sterically dem<strong>and</strong>ing<br />

amines, or less activated aryl units, were employed it was<br />

necessary to use either heat or an acid/heat combination to<br />

achieve cyclization to the aromatic system; for example,<br />

the formation of cyclohexyl-substituted benzimidazole 46<br />

required the addition of acid. A broad range of amines <strong>and</strong><br />

aryl units, including pyridine derivatives, could be included<br />

in the method, delivering benzimidazoles in good to<br />

excellent yields. Although Scheme 18 shows only aryl iodide<br />

substrates, aryl bromides were also used. When the<br />

starting substrates were changed to o-iodoarylcarbamates,<br />

the same reaction system was used to access benzimidazolones<br />

(47 → 48). 52b Aqueous ammonia could also be<br />

employed as the nitrogen nucleophile in both reaction<br />

pathways, leading to the corresponding N–H derivatives.<br />

52c<br />

44<br />

+<br />

H2N +<br />

H2N 47<br />

+<br />

H2N<br />

H<br />

N<br />

Scheme 18<br />

I<br />

H<br />

N<br />

I<br />

H<br />

N<br />

I<br />

O<br />

O<br />

O<br />

CF3<br />

O<br />

OMe<br />

N Boc<br />

CuI (10 mol%)<br />

L-proline (20 mol%)<br />

K 2CO 3, DMSO, r.t.<br />

i) CuI (10 mol%)<br />

L-proline (20 mol%)<br />

K2CO3, DMSO, 40 °C<br />

ii) AcOH, 140 °C<br />

CuI (10 mol%)<br />

L-proline (20 mol%)<br />

K 2CO 3, DMSO<br />

50 °C then 130 °C<br />

OH<br />

N<br />

H H<br />

O<br />

L-proline<br />

N<br />

45, 94%<br />

46, 73%<br />

48, 74%<br />

Buchwald <strong>and</strong> co-workers developed a related palladiumcatalyzed<br />

route to aryl-substituted benzimidazoles. For<br />

example, the coupling of o-bromacetanilide 49 with otoluamine<br />

using an XPhos-derived catalyst provided the<br />

corresponding N-arylbenzimidazole in 94% yield<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

N<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

CF3<br />

O<br />

Boc<br />

O<br />

(Scheme 19). 53a A good range of anilines <strong>and</strong> aryl substrates<br />

(both Br <strong>and</strong> Cl) were described; Scheme 19 also<br />

shows an aza-example, derived from the corresponding<br />

pyridine substrate, as well as a cyclopropyl-substituted<br />

product. Some variation of lig<strong>and</strong> between XPhos (32)<br />

<strong>and</strong> RuPhos (50) was needed for certain substrates. In<br />

2006, Scott reported a palladium-catalyzed synthesis of<br />

imidazopyridinones (aza-benzimadazolones) in a process<br />

analogous to the conversion of 47 into 48 shown in<br />

Scheme 18. 54<br />

Me<br />

N<br />

H2N<br />

Me<br />

Scheme 19<br />

Buchwald <strong>and</strong> Zheng also described a complementary<br />

copper-catalyzed protocol, based on aryl halide amidation<br />

(as opposed to amination), for benzimidazole synthesis. 53b<br />

The basic process is shown in Scheme 20; copper(I)<br />

iodide/diamine-catalyzed coupling of hexamide with oiodo-N-alkylaniline<br />

51, followed by base-promoted cyclization,<br />

delivered the desired N-alkylbenzimidazole 52<br />

in 87% yield. Alkyl, alkenyl <strong>and</strong> aryl amides could all be<br />

incorporated effectively.<br />

Scheme 20<br />

N<br />

N<br />

(from ArCl using lig<strong>and</strong> 50)<br />

F 3C<br />

49<br />

Br<br />

H<br />

N Me<br />

Pd2(dba) 3 (1 mol%)<br />

+<br />

O<br />

Br<br />

XPhos (32) (8 mol%)<br />

K3PO4 t-BuOH, 110 °C<br />

88%<br />

H2N<br />

51<br />

+<br />

O<br />

H<br />

N<br />

I<br />

Pent<br />

N<br />

Me<br />

Me<br />

Me<br />

N<br />

Me<br />

Me<br />

83%<br />

(using lig<strong>and</strong> 50)<br />

i) CuI (5 mol%)<br />

25 (20 mol%)<br />

Cs2CO3, dioxane, 90 °C<br />

ii) K3PO4<br />

t-BuOH, 110 °C<br />

F3C<br />

94%<br />

Intramolecular aryl amidation using urea substrates has<br />

been achieved using both palladium <strong>and</strong> copper catalysis<br />

<strong>and</strong> provides a further route to benzimidazolones<br />

(Scheme 21). The cyclization of urea 53, using a palladium(II)<br />

acetate/XPhos catalyst system, was described by<br />

the process group at Merck. 55 Chloro-, bromo- <strong>and</strong> iodoaryl<br />

derivatives could all be employed as substrates, as<br />

could chloropyridines. <strong>Copper</strong>-catalyzed variants of similar<br />

cyclizations have also been reported, 56 including a<br />

polymer-supported example; 57 the second reaction shown<br />

in Scheme 21, reported by SanMartin, Domínguez <strong>and</strong> co-<br />

Me<br />

Br<br />

N<br />

N<br />

Cy 2P Oi-Pr<br />

i-PrO<br />

RuPhos (50)<br />

52, 87%<br />

N<br />

N<br />

Pent<br />

Me<br />

Me<br />

Me


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 9<br />

MeO<br />

Scheme 21<br />

workers, 58 illustrates a copper(I) iodide catalyzed cyclization<br />

using water as the solvent.<br />

Intramolecular reactions to access benzimidazoles can be<br />

achieved using amidines as substrates. An example, reported<br />

by Brain et al., 59 is shown in Scheme 22 in which<br />

amidine 54 was converted into the corresponding benzimidazole<br />

under the action of a Pd2(dba) 3/triphenylphosphine<br />

catalyst. The authors were also able to show that use<br />

of a ‘catch-<strong>and</strong>-release’ purification strategy, 59b involving<br />

Amberlyst resin, allowed the benzimidazoles to be obtained<br />

in pure form without recourse to chromatography.<br />

Related cyclizations in which the amidine is embedded<br />

within a heterocycle have also been described. 60,61<br />

De Meijere <strong>and</strong> Lygin reported that amidines, generated<br />

in situ from an isocyanide <strong>and</strong> a primary amine, can also<br />

be cyclized using copper(I) conditions to access N-alkylbenzimidazoles.<br />

62<br />

Me<br />

53<br />

54<br />

Scheme 22<br />

PMB PMB<br />

Pd(OAc) 2 (1 mol%)<br />

N O XPhos (32) (3 mol%)<br />

N<br />

NH2<br />

Cl<br />

Bn<br />

N<br />

O<br />

NH2 Br<br />

NaHCO3<br />

i-PrOH, 83 °C<br />

CuI (8.5 mol%)<br />

TMEDA (3.5 equiv)<br />

H 2O, 120 °C<br />

MeO<br />

92%<br />

92%<br />

Batey <strong>and</strong> Evindar used related cyclizations employing<br />

guanidine substrates to access 2-aminobenzimidazoles. 63<br />

Efficient reactions were achieved using either palladium<br />

or copper catalysis; Scheme 23 gives an example of the<br />

reaction conditions needed for each metal. In general, the<br />

copper conditions were found to be superior, providing<br />

higher yields <strong>and</strong> more selective reactions. Both aryl iodides<br />

<strong>and</strong> aryl bromides could be employed as substrates,<br />

allowing a broad range of 2-aminobenzimidazoles to be<br />

Me<br />

Br<br />

HN<br />

Bn<br />

N<br />

Scheme 23<br />

N<br />

N Me<br />

NHMe<br />

Br<br />

Pd2(dba)3, (1.5 mol%)<br />

Ph3P (12 mol%)<br />

NaOH, H 2O–DME<br />

160 °C, MW<br />

Pd(PPh3)4 (10 mol%)<br />

Cs2CO3, DME, 80 °C<br />

or<br />

CuI (5 mol%)<br />

1,10-Phen (10 mol%)<br />

Cs2CO3, DME, 80 °C<br />

Me<br />

Me<br />

82%<br />

N<br />

N<br />

Bn N<br />

Pd: 66%<br />

Cu: 90%<br />

N<br />

N<br />

N<br />

H<br />

Bn<br />

N<br />

N<br />

H<br />

Me<br />

O<br />

O<br />

Me<br />

prepared in good yields. Szczepankiewicz et al. applied<br />

this type of copper-catalyzed cyclization to substrates<br />

based on uracil templates to prepare purine <strong>and</strong> related<br />

fused imidazole systems. 64 2-Mercaptobenzimidazoles<br />

can similarly be accessed using copper-catalyzed cyclization<br />

of in situ generated isothioureas. 65<br />

The research groups of both Zhang66<strong>and</strong> Wu67 showed<br />

that o-halophenylimidoyl chlorides are effective substrates<br />

for copper-catalyzed benzimidazole synthesis.<br />

Scheme 24 presents an example from the Zhang group,<br />

<strong>and</strong> shows how imidoyl chloride 55 can be combined with<br />

benzylamine using a copper(I) iodide catalyst, to deliver<br />

the expected benzimidazole in excellent yield. Both alkyl<strong>and</strong><br />

arylamines could be employed. In both reports it was<br />

necessary to include an electron-withdrawing substituent<br />

on the imidoyl chloride substrate; for example, the trifluoromethyl<br />

substituent on imidoyl chloride 55.<br />

N<br />

Scheme 24<br />

Maes <strong>and</strong> co-workers explored a range of cascade amination<br />

strategies to access a variety of benzo-fused benzimidazole<br />

systems. 68 In their lead publication, they were able<br />

to combine 2-chloro-3-iodopyridine with 2-picoline to<br />

generate dipyridoimidazole 56 in 96% yield (Scheme 25).<br />

The example shown employs a palladium(II) acetate/<br />

BINAP catalyst, although XantPhos (2) was also shown to<br />

be an effective lig<strong>and</strong>. 68a The chemistry has been extended<br />

to the preparation of a number of benzo-fused <strong>and</strong> aza analogues,<br />

68a–c,69 <strong>and</strong> in an interesting application a temperature/halide<br />

dependent regioselectivity switch was<br />

developed. 68d<br />

Scheme 25<br />

I<br />

H2N Ph<br />

N<br />

55<br />

+<br />

I<br />

Cl<br />

+<br />

CF3<br />

Cl N NH 2<br />

CuI (10 mol%)<br />

TMEDA (20 mol%)<br />

Cs 2CO 3<br />

toluene, 110 °C<br />

Pd(OAc) 2 (3 mol%)<br />

BINAP (3) (3 mol%)<br />

Cs2CO3<br />

toluene, reflux<br />

98%<br />

Batey <strong>and</strong> co-workers described a copper-catalyzed cascade<br />

route to benzimidazoles from the combination of a<br />

1,2-dihalobenzene with an amidine, although only a single<br />

example was reported. 70 Deng et al. reported a related<br />

cascade in which amidines were exchanged for<br />

guanidines, leading to the synthesis of 2-aminobenzimidazoles<br />

(Scheme 26). The majority of examples delivered<br />

N–H products, although N-substitution could also be introduced.<br />

71<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

N<br />

N<br />

N<br />

CF3<br />

Ph<br />

N<br />

N<br />

56, 96%


10 J. E. R. Sadig, M. C. Willis REVIEW<br />

Me<br />

HN<br />

H2N<br />

+<br />

N<br />

Scheme 26<br />

2.4 Indazoles <strong>and</strong> Indazolones<br />

Indazoles have proven to be popular targets for amination<br />

chemistry. A number of groups have described the cyclization<br />

of appropriately substituted arylhydrazones.<br />

Scheme 27 illustrates an intramolecular coupling of bromo-substituted<br />

arylhydrazone 57 to deliver 1H-indazole<br />

58 in 85% yield. 72 The DPEPhos-derived catalyst system<br />

was effective for a wide range of substrates, although aryl<br />

chloride substrates performed poorly. Analogous N-tosylhydrazones<br />

were also established as effective indazole<br />

precursors, 73a <strong>and</strong> were utilized in a synthesis of the natural<br />

product nigellicine. 73b 3-Amino-1H-indazoles were<br />

also prepared by similar palladium-catalyzed cyclizations.<br />

74 Song <strong>and</strong> Yee demonstrated that appropriately<br />

substituted hydrazines are also useful indazole precursors.<br />

For example, palladium-catalyzed ring closure using hydrazine<br />

59 delivered the corresponding aromatic 1H-indazole<br />

directly in 87% yield, following intramolecular<br />

amination <strong>and</strong> spontaneous aromatization. 75 The mechanism<br />

of aromatization was not established. The authors<br />

noted the instability of certain hydrazine substrates to<br />

long-term storage, <strong>and</strong> as alternatives established that the<br />

corresponding N-triphenylphosphonium bromide salts<br />

provided convenient stable precursors that could be cyclized<br />

under identical reaction conditions.<br />

MeO<br />

57<br />

Scheme 27<br />

Br<br />

I<br />

Br<br />

N<br />

O<br />

CuI (15 mol%)<br />

25 (30 mol%)<br />

Cs2CO3<br />

DMA, 165 °C<br />

N<br />

N O<br />

N<br />

H<br />

53%<br />

There are a number of reports of halo-substituted hydrazones<br />

being formed in situ <strong>and</strong> then cyclized to yield 1Hindazoles;<br />

Scheme 28 presents examples using both palladium<br />

<strong>and</strong> copper catalysis. Cho et al. were able to show<br />

that o-bromobenzaldehydes could be combined with phenylhydrazine<br />

using a palladium(II) chloride/dppp catalyst<br />

system to furnish the corresponding indazoles in good<br />

yields (60 → 61). 76 The copper example, reported by<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Me<br />

Me<br />

H<br />

N<br />

Pd(dba)2 (2 mol%<br />

N<br />

DPEPhos (22) (2 mol%)<br />

N<br />

Me<br />

NH<br />

K 3PO 4<br />

toluene, 110 °C<br />

MeO<br />

Pd(OAc) 2 (5 mol%)<br />

dppf (12) (7.5 mol%)<br />

Me<br />

58, 85%<br />

Br HN<br />

NaOt-Bu<br />

toluene, 90 59 °C<br />

87%<br />

N<br />

N<br />

Me<br />

Pabba et al., required a two-step one-pot approach in<br />

which a ten-minute microwave reaction was used to form<br />

the hydrazone before a copper(I)/diamine catalyst was<br />

added to the system (62 → 63). 77 Del Olmo <strong>and</strong> co-workers<br />

reported a related copper-catalyzed process which also<br />

allowed the use of aryl carboxylic acid substrates to deliver<br />

1-hydroxy-1H-indazoles. 78<br />

MeO<br />

MeO<br />

F<br />

Scheme 28<br />

Guillaumet <strong>and</strong> co-workers reported an intermolecular<br />

copper-catalyzed amination method for the preparation of<br />

pyrazolopyridines (azaindazoles). 79 3-Cyano-2-chloropyridine<br />

was combined with a range of hydrazines using a<br />

copper(I) iodide/phenanthroline catalyst to deliver 3-amino-1H-azaindazoles<br />

in good yields (Scheme 29). The 3amino<br />

products were converted into the corresponding 3iodo<br />

derivatives by way of their diazonium salts, <strong>and</strong> were<br />

employed in a range of palladium-catalyzed coupling processes<br />

including Stille, Heck <strong>and</strong> Suzuki reactions.<br />

N<br />

CN<br />

Cl<br />

Scheme 29<br />

O<br />

60<br />

O<br />

+<br />

62<br />

H<br />

+ H2N<br />

Br<br />

H<br />

+ H2N<br />

Br<br />

Et<br />

H<br />

N NH2<br />

NH<br />

Ph<br />

NH<br />

Ph<br />

PdCl 2 (2 mol%)<br />

dppp (3 mol%) MeO<br />

NaOt-Bu<br />

toluene, 100 °C<br />

i) NMP, 160 °C<br />

10 min, MW<br />

ii) CuI (5 mol%)<br />

64 (10 mol%)<br />

K2CO 3, 160 °C<br />

10 min, MW<br />

NHMe<br />

NHMe<br />

MeO<br />

61, 65%<br />

N<br />

N<br />

N<br />

N<br />

The less thermodynamically stable 2H-indazole isomers<br />

can also be accessed using amination chemistry. In an approach<br />

mirroring their route to the 1H-isomers (see<br />

Scheme 27), Song <strong>and</strong> Yee employed a palladium-catalyzed<br />

cyclization of appropriately substituted hydrazines.<br />

80 For example, N-alkyl-N-arylhydrazine 65 was<br />

converted into 2-aryl-2H-indazole 66 in 60% yield<br />

(Scheme 30). Katayama <strong>and</strong> co-workers showed that N2–<br />

C3-fused examples can also be prepared using similar<br />

chemistry. 81<br />

64<br />

CuI (5 mol%)<br />

1,10-phenanthroline<br />

(10 mol%)<br />

Cs 2CO 3<br />

DMF, 60 °C<br />

N N<br />

1,10-phenanthroline<br />

F<br />

63, 84%<br />

NH 2<br />

N<br />

N N<br />

86% Et


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 11<br />

N Ph<br />

MeO<br />

Pd(OAc) 2 (5 mol%)<br />

MeO<br />

dppf (12) (7.5 mol%)<br />

NH2 Br<br />

NaOt-Bu<br />

toluene, 90 °C<br />

65<br />

Scheme 30<br />

Hall<strong>and</strong>, Lindenschmidt <strong>and</strong> co-workers reported an alternative<br />

route to the 2H-indazole isomers employing the<br />

same o-alkynylhaloarene substrates used successfully by<br />

others to access indoles (see Schemes 11 <strong>and</strong> 12). The reactions<br />

proceeded via an initial regioselective amination<br />

reaction using a monosubstituted hydrazine to generate an<br />

N,N¢-disubstituted hydrazine, which then underwent intramolecular<br />

hydroamination to form a dihydroindazole<br />

intermediate (67, Scheme 31). 82 Isomerization from these<br />

intermediates to the aromatic 2H-indazoles occurred<br />

spontaneously under the reaction conditions of palladium(II)<br />

chloride/tri(tert-butyl)phosphine with cesium carbonate<br />

in N,N-dimethylformamide. Good functional<br />

group tolerance was demonstrated <strong>and</strong> an extensive range<br />

of substituted products was described; three examples are<br />

shown in Scheme 31.<br />

67<br />

Scheme 31<br />

Indazolones can be prepared by the copper-catalyzed cyclization<br />

of o-halobenzohydrazides. For example, treatment<br />

of hydrazide 68 with a copper(I) iodide/proline<br />

catalyst system delivered indazolone 69 in 60% yield<br />

(Scheme 32). 83 Iodo substrates delivered the most efficient<br />

reactions; the bromo <strong>and</strong> chloro substrates were also<br />

shown to deliver the desired products, albeit in reduced<br />

yields.<br />

Scheme 32<br />

Ph<br />

+ H2N<br />

Cl<br />

O<br />

I<br />

Ph<br />

N Ph<br />

N<br />

H<br />

N<br />

H<br />

H<br />

N<br />

2.5 Pyrroles<br />

PdCl2 (5 mol%)<br />

Pt-Bu3 HBF4 (10 mol%)<br />

NH<br />

Cs2CO<br />

Ph<br />

3<br />

DMF, 110–130 °C<br />

.<br />

93%<br />

CO2t-Bu<br />

N Ph<br />

N<br />

CuI (10 mol%)<br />

L-proline (20 mol%)<br />

K 2CO 3, DMSO<br />

r.t. to 70 °C<br />

68 69, 60%<br />

N Ph<br />

N<br />

66, 60%<br />

N Ph<br />

N<br />

79%<br />

OEt<br />

The Buchwald <strong>and</strong> Li research groups both reported cascade<br />

copper-catalyzed alkenyl amidation routes to pyr-<br />

Ph<br />

N Ph<br />

N<br />

55%<br />

O<br />

OEt<br />

NH<br />

N<br />

roles. The Buchwald group utilized a copper(I) iodide/<br />

diamine 25 catalyst system to combine carbamates (<strong>and</strong> a<br />

limited number of amides) with 1,4-diiodo-1,3-dienes to<br />

generate highly substituted pyrrole products (70 → 71,<br />

Scheme 33). 84 The methodology displayed excellent<br />

functional group tolerance <strong>and</strong> was applied to the synthesis<br />

of a wide range of pyrroles, including tetrasubstituted<br />

examples. The method was also applicable to the synthesis<br />

of heteroarylpyrroles, such as thienopyrrole 72. The Li<br />

approach exploited similar diene substrates in combination<br />

with a range of amide coupling partners. 45,85 For example,<br />

diiododiene 73 was combined with phenylacetamide<br />

using a copper(I) iodide/diamine 64 catalyst to<br />

deliver the expected pyrrole in 86% yield (Scheme 33).<br />

Pr<br />

S<br />

Bu<br />

Bu<br />

SiMe3<br />

Pr<br />

70<br />

73<br />

Scheme 33<br />

I O<br />

I<br />

+<br />

H2N Ot-Bu<br />

Me<br />

Pr<br />

CuI (5 mol%)<br />

25 (20 mol%)<br />

Cs 2CO 3<br />

THF, 80 °C<br />

CuI (20 mol%)<br />

64 (20 mol%)<br />

Cs 2CO 3<br />

dioxane, 100 °C<br />

Pr<br />

N<br />

Boc<br />

71, 86%<br />

N<br />

SiMe3<br />

Pr<br />

N<br />

SiMe3<br />

N<br />

Boc<br />

Boc<br />

Boc<br />

98% 80%<br />

72, 83%<br />

I O<br />

+<br />

I<br />

H2N Ph<br />

Buchwald <strong>and</strong> colleagues reported a complementary stepwise<br />

approach to pyrroles also based on copper-catalyzed<br />

alkenylation reactions. 86 N,N¢-Di(Boc)-protected alkenylhydrazides<br />

74, themselves prepared by copper-catalyzed<br />

alkenylation reactions, were coupled with a second alkenyl<br />

iodide to generate bis(ene)hydrazide 75 (Scheme 34).<br />

Thermolysis triggered a [3,3] rearrangement to generate<br />

bis-imine 76, cyclization of which provided the pyrrole<br />

Pr<br />

Pr<br />

Pr<br />

Boc<br />

Oct<br />

N<br />

Boc<br />

N<br />

N<br />

H<br />

Boc<br />

74<br />

+<br />

Boc<br />

N<br />

Pr Oct<br />

I<br />

[3,3]<br />

Bu<br />

(i) CuI (10 mol%)<br />

1,10-phenanthroline<br />

(20 mol%)<br />

Cs2CO3, DMF<br />

80 °C, 30 h<br />

ii) o-xylene, 140 °C, 30 h<br />

iii) p-TsOH, r.t.<br />

Boc Boc<br />

N N<br />

Pr<br />

Pr Oct<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Pr<br />

S<br />

Bu<br />

N<br />

Bu<br />

O<br />

86% Ph<br />

75 76 77<br />

Scheme 34<br />

Pr<br />

Pr<br />

Pr Oct<br />

N<br />

68% Boc<br />

Boc<br />

N<br />

Pr Oct<br />

SiMe3<br />

H<br />

NBoc


12 J. E. R. Sadig, M. C. Willis REVIEW<br />

via intermediate 77. For certain substrates it was necessary<br />

to add acid to achieve complete conversion into the<br />

aromatic system. The bis(ene)hydrazides could be isolated,<br />

or more conveniently used directly in the next step of<br />

the sequence with no purification. The overall method<br />

represents a modified Piloty–Robinson reaction.<br />

The final pyrrole synthesis considered here comprises a<br />

copper-catalyzed cascade alkenyl amidation/hydroamination<br />

sequence. The process is essentially a pyrroleforming<br />

version of the indole synthesis described in<br />

Scheme 11. In this approach, described by Buchwald <strong>and</strong><br />

co-workers, haloenynes such as 78 replace the alkynylhaloarenes<br />

used for indole synthesis, <strong>and</strong>, when combined<br />

with tert-butyl carbamate <strong>and</strong> a copper(I) iodide/diamine<br />

catalyst, provide the corresponding pyrroles in good<br />

yields (Scheme 35). 87 A broad range of di- <strong>and</strong> trisubstituted<br />

pyrroles were prepared, <strong>and</strong> although the study focused<br />

on the use of iodoenynes, it was also possible to<br />

employ bromoenynes. A brief mechanistic study established<br />

that the reactions likely proceed via initial intermolecular<br />

aryl carbon–nitrogen bond formation followed by<br />

a 5-endo-dig intramolecular hydroamination.<br />

Pent<br />

78<br />

OTIPS<br />

I<br />

+<br />

t-BuO NH2<br />

Scheme 35<br />

O<br />

2.6 Pyrazoles<br />

25<br />

CuI (5 mol%)<br />

(20 mol%) OTIPS<br />

Cs2CO3 THF, 80 °C<br />

Pent<br />

N<br />

Boc<br />

83%<br />

Buchwald <strong>and</strong> co-workers utilized haloenyne substrates<br />

in a t<strong>and</strong>em copper-catalyzed pyrazole synthesis. 87 For<br />

example, combination of iodoenyne 78 with bis(Boc)hydrazine<br />

using a copper(I) iodide/diamine catalyst provided<br />

pyrazole 79 in 78% yield after Boc-deprotection with<br />

trifluoroacetic acid (Scheme 36). As in the related pyrrole<br />

syntheses, a good range of di- <strong>and</strong> trisubstituted aromatics<br />

were prepared. The mechanism was again established as<br />

proceeding via intermolecular aryl carbon–nitrogen bond<br />

formation followed by intramolecular hydroamination, although<br />

the cyclizations were in this case 5-exo-dig processes.<br />

Cho <strong>and</strong> Patel reported a pyrazole synthesis based on the<br />

palladium-catalyzed combination of b-bromovinyl aldehydes<br />

with hydrazines. 88 For example, treatment of<br />

Pent<br />

25 78<br />

(i) CuI (5 mol%)<br />

(20 mol%)<br />

Pent<br />

I<br />

+<br />

H<br />

N<br />

Boc NH<br />

Boc<br />

OTIPS<br />

Cs2CO3 THF, 80 °C<br />

ii) TFA, CH2Cl2, r.t.<br />

Scheme 36<br />

N<br />

N<br />

H<br />

79, 78%<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

OTIPS<br />

bromo-enal 80 with phenylhydrazine in the presence of a<br />

dppf-derived catalyst yielded pyrazole 81 in 77%<br />

(Scheme 37). Both cyclic <strong>and</strong> acyclic substrates could be<br />

employed, although no ketone-derived substrates were reported.<br />

Haddad <strong>and</strong> co-workers developed a pyrazole synthesis<br />

in which aryl benzophenone hydrazones, prepared<br />

by the palladium-catalyzed coupling of benzophenone hydrazone<br />

with aryl halides, were treated with a range of<br />

1,3-bifunctional substrates under acidic conditions. 89 1,3-<br />

Diketones, keto esters <strong>and</strong> ester/acid chlorides could be<br />

combined with the hydrazones to provide a range of substituted<br />

pyrazole products.<br />

80<br />

O<br />

H<br />

+<br />

Br<br />

Scheme 37<br />

H2N Pd(OAc) 2 (5 mol%)<br />

dppf (12) (7.5 mol%)<br />

NH NaOt-Bu, toluene<br />

Ph 125 °C<br />

N<br />

N<br />

Ph<br />

81, 77%<br />

2.7 Oxazoles<br />

Buchwald <strong>and</strong> co-workers utilized copper-catalyzed alkenyl<br />

iodide amidation reactions as the key step in a route to<br />

oxazoles. 90 For example, enamides such as 82 could be<br />

treated with iodine <strong>and</strong> base to provide the expected<br />

trisubstituted oxazoles in good yields (Scheme 38). The<br />

required enamides were prepared from the corresponding<br />

alkenyl bromides using a copper(I) iodide/diamine-catalyzed<br />

coupling with the appropriate amide; both aryl <strong>and</strong><br />

alkyl amides could be used. Depending on the substitution<br />

pattern of the oxazole product, certain examples required<br />

the addition of p-toluenesulfonic acid to achieve complete<br />

conversion into the aromatic molecule. Attempts to prepare<br />

mono- <strong>and</strong> disubstituted oxazoles using this method<br />

resulted in complex reaction mixtures, <strong>and</strong> an alternative<br />

process, based on the use of 1,2-dihaloalkene substrates,<br />

was developed.<br />

Ph Br<br />

+<br />

O<br />

Ph<br />

H2N Ph<br />

Scheme 38<br />

Ph<br />

Ph<br />

H<br />

N<br />

82<br />

O<br />

2.8 Quinolones<br />

i) CuI (5 mol%)<br />

(20 mol%)<br />

25<br />

Cs2CO3, THF, 80 °C<br />

ii) I2, DBU<br />

r.t. to 80 °C<br />

Ph<br />

Ph<br />

Ph<br />

Manley <strong>and</strong> Bilodeau used palladium-catalyzed intermolecular<br />

aryl halide amidation followed by an in situ aldol<br />

condensation to prepare 2-quinolones. 91 In this way o-bromobenzaldehydes<br />

were combined with a range of enolizable<br />

amides to deliver the quinolone products. Scheme 39<br />

I<br />

H<br />

N<br />

O<br />

Ph<br />

Ph<br />

Ph<br />

N<br />

O<br />

77%<br />

Ph


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 13<br />

illustrates the combination of the parent aldehyde (83)<br />

with phenylacetamide using a XantPhos-derived catalyst<br />

in combination with cesium carbonate as base. A variety<br />

of substituted amides could be employed, as could ketonebased<br />

substrates, allowing the synthesis of 4-substituted<br />

products such as quinolone 84. Pyridine derivatives could<br />

also be employed, thus providing a route to naphthyridinones.<br />

Ester- <strong>and</strong> nitrile-substituted aryl bromides were<br />

also examined <strong>and</strong> allowed access to hydroxy- <strong>and</strong> aminosubstituted<br />

products, respectively. For a small number of<br />

amide coupling partners, the researchers were able to employ<br />

a copper(I) iodide/diamine catalyst system.<br />

83<br />

Scheme 39<br />

O<br />

O<br />

H<br />

+ H2N<br />

Br<br />

N<br />

H<br />

94%<br />

O<br />

N<br />

Ph<br />

Pd 2(dba)3 (1 mol%)<br />

XantPhos (2) (3 mol%)<br />

Cs2CO3<br />

toluene, 100 °C<br />

N<br />

H<br />

84, 55%<br />

N<br />

H<br />

94%<br />

Huang et al. utilized the related o-acetylbromoarenes as<br />

substrates in a palladium-catalyzed synthesis of 4-quinolones.<br />

The simplest version of the process employed formamide<br />

as the nitrogen nucleophile <strong>and</strong>, when coupled<br />

with bromide 85, delivered quinolone product 86 in 77%<br />

yield (Scheme 40). 92 The reactions proceeded via initial<br />

palladium-catalyzed amidation followed by a base-promoted<br />

intramolecular condensation step. A XantPhosderived<br />

catalyst in combination with cesium carbonate as<br />

base was optimal for the amidation step, <strong>and</strong> the addition<br />

of sodium tert-butoxide as a second base was found to be<br />

necessary to achieve high yields for the combined process.<br />

As can be seen from the examples presented in<br />

Scheme 40, a range of substituted amides could be employed,<br />

including lactams, which allowed the synthesis of<br />

N-fused products such as quinolone 87. The Buchwald research<br />

group reported a related process based on coppercatalyzed<br />

amidation, although in their case it was neces-<br />

MeO<br />

N<br />

H<br />

Scheme 40<br />

85<br />

O<br />

Ph<br />

Ph<br />

O<br />

Me<br />

Br H O<br />

Pd2(dba) 3 (1 mol%)<br />

XantPhos (2) (2.5 mol%)<br />

+<br />

2N H<br />

Cs2CO3, dioxane<br />

100 °C, 2–48 h then<br />

NaOt-Bu, 100 °C<br />

MeO<br />

O<br />

N<br />

H<br />

O<br />

N<br />

N<br />

H<br />

75%<br />

Ph<br />

O<br />

Ph<br />

O<br />

O<br />

N<br />

H<br />

86, 77%<br />

S<br />

82% 91% 87, 85%<br />

Me<br />

O<br />

N<br />

sary to isolate the initial amidation products before cyclization.<br />

93<br />

A t<strong>and</strong>em Heck/intramolecular amidation strategy was reported<br />

by Cacchi <strong>and</strong> co-workers as a route to 4-aryl-2quinolones.<br />

94 Using molten tetrabutylammonium acetate/<br />

tetrabutylammonium bromide as the reaction medium <strong>and</strong><br />

a simple palladium(II) acetate catalyst, the combination of<br />

o-bromophenylacrylamides (88) <strong>and</strong> aryl iodides provided<br />

the quinolone products in moderate to good yields<br />

(Scheme 41). Although only a single acrylamide substrate<br />

was employed, a good range of aryl iodide coupling partners<br />

could be incorporated. A brief mechanistic investigation<br />

supported the Heck followed by intramolecular<br />

amidation pathway.<br />

88<br />

+<br />

Br<br />

Scheme 41<br />

Willis <strong>and</strong> co-workers exploited 2-(2-haloalkenyl)aryl halide<br />

substrates, previously employed in indole syntheses<br />

(see Scheme 8), in the preparation of 2-quinolones. 95 A<br />

cascade palladium-catalyzed carbonylation/intramolecular<br />

amidation sequence was employed to access a range of<br />

quinolone products. For example, combination of the simple<br />

dibromide 89 <strong>and</strong> p-methoxybenzylamine under a balloon<br />

pressure of carbon monoxide delivered quinolone 90<br />

in 80% yield (Scheme 42). Although all of the products<br />

shown in Scheme 42 were obtained using a dppp-derived<br />

catalyst, the researchers found that lig<strong>and</strong> variation was<br />

needed for particular substrate/amine combinations. In<br />

addition, purging the reaction of carbon monoxide was<br />

shown to benefit the efficiency of certain amidation reactions.<br />

By delaying the introduction of the carbon monoxide<br />

<strong>and</strong> running the reaction in a two-stage process, it was<br />

also possible access the regioisomeric isoquinolone products,<br />

although in these cases competing indole formation<br />

was problematic.<br />

O<br />

Scheme 42<br />

O<br />

I<br />

NH 2<br />

+<br />

H2N<br />

Br<br />

Br<br />

89<br />

Pd(OAc)2 (5 mol%)<br />

n-Bu4NOAc, n-Bu4NBr<br />

120 °C<br />

CO (balloon)<br />

Pd2(dba)3 (3 mol%)<br />

dppp (6 mol%)<br />

Cs2CO3, toluene<br />

100 °C<br />

OMe<br />

N<br />

H<br />

75%<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

O<br />

N O<br />

PMB<br />

90, 80%<br />

O N O<br />

MeO<br />

N O N N O<br />

Oct<br />

O Oct<br />

Oct<br />

69% 65% 73%


14 J. E. R. Sadig, M. C. Willis REVIEW<br />

2.9 Quinazolines, Quinazolinones <strong>and</strong><br />

Quinazolindiones<br />

In 2006 Willis <strong>and</strong> co-workers reported the palladiumcatalyzed<br />

coupling of o-bromobenzoate esters with<br />

monosubstituted ureas as a route to 3-alkylated quinazolinediones.<br />

96 The reactions proceeded via initial intermolecular<br />

carbon–nitrogen bond formation followed by<br />

intramolecular, base-promoted, amidation. A XantPhosderived<br />

catalyst in combination with cesium carbonate allowed<br />

efficient <strong>and</strong> regioselective processes; for example,<br />

bromobenzoate 91 was combined with N-butyl urea to<br />

provide quinazolinedione 92 in 77% yield as a single regioisomer<br />

(Scheme 43). A variety of substituents were<br />

tolerated on both the aryl bromide <strong>and</strong> urea coupling partners.<br />

The observed regiocontrol originates from the initial<br />

aryl carbon–nitrogen bond formation taking place at the<br />

least hindered nitrogen of the urea nucleophile.<br />

Cl<br />

91<br />

Scheme 43<br />

O<br />

OMe<br />

Br<br />

+<br />

Bu<br />

N<br />

H<br />

O<br />

Pd 2(dba) 3 (2.5 mol%)<br />

XantPhos (2) (5 mol%)<br />

NH2<br />

Cs 2CO 3<br />

dioxane, 100 °C<br />

N<br />

H<br />

92, 77%<br />

The Fu research group reported a related strategy for the<br />

synthesis of quinazolinones <strong>and</strong> quinazolines. In their<br />

original report, they exploited a copper-catalyzed coupling<br />

of amidines with o-bromobenzoic acids to access<br />

quinazolinones. For example, acid 93 was combined with<br />

acetimidamide 94 to provide quinazolinone 95 in 81%<br />

yield (Scheme 44). 97a The reaction conditions consisted of<br />

copper(I) iodide without any added lig<strong>and</strong>, in N,N-dimethylformamide<br />

at room temperature. The ability to use<br />

such low-temperature conditions was attributed to the formation<br />

of a chelated intermediate involving the oxygen<br />

atom of the ortho-positioned carboxylic acid. The reaction<br />

was applicable to a broad range of amidines <strong>and</strong> benzoic<br />

acids. The researchers next extended the chemistry to include<br />

guanidines as the nitrogen nucleophiles, resulting in<br />

the formation of 3-aminoquinazolinone products such as<br />

96. 97b The carboxylic acid substrates could also be replaced;<br />

the use of the related ketones in combination with<br />

guanidines resulted in the synthesis of 3-aminoquinazolines<br />

such as 97. Ding <strong>and</strong> co-workers reported an alternative<br />

copper-catalyzed route to quinazolinones based on<br />

the use of o-iodobenzamide substrates. 98 A typical reaction<br />

is shown in Scheme 44: coupling of benzamide 98<br />

with formimidamide, using copper(I) iodide as catalyst,<br />

provided quinazolinone 99 in 77% yield. The method was<br />

shown to tolerate reasonable variation of both reaction<br />

components.<br />

Li <strong>and</strong> co-workers reported a cascade process involving in<br />

situ amidine formation followed by palladium-catalyzed<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Cl<br />

O<br />

N<br />

Bu<br />

O<br />

O<br />

93 95, 81%<br />

94<br />

OH<br />

CuI (20 mol%)<br />

NH<br />

+<br />

H2N<br />

Br<br />

NH.HCl Cs2CO3 DMF, r.t. N Me<br />

Me<br />

75%<br />

O<br />

N<br />

cyclization as an entry into ring-fused quinazolinone derivatives.<br />

The key amidine intermediates were generated<br />

from intramolecular amide addition to a nitrile; the nitrile<br />

group also being introduced by a palladium-catalyzed<br />

process. 99 Scheme 45 outlines the overall conversion,<br />

with aryl iodide 100 being transformed into quinazolinone<br />

101 in 91% yield. A DPEPhos-derived catalyst was effective<br />

for both the initial cyanation reaction to generate nitrile<br />

102, <strong>and</strong> then to achieve the final ring closure from<br />

the proposed amidine intermediate to give quinazolinone<br />

101. Using a bromoquinoline-derived substrate, the authors<br />

were able to apply the methodology to a synthesis of<br />

the natural product luotonin (103).<br />

Scheme 45<br />

NH<br />

2.10 Phenazines<br />

O<br />

N<br />

96, 81%<br />

NH<br />

The Kamikawa <strong>and</strong> Beifuss groups have both reported intramolecular<br />

palladium-catalyzed aryl-amination routes<br />

to phenazines. Both explored the ring-closure of 2-amino-<br />

2¢-bromodiphenylamines to access the target systems.<br />

Scheme 46 shows an example from Beifuss <strong>and</strong> co-workers,<br />

in which a JohnPhos-derived catalyst was used to convert<br />

aniline 104 into phenazine 105 in 76% yield. 100 The<br />

Kamikawa research group utilized BINAP-derived cata-<br />

N<br />

O<br />

O<br />

Ph<br />

N<br />

97, 56%<br />

98<br />

O<br />

O<br />

I<br />

Scheme 44<br />

Ph<br />

N<br />

H<br />

+ H2N NH<br />

AcOH<br />

CuI (10 mol%)<br />

K2CO3 DMF, 80 °C<br />

N<br />

99, 77%<br />

N<br />

Ph<br />

O<br />

NH<br />

Pd(OAc)2 (5 mol%)<br />

DPEPhos (22) (10 mol%)<br />

O<br />

I<br />

Br<br />

+ KCN<br />

dioxane, reflux<br />

then dppf (10 mol%)<br />

K2CO3<br />

N<br />

N<br />

100 101, 91%<br />

N<br />

H<br />

O<br />

CN Br<br />

102<br />

N<br />

N<br />

O<br />

N<br />

N<br />

91%<br />

luotonin (103)<br />

N


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 15<br />

MeO<br />

Scheme 46<br />

lysts. 101 In both cases the phenazine ring system was isolated<br />

directly from the amination reactions.<br />

2.11 Cinnolines<br />

An intermolecular copper-catalyzed aryl amination was<br />

used by Nishida <strong>and</strong> co-workers to access cinnoline derivatives.<br />

In the example shown in Scheme 47, hydrazonesubstituted<br />

aryl iodide 107 was converted into N-acyldihydrocinnoline<br />

108 using a copper(I) iodide/diamine<br />

catalyst. 102 The use of superstoichiometric amounts of catalyst<br />

led to mixtures of N-acyl product 108 together with<br />

smaller amounts (up to 40%) of the aromatic cinnoline being<br />

obtained. Cyclization of hydrazines derived from hydrazone<br />

107 allowed access to 1-aminoindoles.<br />

I<br />

NH2<br />

107<br />

Scheme 47<br />

H<br />

N<br />

Br<br />

104<br />

OTBS<br />

CO2t-Bu HN<br />

Ac<br />

N<br />

3 Carbon–Oxygen Bond Formation<br />

Initially, the development of catalytic carbon–oxygen<br />

bond-forming processes using aryl halide substrates<br />

lagged behind the corresponding carbon–nitrogen forming<br />

reactions; however, efficient methods, using both palladium<br />

<strong>and</strong> copper catalysts, are now well established.<br />

3.1 Benzofurans<br />

Pd 2(dba) 3 (3 mol%)<br />

JohnPhos (6 mol%)<br />

NaOt-Bu<br />

toluene, 100 °C MeO<br />

P(t-Bu)2<br />

JohnPhos (106)<br />

CuI (10 mol%)<br />

25 (10 mol%)<br />

Cs 2CO 3<br />

DMSO, r.t.<br />

N N<br />

Ac<br />

108, 89%<br />

Few examples of benzofuran syntheses that proceed via a<br />

metal-catalyzed intermolecular (aryl)carbon–oxygen<br />

bond-forming reaction exist. In one example, Buchwald<br />

<strong>and</strong> co-workers were able to apply their palladium-catalyzed<br />

phenol synthesis to the preparation of benzofurans.<br />

103 The chemistry was based on the use of<br />

potassium hydroxide as a nucleophile in the palladiumcatalyzed<br />

hydroxylation of aryl halides to provide phenols.<br />

When applied to benzofuran synthesis, o-chloroarylalkyne<br />

substrates reacted with potassium hydroxide in the<br />

presence of t-Bu-XPhos as catalyst, to give o-hydroxyalkynylarenes,<br />

which, as previously shown, 104 undergo<br />

N<br />

N<br />

105, 76%<br />

OTBS<br />

CO2t-Bu cyclization to the required benzofurans (109 → 110,<br />

Scheme 48). You’s research group went on to develop a<br />

copper-catalyzed version of the hydroxylation reaction<br />

<strong>and</strong> also demonstrated its use in benzofuran synthesis, in<br />

this case from an o-iodoarylalkyne to generate benzofuran<br />

112. 105<br />

F 3C<br />

Cl<br />

109<br />

Scheme 48<br />

A greater number of research groups have utilized intramolecular<br />

carbon–oxygen bond formation as the key<br />

step in benzofuran syntheses. In 2004 Willis et al. demonstrated<br />

the use of a-(o-haloaryl) ketones as precursors to<br />

the required oxygen heterocycles via an enolization/palladium-catalyzed<br />

intramolecular O-arylation reaction, with<br />

a Pd 2(dba) 3/DPEPhos catalyst system proving optimum<br />

for the process (Scheme 49). 106 The starting ketones were<br />

themselves formed by a palladium-catalyzed ketone arylation;<br />

however, attempts to achieve a one-pot combination<br />

of these processes was not straightforward, <strong>and</strong> after<br />

optimization only a single high-yielding example of the<br />

cascade could be achieved. Kotschy <strong>and</strong> co-workers<br />

showed that the same cyclization of o-bromobenzyl ketones,<br />

which they accessed from aromatic aldehydes <strong>and</strong><br />

2-bromobenzyl bromide using dithiane chemistry, is possible<br />

using a palladium–NHC catalyst system. 107<br />

O<br />

Scheme 49<br />

Cl<br />

I<br />

O<br />

Br<br />

Me<br />

86%<br />

(NaOt-Bu)<br />

Ph<br />

S<br />

KOH<br />

F3C<br />

Pd2(dba) 3 (2 mol%)<br />

t-BuXPhos (8 mol%)<br />

H2O, dioxane<br />

100 °C<br />

KOH<br />

Ph CuI (10 mol%)<br />

1,10-phenathroline<br />

(20 mol%)<br />

H 2O, DMSO<br />

100 °C<br />

t-Bu2P i-Pr<br />

i-Pr<br />

t-BuXPhos (111)<br />

Cs2CO3<br />

toluene, 100 °C<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Cl<br />

i-Pr<br />

Pd 2(dba) 3 (2.5 mol%)<br />

DPEPhos (22) (6 mol%)<br />

N<br />

O<br />

86%<br />

(NaOt-Bu)<br />

(chloro substrate)<br />

F<br />

O<br />

110, 87%<br />

O<br />

112, 86%<br />

O<br />

95%<br />

O<br />

74%<br />

(NaOt-Bu)<br />

Ph<br />

S


16 J. E. R. Sadig, M. C. Willis REVIEW<br />

Chen <strong>and</strong> Dormer reported a copper(I) iodide catalyzed,<br />

lig<strong>and</strong>-free modification of this benzofuran synthesis using<br />

o-iodo- or o-bromoaromatic ketones. 108 A range of<br />

substituents at the resulting 2- <strong>and</strong> 3-positions of the product<br />

benzofuran were tolerated, <strong>and</strong> the first use of an aldehyde<br />

substrate was demonstrated, yielding 3benzylbenzo[b]furan<br />

113 in 92% yield (Scheme 50). An<br />

on-water variant of this protocol was described by the<br />

SanMartin <strong>and</strong> Domínguez group, with the use of a diamine<br />

lig<strong>and</strong> being required. 109 Ackermann <strong>and</strong> Kaspar<br />

also utilized a related copper-catalyzed cyclization in<br />

combination with alkyne hydration chemistry to access<br />

benzofurans. 110<br />

O<br />

Br<br />

Scheme 50<br />

Willis <strong>and</strong> co-workers developed a second strategy to<br />

access benzofurans, again based on an intramolecular<br />

carbon–oxygen bond-forming reaction. Scheme 8 highlighted<br />

the use of aryl halide/alkenyl triflate substrates in<br />

the synthesis of indole derivatives; the research group was<br />

able to further demonstrate the utility of these substrates<br />

as general heterocycle precursors, through their use in a<br />

copper-catalyzed benzofuran synthesis. 111 Coupling of the<br />

same substrates with potassium hydroxide yielded benzofurans<br />

via presumed enolate intermediates.<br />

Lautens <strong>and</strong> co-workers reported an approach to 2-bromobenzofurans<br />

using an intramolecular carbon–oxygen<br />

coupling of gem-dibromovinyl phenols. 31i As in the related<br />

indole chemistry (see Scheme 5), the dibromovinyl<br />

phenol substrates were synthesized using a Ramirez olefination<br />

process. As shown in Scheme 51, a lig<strong>and</strong>-free<br />

copper(I) iodide catalyst was found to be effective, providing<br />

the benzofurans in excellent yields.<br />

Br<br />

Scheme 51<br />

H<br />

Br<br />

OH<br />

Br<br />

Cl<br />

CuI (10 mol%)<br />

K3PO4 DMF, 105 °C<br />

CuI (5 mol%)<br />

K3PO4<br />

THF, 80 °C<br />

H<br />

O<br />

113, 92%<br />

In 1999 Miura <strong>and</strong> co-workers developed a t<strong>and</strong>em palladium-catalyzed<br />

intermolecular carbon–carbon/intramolecular<br />

carbon–oxygen bond-forming reaction of benzyl<br />

phenyl ketones with o-dibromoarenes to yield benzofurans.<br />

112 A palladium(II) acetate/triphenylphosphine catalyzed<br />

system was found to be optimal, with high reaction<br />

temperatures also being used (Scheme 52). The reactions<br />

proceeded via initial palladium-catalyzed enolate C-arylation,<br />

followed by palladium-catalyzed O-arylation. The<br />

protocol was extended to the use of phenol coupling part-<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Br<br />

O<br />

96%<br />

Br<br />

Cl<br />

ners in place of ketones, to give dibenzofuran products<br />

(114 → 115). SanMartin, Domínguez <strong>and</strong> co-workers reported<br />

a similar method for the synthesis of benzofurans;<br />

113 in their account they compared the use of<br />

homogeneous <strong>and</strong> heterogeneous polymer-supported palladium<br />

catalysis, with the latter affording the heterocycles<br />

in slightly inferior yields.<br />

MeO<br />

MeO<br />

t-Bu<br />

OH<br />

114<br />

Scheme 52<br />

Ma <strong>and</strong> co-workers reported a related copper-catalyzed<br />

cascade route to benzofurans. In the optimized system, bketo<br />

esters were combined with 1-bromo-2-iodobenzenes<br />

to provide benzofurans via initial intermolecular carbon–<br />

carbon bond formation followed by intramolecular formation<br />

of the carbon–oxygen bond (Scheme 53). 114 Substitution<br />

on both the aryl halide <strong>and</strong> keto ester was well<br />

tolerated, providing benzofurans in good yields.<br />

Ph<br />

Cl<br />

O<br />

Scheme 53<br />

+<br />

+<br />

Br<br />

Br<br />

O<br />

Ph<br />

3.2 Benzoxazoles<br />

+<br />

O<br />

I<br />

Br<br />

OEt<br />

Pd(OAc) 2 (5 mol%)<br />

Ph3P (20 mol%)<br />

Cs2CO3 o-xylene, 160 °C<br />

Br<br />

Pd(OAc)2–4Ph3P<br />

(5 mol%)<br />

O<br />

78%<br />

CsCO3<br />

Br o-xylene, 160 °C<br />

O<br />

t-Bu<br />

115, 66%<br />

CuI (10 mol%)<br />

K2CO3 THF, 100 °C<br />

The use of catalytic intramolecular carbon–oxygen bondforming<br />

reactions has proved to be a popular route to<br />

benzoxazoles. In 2006 Batey <strong>and</strong> Evindar developed a<br />

copper-catalyzed cyclization of o-halobenzanilides to<br />

generate a variety of alkyl, aryl, benzyl, alkenyl, dienyl<br />

<strong>and</strong> heterocyclic 2-substituted benzoxazoles (as well as a<br />

h<strong>and</strong>ful of benzothiazoles – see section 4.2). As shown in<br />

Scheme 54 the optimal catalyst was a copper(I) iodide/<br />

phenanthroline combination. 115 The majority of examples<br />

employed aryl bromide substrates, although the iodo derivatives<br />

also performed well. A single aryl chloride example<br />

was included. SanMartin, Domínguez <strong>and</strong> coworkers<br />

reported a similar copper-catalyzed cyclization to<br />

access benzoxazoles. They developed two catalyst systems,<br />

using either copper(I) chloride or copper(II) triflate<br />

in combination with N,N,N¢,N¢-tetramethylethylenediamine<br />

(TMEDA), on water, to yield the desired heterocy-<br />

Cl<br />

O<br />

78%<br />

Ph<br />

CO2Et<br />

OMe<br />

OMe<br />

Ph


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 17<br />

cles in good yields from either the o-iodo, o-bromo- or ochlorobenzanilides.<br />

116 Similar cyclizations have also been<br />

reported by Jiang <strong>and</strong> Ma 117 <strong>and</strong> Kantam <strong>and</strong> co-workers.<br />

118<br />

H<br />

N<br />

Br<br />

N<br />

Scheme 54<br />

In 2009 Sun <strong>and</strong> co-workers extended this type of cyclization<br />

to the synthesis of 2-substituted oxazolopyridines. 119<br />

As shown in Scheme 55, a copper(I) iodide/diamine or<br />

copper(I) iodide/phenanthroline catalyst system proved to<br />

be optimal, yielding the desired heterocycles from the cyclization<br />

of o-chloro- or o-bromopyridylamides, respectively.<br />

Me<br />

N<br />

Scheme 55<br />

CuI (5 mol%)<br />

1,10-phenanthroline<br />

(10 mol%)<br />

O OMe Cs 2CO 3<br />

DME, relfux<br />

O Ph<br />

89%<br />

N N<br />

O<br />

90%<br />

Cbz<br />

25<br />

H<br />

N<br />

CuI (5 mol%)<br />

(10 mol%)<br />

N<br />

O<br />

Cl<br />

K2CO3 toluene, reflux<br />

N O<br />

91%<br />

N<br />

H<br />

N<br />

O<br />

Br<br />

Ph<br />

Cl<br />

CuI (5 mol%)<br />

1,10-phenanthroline<br />

(10 mol%)<br />

Cs2CO3<br />

THF, reflux<br />

MeO<br />

N<br />

The Batey research group developed a further synthesis of<br />

benzoxazoles involving intramolecular carbon–oxygen<br />

bond formation. The substrates were again o-halobenzanilides;<br />

however, these were formed in situ from the reaction<br />

of o-bromoanilines <strong>and</strong> acyl chlorides. 70 A copper(I)<br />

iodide/1,10-phenanthroline combination was found to be<br />

the optimal catalyst system for this one-pot strategy. In<br />

addition, the use of microwave irradiation gave substantially<br />

better results than conventional heating. A library of<br />

24 benzoxazoles was prepared, examples of which are<br />

shown in Scheme 56.<br />

A t<strong>and</strong>em approach to benzoxazoles was reported by<br />

Glorius <strong>and</strong> Altenhoff, in which reaction of o-dihalobenzenes<br />

with amides underwent copper(I) iodide/diamine<br />

catalyzed carbon–nitrogen followed by carbon–oxygen<br />

cross-couplings to yield the desired heterocycles. 120 Examples<br />

of diiodo-, dibromo- <strong>and</strong> mixed dihalobenzenes,<br />

as well as dihalopyridines (Br <strong>and</strong> Cl) were successfully<br />

coupled to benzamide affording 2-phenylbenzoxazoles<br />

(Scheme 57). The dibromobenzene substrate was utilized<br />

to demonstrate variation of the amide partner, giving aryl,<br />

Me<br />

N<br />

O<br />

99%<br />

N<br />

O<br />

90%<br />

97%<br />

N<br />

O<br />

Ph<br />

Ph<br />

Cl<br />

Me<br />

S<br />

O<br />

+<br />

Scheme 56<br />

alkyl, vinyl <strong>and</strong> heterocyclic 2-substituted benzoxazoles.<br />

The use of o-bromochlorobenzenes allowed the regioselective<br />

synthesis of substituted benzoxazoles, with the reaction<br />

proceeding via initial amidation at the aryl bromide<br />

position. Batey <strong>and</strong> co-workers had previously reported<br />

on investigations of related processes, but had not<br />

achieved an efficient system. 70<br />

Scheme 57<br />

Cl<br />

O<br />

NH 2<br />

Br<br />

N<br />

3.3 Isocoumarins<br />

CuI (10 mol%)<br />

1,10-phenanthroline<br />

(20 mol%)<br />

Cs 2CO3, MeCN<br />

210 °C, 15 min, MW<br />

O<br />

91%<br />

In 1999 Shen <strong>and</strong> Wang described the synthesis of isocoumarins<br />

from a palladium-catalyzed reaction of gem-dibromovinyl<br />

benzoates with an organostannane. 121 For<br />

example, reaction of benzoate 114 with phenyltrimethylstannane<br />

using a trifurylphosphine-derived palladium catalyst<br />

delivered isocoumarin 115 in 92% yield (Scheme<br />

58). The t<strong>and</strong>em process is believed to proceed via an initial<br />

Stille reaction of the ‘E’ bromide with the stannane,<br />

which is followed by an intramolecular carbon–oxygen<br />

bond-forming cyclization <strong>and</strong> ensuing elimination of methyl<br />

bromide. Examples using phenyl, furyl, thienyl <strong>and</strong><br />

vinyl tin reagents gave the 3-substituted isocoumarins in<br />

mostly excellent yields, <strong>and</strong> both esters <strong>and</strong> methoxy<br />

groups could be tolerated on the aromatic ring. Willis <strong>and</strong><br />

co-workers reported a palladium-catalyzed carbonylative<br />

isocoumarin synthesis, commencing from the same a-(o-<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Me<br />

O O Ph<br />

F3C<br />

O<br />

66%<br />

85%<br />

Br<br />

+<br />

Br<br />

O OMe<br />

114<br />

85% O<br />

Scheme 58<br />

O<br />

H 2N Ph<br />

Br<br />

Br<br />

+<br />

PhSnMe3 O<br />

O<br />

CuI (5 mol%)<br />

25 (10 mol%)<br />

K2CO 3<br />

toluene, 110 °C<br />

80%<br />

Pd2(dba)3 (2.5 mol%)<br />

P(2-furyl)3 (15 mol%)<br />

toluene, 100 °C<br />

O<br />

O<br />

S<br />

MeO<br />

N<br />

MeO<br />

N<br />

N<br />

O<br />

90%<br />

115, 92%<br />

81%<br />

O<br />

O<br />

S<br />

Ph<br />

O<br />

O<br />

Ph<br />

Ph


18 J. E. R. Sadig, M. C. Willis REVIEW<br />

haloaryl) ketone substrates previously used in benzofuran<br />

synthesis (see Scheme 49). 122<br />

4 Carbon–Sulfur Bond Formation<br />

Relative to the carbon–nitrogen <strong>and</strong> carbon–oxygen<br />

bond-forming reactions discussed above, there are far<br />

fewer examples of catalytic aryl carbon–sulfur bondforming<br />

processes in the literature. However, reactions<br />

are beginning to be developed that exploit the highly nucleophilic<br />

character of thiols (<strong>and</strong> related functional<br />

groups) <strong>and</strong> synthetically useful methods with very low<br />

catalyst loadings are being reported. 123 The number of applications<br />

of these reactions to the synthesis of heterocycles<br />

is also growing.<br />

4.1 Benzothiophenes<br />

Although a number of metal-catalyzed benzothiophene<br />

syntheses exist, 1,2 few of these involve a key carbon–sulfur<br />

bond formation using an aryl halide substrate. As discussed<br />

in section 3.1, Willis et al. demonstrated the use of<br />

a palladium-catalyzed intramolecular O-enolate arylation<br />

in the synthesis of benzofurans (see Scheme 49). 106 Similarly,<br />

the same group showed that thio ketones, derived<br />

from the same a-(o-haloaryl) ketone substrates using<br />

phosphorus pentasulfide, could also undergo this enolization–cyclization,<br />

again using a DPEPhos catalyst system<br />

to afford benzothiophenes. 106 Scheme 59 shows an aryl<br />

bromide example, although the corresponding aryl chloride<br />

also underwent cyclization, albeit in a reduced 44%<br />

yield.<br />

Br S<br />

Scheme 59<br />

Pd2(dba)3 (2.5 mol%)<br />

DPEPhos (22) (6 mol%)<br />

Cs2CO3 S<br />

toluene, 100 °C 74%<br />

In 2009 Lautens <strong>and</strong> co-workers extended the use of gemdihalovinylanilines<br />

in indole synthesis (see Scheme 5) to<br />

establish similar thiophenols as precursors for benzothiophenes.<br />

124 The combination of a palladium-catalyzed<br />

carbon–sulfur bond-forming reaction with a second<br />

cross-coupling process, such as a Suzuki–Miyaura, Heck<br />

or Sonogashira reaction, yielded diversely functionalized<br />

benzothiophenes. For example, combination of thiophenol<br />

116 with thiophene-3-boronic acid using an SPhos-derived<br />

catalyst delivered benzothiophene 117 in 99% yield<br />

(Scheme 60). The majority of examples reported involved<br />

Suzuki chemistry; a broad range of boronic acids, as well<br />

as other boron reagents, were readily included <strong>and</strong> allowed<br />

the introduction of aryl, alkenyl <strong>and</strong> alkyl C2 substituents.<br />

Application of the methodology to a variety of<br />

thiophenol backbones afforded the required heterocycles<br />

in mostly excellent yields.<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

S<br />

Scheme 60<br />

4.2 Benzothiazoles<br />

Two research groups have established benzothiazole syntheses<br />

based on a key catalytic intermolecular carbon–sulfur<br />

bond-forming step. In the first approach, Itoh <strong>and</strong><br />

Mase utilized a palladium-catalyzed thioetherification of<br />

o-bromoanilides using a thiol surrogate coupling partner.<br />

125 For example, reaction between aryl bromide 118<br />

<strong>and</strong> thiol 119, an odorless thiol surrogate, using a<br />

XantPhos-derived catalyst, ultimately delivered benzothiophene<br />

120 in 75% yield (Scheme 61). The reaction<br />

proceeded via intermediate sulfide 121, which was<br />

cleaved under basic conditions <strong>and</strong> then cyclized in the<br />

presence of acid to generate the aromatic product. p-<br />

Methoxybenzylthiol could also be employed as the thiol<br />

surrogate, allowing sulfide cleavage under acid conditions.<br />

Scheme 61<br />

Br<br />

Br<br />

SH<br />

116<br />

+<br />

B(OH) 2<br />

PdCl2 (3 mol%)<br />

SPhos (14) (3 mol%)<br />

K 3PO4, Et3N<br />

dioxane, 110 °C<br />

S<br />

117, 99%<br />

118<br />

121<br />

F<br />

+<br />

H<br />

N<br />

O<br />

Br<br />

Me<br />

Pd2(dba)3 (5 mol%)<br />

XantPhos (2) (10 mol%)<br />

i-Pr2NEt, dioxane<br />

reflux<br />

F<br />

H<br />

N<br />

S<br />

O<br />

Me<br />

O<br />

SH O<br />

OR<br />

O<br />

119<br />

Me<br />

Me<br />

NaOEt, THF, r.t.<br />

then TFA, reflux<br />

S<br />

120, 75%<br />

Rather than use a thiol surrogate, Ma <strong>and</strong> co-workers exploited<br />

metal sulfides in copper-catalyzed couplings with<br />

o-haloanilides to generate benzothiazoles. 126 They were<br />

able to show that sodium sulfide nonahydrate could be<br />

coupled with o-iodoanilides, <strong>and</strong> following acidic workup,<br />

deliver the desired benzothiazole products. For o-bromo<br />

substrates, the use of potassium sulfide was optimal.<br />

Both systems utilized a lig<strong>and</strong>less copper(I) iodide catalyst;<br />

significant variation of the substrate substituents was<br />

possible, delivering benzothiazoles in good to excellent<br />

yields (Scheme 62).<br />

The use of an intramolecular carbon–sulfur bond-forming<br />

reaction has proved more popular in the synthesis of benzothiazoles.<br />

In 1982, Bowman, Heaney <strong>and</strong> Smith reported<br />

an intramolecular, copper-catalyzed S-arylation in the<br />

synthesis of 2-alkyl- <strong>and</strong> 2-aryl-1,3-benzothiazoles from<br />

F<br />

N<br />

S<br />

Me


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 19<br />

F<br />

H<br />

N<br />

I<br />

O<br />

Me<br />

Na2S<br />

CuI (10 mol%)<br />

DMF, 80 °C<br />

then HCl, r.t. F<br />

N<br />

S<br />

75%<br />

.9H2O<br />

+<br />

Scheme 62<br />

o-halothioacetanilides <strong>and</strong> o-halothiobenzanilides, respectively.<br />

127 Castillón <strong>and</strong> co-workers extended this<br />

methodology to a more efficient palladium-catalyzed cyclization<br />

of o-bromothioamides (Scheme 63). 128 It was<br />

also shown that cyclization of o-bromothioureas, prepared<br />

from o-bromophenylisothiocyanates <strong>and</strong> amines, afforded<br />

2-aminobenzothiazoles under similar reaction conditions<br />

(122 → 123).<br />

H<br />

N<br />

S<br />

Br<br />

122<br />

Scheme 63<br />

Batey <strong>and</strong> co-workers reported a comparison of the copper-<br />

<strong>and</strong> palladium-catalyzed syntheses of 2-aminobenzothiazoles<br />

based on this same cyclization of obromothioureas.<br />

129 The use of copper catalysis generally<br />

led to higher yields <strong>and</strong> conversions. Both metals were<br />

also shown to catalyze an example of a one-pot thiourea<br />

formation–cyclization reaction in the same excellent<br />

yield. Batey’s research group also demonstrated that cyclization<br />

of o-bromothioamides under the same copper(I)<br />

iodide/1,10-phenanthroline catalyst system afforded benzothiazoles<br />

in excellent yields; 115 a representative example<br />

is shown in Scheme 64. Jiang <strong>and</strong> Ma reported a<br />

related copper-catalyzed cyclization employing oxazolidin-2-one<br />

as the lig<strong>and</strong>; a number of aryl chloride substrates<br />

were included in their study, <strong>and</strong> effectively<br />

converted into benzothiazoles. 117 Pan <strong>and</strong> co-workers reported<br />

a related preparation of 2-aminobenzothiazoles using<br />

a copper(I) iodide/oxazoline catalyst system. 130<br />

Scheme 64<br />

H<br />

N Ph<br />

+<br />

O<br />

Br<br />

Me Me<br />

Me<br />

H<br />

N NMe 2<br />

S<br />

Br<br />

H<br />

N<br />

S<br />

Br<br />

K 2S<br />

CuI (10 mol%)<br />

DMF, 140 °C<br />

then HCl, r.t.<br />

Pd2(dba)3 (5 mol%)<br />

JohnPhos (106)<br />

(5.5 mol%)<br />

Cs2CO 3<br />

dioxane, 80 °C<br />

Pd 2(dba) 3 (5 mol%)<br />

P(t-Bu)3 (5.5 mol%)<br />

OMe<br />

Cs2CO 3<br />

dioxane, 80 °C<br />

CuI (5 mol%)<br />

1,10-phenanthroline<br />

(10 mol%)<br />

Cs 2CO3, reflux<br />

88%<br />

N<br />

S<br />

Me<br />

Ph<br />

N Me<br />

Me<br />

S Me<br />

88%<br />

N<br />

S<br />

123, 92%<br />

N<br />

S<br />

93%<br />

NMe 2<br />

OMe<br />

The Wu research group described the synthesis of 2-aminobenzothiazoles<br />

by the reaction of o-iodobenzamines<br />

with isothiocyanates using a copper(I) iodide/phenanthroline<br />

catalyst system (Scheme 65). 131 The method was useful<br />

as it eliminated the need to generate an ohalobenzothiourea<br />

cyclization precursor in a separate<br />

step, with the addition/carbon–sulfur coupling reaction<br />

occurring in one pot. The authors exploited the method in<br />

the preparation of an 18-membered library.<br />

F<br />

Scheme 65<br />

A number of benzothiazole syntheses that involve t<strong>and</strong>em<br />

processes have also appeared in the literature. Vera <strong>and</strong><br />

Pelletier utilized t<strong>and</strong>em palladium-catalyzed carbon–<br />

sulfur <strong>and</strong> carbon–nitrogen arylation reactions to prepare<br />

a series of aminobenzothiazoles. 132 For example, the<br />

combination of dibromothiobenzamide 124 <strong>and</strong> isopropylamine,<br />

using a JohnPhos catalyst, delivered 4-aminobenzothiazole<br />

125 in 47% yield (Scheme 66). As can be seen<br />

from the remainder of the examples in Scheme 66, it was<br />

possible to alter the position of the second bromine substituent,<br />

to generate 5-, 6-, <strong>and</strong> 7-amino-substituted products.<br />

Scheme 66<br />

NH 2<br />

I<br />

+<br />

SCN<br />

CuI (10 mol%)<br />

1,10-phenanthroline<br />

(20 mol%)<br />

DABCO<br />

toluene, 50 °C<br />

99%<br />

Br NHi-Pr<br />

124<br />

i-PrHN<br />

H<br />

N Ph<br />

+<br />

H2N(i-Pr)<br />

S<br />

Br<br />

16%<br />

N<br />

S<br />

Ph<br />

Pd 2(dba) 3 (10 mol%)<br />

JohnPhos (106) (20 mol%)<br />

i-PrHN<br />

Patel <strong>and</strong> co-workers showed that 2-arylthiobenzothiazoles<br />

can be accessed from cascade intra- <strong>and</strong> intermolecular<br />

carbon–sulfur bond-forming reactions using a single<br />

catalytic system. 133 A combination of o-iodo- or o-bromodithiocarbamates<br />

<strong>and</strong> iodoarenes were subjected to a<br />

copper(I) iodide/diamine catalyst system yielding the substituted<br />

benzothiazoles in mostly excellent yields<br />

(Scheme 67). The methodology was successfully applied<br />

to the synthesis of a cathespin-D inhibitor analogue.<br />

The same research group developed a cascade protocol for<br />

the synthesis of 2-thio- or 2-oxa-benzothiazoles by the<br />

copper-catalyzed reaction of o-iodo- or o-bromoarylisothiocyanates<br />

with a sulfur or oxygen nucleophile, respectively.<br />

134 The required dithiocarbamates or<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

F<br />

Cs 2CO 3, NaOt-Bu<br />

toluene-dioxane<br />

80 °C<br />

50%<br />

N<br />

S<br />

Ph<br />

N<br />

S<br />

NH<br />

N<br />

S<br />

125, 47%<br />

N<br />

S<br />

NHi-Pr 39%<br />

Ph<br />

Ph


20 J. E. R. Sadig, M. C. Willis REVIEW<br />

Me<br />

I<br />

Scheme 67<br />

thiocarbamates, which were formed in situ under basic<br />

conditions, readily underwent copper-catalyzed intramolecular<br />

carbon–sulfur bond formation. Thiophenols <strong>and</strong><br />

phenols showed the greatest reactivity; however, the corresponding<br />

alkyl series could also be employed, albeit to<br />

generate the products in reduced yields (Scheme 68).<br />

73%<br />

+<br />

Scheme 68<br />

4.3 Oxathioles<br />

Bao <strong>and</strong> co-workers reported a novel one-pot synthesis of<br />

2-iminobenzo-1,3-oxathioles using a cascade addition/<br />

intramolecular carbon–sulfur coupling process. 135 o-Iodophenols<br />

<strong>and</strong> isothiocyanates were combined using a<br />

copper(I) iodide/phenanthroline catalyst system to afford<br />

the desired heterocycles in good to excellent yields. A<br />

representative example is shown in Scheme 69.<br />

Scheme 69<br />

H<br />

N<br />

5 Conclusion<br />

I<br />

S<br />

NCS<br />

+<br />

Br<br />

HS Ph<br />

N<br />

S<br />

OPh<br />

S HNEt3<br />

CuI (5 mol%)<br />

(10 mol%)<br />

126<br />

OMe<br />

K 2CO 3<br />

DMSO, 90 °C<br />

126<br />

NH2<br />

NH2<br />

CuI (5 mol%)<br />

1,10-phenanthroline<br />

(10 mol%)<br />

K2CO 3<br />

dioxane, 90 °C<br />

N<br />

SBn<br />

S<br />

69%<br />

(iodo substrate)<br />

By definition, palladium- <strong>and</strong> copper-catalyzed aryl amination,<br />

aryl etherification <strong>and</strong> aryl thioetherification reactions<br />

are transformations designed to fashion bonds<br />

between heteroatoms <strong>and</strong> aromatic rings. It is perhaps not<br />

surprising that these reactions have enjoyed considerable<br />

success when applied to the synthesis of aromatic heterocycles.<br />

The examples presented above show how these re-<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

Me<br />

OH<br />

CuI (10 mol%)<br />

1,10-phenanthroline<br />

O<br />

SCN<br />

+<br />

I<br />

OMe<br />

(20 mol%)<br />

Cs2CO3<br />

toluene, 70–90 °C<br />

S<br />

86%<br />

Cl<br />

72%<br />

N<br />

S<br />

Ar = 4-MeOC 6H 4<br />

N<br />

S<br />

76%<br />

N<br />

S<br />

54%<br />

N<br />

O<br />

SPh<br />

SAr<br />

Ph<br />

OMe<br />

actions have been exploited towards a wide range of<br />

heterocyclic targets. They also show these reactions being<br />

used to provide new entries to existing, classic synthetic<br />

routes, as well as in the formulation of completely new<br />

disconnections. As advances in the underpinning transformations<br />

continue to develop – new coupling partners,<br />

more active catalysts <strong>and</strong> milder reaction conditions – the<br />

number of applications will undoubtedly continue to<br />

grow. The importance of heteroaromatic molecules virtually<br />

assures it.<br />

References<br />

(1) <strong>Palladium</strong> in Heterocyclic Chemistry, 1st ed.; Li, J. J.;<br />

Gribble, G. W., Eds.; Elsevier: Oxford, 2000.<br />

(2) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.<br />

(3) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.<br />

(4) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.<br />

(5) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.<br />

(6) <strong>Palladium</strong> in Heterocyclic Chemistry, 2nd ed.; Li, J. J.;<br />

Gribble, G. W., Eds.; Elsevier: Oxford, 2007.<br />

(7) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.<br />

(8) Willis, M. C. Tetrahedron 2009, 65, 8907.<br />

(9) Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983,<br />

927.<br />

(10) (a) Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994,<br />

116, 7901. (b) Guram, A. S.; Rennels, R. A.; Buchwald, S.<br />

L. Angew. Chem. Int. Ed. 1995, 34, 1348. (c) Wolfe, J. P.;<br />

Buchwald, S. L. J. Org. Chem. 1996, 61, 1133. (d) Wolfe,<br />

J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996,<br />

118, 7215.<br />

(11) (a) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994,<br />

116, 5969. (b) Louie, J.; Hartwig, J. F. Tetrahedron Lett.<br />

1995, 36, 3609. (c) Hartwig, J. F.; Richards, S.; Barañano,<br />

D.; Paul, F. J. Am. Chem. Soc. 1996, 118, 3626. (d) Driver,<br />

M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 7217.<br />

(12) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382.<br />

(13) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691.<br />

(14) Hartwig, J. F. In H<strong>and</strong>book of Organopalladium Chemistry<br />

for Organic Synthesis, Vol. 1; Negishi, E. I., Ed.; Wiley-<br />

Interscience: New York, 2002, 1051–1096.<br />

(15) Jiang, L.; Buchwald, S. L. In Metal-<strong>Catalyzed</strong> Cross-<br />

Coupling Reactions, 2nd ed.; de Meijere, A.; Diederich, F.,<br />

Eds.; Wiley-VCH: Weinheim, 2004.<br />

(16) Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008,<br />

47, 6338.<br />

(17) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.<br />

(18) Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42,<br />

5400; Corrigendum: Angew. Chem. Int. Ed. 2004, 43, 1043.<br />

(19) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004,<br />

248, 2337.<br />

(20) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108,<br />

3054.<br />

(21) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.<br />

(22) Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48,<br />

6954.<br />

(23) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13.<br />

(24) Although the majority of examples described in this<br />

approach do not lead directly to an aromatic heterocycle, but<br />

to an intermediate, it is included because of its historical<br />

relevance to the development of palladium-catalyzed aryl<br />

halide amination chemistry in heterocycle synthesis.<br />

(25) (a) Wagaw, A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem.<br />

Soc. 1998, 120, 6621. (b) Wagaw, A.; Yang, B. H.;<br />

Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 10251.


REVIEW <strong>Palladium</strong>- <strong>and</strong> <strong>Copper</strong>-<strong>Catalyzed</strong> Heterocycle Synthesis 21<br />

(26) Lim, Y.-K.; Cho, C.-G. Tetrahedron Lett. 2004, 45, 1857.<br />

(27) Watanabe, M.; Yamamoto, T.; Nishiyama, M. Angew.<br />

Chem. Int. Ed. 2000, 39, 2501.<br />

(28) Siebeneicher, H.; Bytschkov, I.; Doye, S. Angew. Chem. Int.<br />

Ed. 2003, 42, 3042.<br />

(29) Brown, J. A. Tetrahedron Lett. 2000, 41, 1623.<br />

(30) (a) Yamazaki, K.; Nakamura, Y.; Kondo, Y. J. Chem. Soc.,<br />

Perkin Trans. 1 2002, 2137. (b) Yamazaki, K.; Nakamura,<br />

Y.; Kondo, Y. J. Org. Chem. 2003, 68, 6011.<br />

(31) (a) Fang, Y.-Q.; Lautens, M. Org. Lett. 2005, 7, 3549.<br />

(b) Fang, Y.-Q.; Lautens, M. J. Org. Chem. 2008, 73, 538.<br />

(c) Fang, Y.-Q.; Karisch, R.; Lautens, M. J. Org. Chem.<br />

2007, 72, 1341. (d) Fang, Y.-Q.; Yuen, J.; Lautens, M.<br />

J. Org. Chem. 2007, 72, 5152. (e) Fayol, A.; Fang, Y.-Q.;<br />

Lautens, M. Org. Lett. 2006, 8, 4203. (f) Nagamochi, M.;<br />

Fang, Y.-Q.; Lautens, M. Org. Lett. 2007, 9, 2955.<br />

(g) Yuen, J.; Fang, Y.-Q.; Lautens, M. Org. Lett. 2006, 8,<br />

653. (h) Bryan, C. S.; Lautens, M. Org. Lett. 2008, 10, 4633.<br />

(i) Newman, S. G.; Aureggi, V.; Bryan, C. S.; Lautens, M.<br />

Chem. Commun. 2009, 5236.<br />

(32) (a) Willis, M. C.; Brace, G. N. Tetrahedron Lett. 2002, 43,<br />

9085. (b) Barluenga, J.; Fernández, M. A.; Aznar, F.;<br />

Valdés, C. Chem. Commun. 2002, 2362. (c) Wallace, D. J.;<br />

Klauber, D. J.; Chen, C.-y.; Volante, R. P. Org. Lett. 2003,<br />

5, 4759. (d) Barluenga, J.; Fernández, M. A.; Aznar, F.;<br />

Valdés, C. Chem. Eur. J. 2004, 10, 494. (e) Klapers, A.;<br />

Campos, K. R.; Chen, C.-y.; Volante, R. P. Org. Lett. 2005,<br />

7, 1185. (f) Willis, M. C.; Chauhan, J.; Whittingham, W. G.<br />

Org. Biomol. Chem. 2005, 3094. (g) Willis, M. C.; Brace,<br />

G. N.; Holmes, I. P. Synthesis 2005, 3229.<br />

(33) Thielges, S.; Meddah, E.; Bisseret, P.; Eustache, J.<br />

Tetrahedron Lett. 2004, 45, 907.<br />

(34) (a) Vieira, T. O.; Meaney, L. A.; Shi, Y.-L.; Alper, H. Org.<br />

Lett. 2008, 10, 4899. (b) Arthuis, M.; Pontikis, R.; Florent,<br />

J.-C. Org. Lett. 2009, 11, 4608.<br />

(35) (a) Willis, M. C.; Brace, G. N.; Holmes, I. P. Angew. Chem.<br />

Int. Ed. 2005, 44, 403. (b) Willis, M. C.; Brace, G. N.;<br />

Findlay, T. J. K.; Holmes, I. P. Adv. Synth. Catal. 2006, 348,<br />

851. (c) Fletcher, A. J.; Bax, M. N.; Willis, M. C. Chem.<br />

Commun. 2007, 4764. (d) Henderson, L. C.; Lindon, M. J.;<br />

Willis, M. C. Tetrahedron 2010, 66, 6632. (e) Hodgkinson,<br />

R. C.; Schulz, J.; Willis, M. C. Tetrahedron 2009, 65, 8940.<br />

(f) Hodgkinson, R. C.; Schulz, J.; Willis, M. C. Org. Biomol.<br />

Chem. 2009, 7, 432.<br />

(36) Dong, S.-X.; Zhang, X.-G.; Liu, Q.; Tang, R.-Y.; Zhong, P.;<br />

Li, J.-H. Synthesis 2010, 1521.<br />

(37) Smith, A. B. III.; Kürti, L.; Davulcu, A. H. Org. Lett. 2006,<br />

8, 2167.<br />

(38) (a) Ackermann, L. Org. Lett. 2005, 7, 439. (b) Ackermann,<br />

L.; Barfüsser, S.; Potukuchi, H. K. Adv. Synth. Catal. 2009,<br />

351, 1064. (c) Ackermann, L.; S<strong>and</strong>mann, R.; Kondrashov,<br />

M. V. Synlett 2009, 1219. (d) Ackermann, L.; S<strong>and</strong>mann,<br />

R.; Schinkel, M.; Kondrashov, M. V. Tetrahedron 2009, 65,<br />

8930. (e) Kaspar, L. T.; Ackermann, L. Tetrahedron 2005,<br />

61, 11311.<br />

(39) Tang, Z.-Y.; Hu, Q.-S. Adv. Synth. Catal. 2006, 348, 846.<br />

(40) Sanz, R.; Castroviejo, M. P.; Guilarte, V.; Pérez, A.;<br />

Fañanás, F. J. J. Org. Chem. 2007, 72, 5113.<br />

(41) Yao, P.-Y.; Zhang, Y.; Hsung, R. P.; Zhao, K. Org. Lett.<br />

2008, 10, 4275.<br />

(42) (a) Barluenga, J.; Jiménez-Aquino, A.; Valdés, C.; Aznar, F.<br />

Angew. Chem. Int. Ed. 2007, 46, 1529. (b) Barluenga, J.;<br />

Jiménez-Aquino, A.; Aznar, F.; Valdés, C. J. Am. Chem.<br />

Soc. 2009, 131, 4031.<br />

(43) (a) Nozaki, K.; Takahashi, K.; Nakano, K.; Hiyama, T.;<br />

Tang, H.-Z.; Fujiki, M.; Yamaguchi, S.; Tamao, K. Angew.<br />

Chem. Int. Ed. 2003, 42, 2051. (b) Kuwahara, A.; Nakano,<br />

K.; Nozaki, K. J. Org. Chem. 2005, 70, 413. (c) Nakano,<br />

K.; Hidehira, Y.; Takahashi, K.; Hiyama, T.; Nozaki, K.<br />

Angew. Chem. Int. Ed. 2005, 44, 7136. (d) Kawaguchi, K.;<br />

Nakano, K.; Nozaki, K. J. Org. Chem. 2007, 72, 5119.<br />

(e) Kawaguchi, K.; Nakano, K.; Nozaki, K. Org. Lett. 2008,<br />

10, 1199.<br />

(44) (a) Kitawaki, T.; Hayashi, Y.; Ueno, A.; Chida, N.<br />

Tetrahedron 2006, 62, 6792. (b) Ueno, A.; Kitawaki, T.;<br />

Chida, N. Org. Lett. 2008, 10, 1999.<br />

(45) Li, E.; Xu, X.; Li, H.; Zhang, H.; Xu, X.; Yuan, X.; Li, Y.<br />

Tetrahedron 2009, 65, 8961.<br />

(46) Koeckelberghs, G.; Cremer, L. D.; Vanormelingen, W.;<br />

Dehaen, W.; Verbiest, T.; Persoons, A.; Samyn, C.<br />

Tetrahedron 2005, 61, 687.<br />

(47) Odom, S. A.; Lancaster, K.; Bevrina, L.; Lefler, K. M.;<br />

Thompson, N. J.; Coropceanu, V.; Brédas, J.-L.; Marder, S.<br />

R.; Barlow, S. Chem. Eur. J. 2007, 13, 9637.<br />

(48) (a) Bedford, R. B.; Cazin, C. S. J. Chem. Commun. 2002,<br />

2310. (b) Bedford, R. B.; Betham, M. J. Org. Chem. 2006,<br />

71, 9403. (c) Bedford, R. B.; Betham, M.; Charmant, J. P.<br />

H.; Weeks, A. L. Tetrahedron 2008, 64, 6038.<br />

(49) (a) Ackermann, L.; Althammer, A. Angew. Chem. Int. Ed.<br />

2007, 46, 1627. (b) Ackermann, L.; Althammer, A.; Mayer,<br />

P. Synthesis 2009, 3493.<br />

(50) Kitamura, Y.; Yoshikawa, S.; Furuta, T.; Kan, T. Synlett<br />

2008, 377.<br />

(51) (a) Watanabe, T.; Ueda, A.; Inuki, S.; Oishi, S.; Fujii, N.;<br />

Ohno, H. Chem. Commun. 2007, 4516. (b) Watanabe, T.;<br />

Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2009, 74, 4720.<br />

(52) (a) Zou, B.; Yuan, Q.; Ma, D. Angew. Chem. Int. Ed. 2007,<br />

46, 2598. (b) Zou, B.; Yuan, Q.; Ma, D. Org. Lett. 2007, 9,<br />

4291. (c) Diao, X.; Wang, Y.; Jiang, Y.; Ma, D. J. Org.<br />

Chem. 2009, 74, 7974.<br />

(53) (a) Zheng, N.; Anderson, K. W.; Xiaohua, X.; Nguyen, H.<br />

N.; Buchwald, S. L. Angew. Chem. Int. Ed. 2007, 46, 7509.<br />

(b) Zheng, N.; Buchwald, S. L. Org. Lett. 2007, 9, 4749.<br />

(54) Scott, J. P. Synlett 2006, 2083.<br />

(55) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006,<br />

8, 3311.<br />

(56) Li, Z.; Sun, H.; Jiang, H.; Liu, H. Org. Lett. 2008, 10, 3263.<br />

(57) Xu, X.-J.; Zong, Y.-X. Tetrahedron Lett. 2007, 48, 129.<br />

(58) Barbero, N.; Carril, M.; SanMartin, R.; Domínguez, E.<br />

Tetrahedron 2008, 64, 7283.<br />

(59) (a) Brain, C. T.; Brunton, S. A. Tetrahedron Lett. 2002, 43,<br />

1893. (b) Brain, C. T.; Steer, J. T. J. Org. Chem. 2003, 68,<br />

6814.<br />

(60) (a) Ventatesh, C.; Sundaram, G. S. M.; Ila, H.; Junjappa, H.<br />

J. Org. Chem. 2006, 71, 1280. (b) Kumar, S.; Ila, H.;<br />

Junjappa, H. J. Org. Chem. 2009, 74, 7046.<br />

(61) Alen, J.; Robeyns, K.; De Borggraeve, W. M.;<br />

Van Meervelt, L.; Compernolle, F. Tetrahedron 2008, 64,<br />

8128.<br />

(62) Lygin, A. V.; De Meijere, A. Eur. J. Org. Chem. 2009, 5138.<br />

(63) Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133.<br />

(64) Szczepankiewicz, B. G.; Rohde, J. J.; Kurukulasuriya, R.<br />

Org. Lett. 2005, 7, 1833.<br />

(65) Murru, S.; Patel, B. K.; Le Bras, J.; Muzart, J. J. Org. Chem.<br />

2009, 74, 2217.<br />

(66) Chen, M.-W.; Zhang, X.-G.; Zhong, P.; Hu, M.-L. Synthesis<br />

2009, 1431.<br />

(67) Zhu, J.; Xie, H.; Chen, Z.; Li, S.; Wu, Y. Chem. Commun.<br />

2009, 2338.<br />

(68) (a) Loones, K. T. J.; Maes, B. U. W.; Dommisse, R. A.;<br />

Lemiére, G. L. F. Chem. Commun. 2004, 2466. (b) Loones,<br />

K. T. J.; Maes, B. U. W.; Meyers, C.; Deruytter, J. J. Org.<br />

Chem. 2006, 71, 260. (c) Loones, K. T. J.; Maes, B. U. W.;<br />

Herrebout, W. A.; Dommisse, R. A.; Lemiére, G. L. F.;<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York


22 J. E. R. Sadig, M. C. Willis REVIEW<br />

Van der Veken, B. Tetrahedron 2007, 63, 3818.<br />

(d) Loones, K. T. J.; Maes, B. U. W.; Dommisse, R. A.<br />

Tetrahedron 2007, 63, 8954.<br />

(69) Bogányi, B.; Kámán, J. J. Heterocycl. Chem. 2009, 46, 33.<br />

(70) Viirre, R. D.; Evindar, G.; Batey, R. A. J. Org. Chem. 2008,<br />

73, 3452.<br />

(71) Deng, X.; McAllister, H.; Mani, N. J. Org. Chem. 2009, 74,<br />

5742.<br />

(72) Lebedev, A. Y.; Khartulyari, A. S.; Voskoboynikov, A. Z.<br />

J. Org. Chem. 2005, 70, 596.<br />

(73) (a) Inamoto, K.; Katsuno, M.; Yoshino, T.; Suzuki, I.;<br />

Hiroya, K.; Sakamoto, T. Chem. Lett. 2004, 33, 1026.<br />

(b) Inamoto, K.; Katsuno, M.; Yoshino, T.; Arai, Y.; Hiroya,<br />

K.; Sakamoto, T. Tetrahedron 2007, 63, 2695.<br />

(74) Suryakiran, N.; Prabhakar, P.; Venkateswarlu, Y. Chem.<br />

Lett. 2007, 36, 1370.<br />

(75) Song, J. J.; Yee, N. K. Tetrahedron Lett. 2001, 42, 2937.<br />

(76) Cho, C. S.; Lim, D. K.; Heo, N. H.; Kim, T.-J.; Shim, S. C.<br />

Chem. Commun. 2004, 104.<br />

(77) Pabba, C.; Wang, H.-J.; Mulligan, S. R.; Chen, Z.-J.; Stark,<br />

T. M.; Gregg, B. T. Tetrahedron Lett. 2005, 46, 7553.<br />

(78) Viña, D.; del Olmo, E.; López-Pérez, J. L.; San Feliciano, A.<br />

Org. Lett. 2007, 9, 525.<br />

(79) Levecchia, G.; Berteina-Raboin, S.; Guillaumet, G.<br />

Tetrahedron Lett. 2004, 45, 2389.<br />

(80) Song, J. J.; Yee, N. K. Org. Lett. 2000, 2, 519.<br />

(81) Zhu, Y.-m.; Kiryu, Y.; Katayama, H. Tetrahedron Lett.<br />

2002, 43, 3577.<br />

(82) Hall<strong>and</strong>, N.; Nazaré, M.; R’kyek, O.; Alonso, J.; Urmann,<br />

M.; Lindenschmidt, A. Angew. Chem. Int. Ed. 2009, 48,<br />

6879.<br />

(83) Tanimori, S.; Ozaki, Y.; Iesaki, Y.; Kirihata, M. Synlett<br />

2008, 1973.<br />

(84) Martin, R.; Larsen, C. H.; Cuenca, A.; Buchwald, S. L. Org.<br />

Lett. 2007, 9, 3379.<br />

(85) Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org.<br />

Chem. 2007, 72, 1510.<br />

(86) Rodriguez Rivero, M.; Buchwald, S. L. Org. Lett. 2007, 9,<br />

973.<br />

(87) Martin, R.; Rodriguez Rivero, M.; Buchwald, S. L. Angew.<br />

Chem. Int. Ed. 2006, 45, 7079.<br />

(88) Cho, C. S.; Patel, D. B. Tetrahedron 2006, 62, 6388.<br />

(89) (a) Haddad, N.; Baron, J. Tetrahedron Lett. 2002, 43, 2171.<br />

(b) Haddad, N.; Salvagno, A.; Busacca, C. Tetrahedron Lett.<br />

2004, 45, 5935.<br />

(90) Martin, R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9,<br />

5521.<br />

(91) Manley, P. J.; Bilodeau, M. T. Org. Lett. 2004, 6, 2433.<br />

(92) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen,<br />

R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609.<br />

(93) Jones, C. P.; Anderson, K. W.; Buchwald, S. L. J. Org.<br />

Chem. 2007, 72, 7968.<br />

(94) Battistuzzi, G.; Bernini, R.; Cacchi, S.; De Salve, I.; Fabrizi,<br />

G. Adv. Synth. Catal. 2007, 349, 297.<br />

(95) Tadd, A. C.; Matsuno, A.; Fielding, M. R.; Willis, M. C.<br />

Org. Lett. 2009, 11, 583.<br />

(96) Willis, M. C.; Snell, R. H.; Fletcher, A. J.; Woodward, R. L.<br />

Org. Lett. 2006, 8, 5089.<br />

(97) (a) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem. Int. Ed.<br />

2009, 48, 348. (b) Huang, X.; Yang, H.; Fu, H.; Qiao, R.;<br />

Zhao, Y. Synthesis 2009, 2679.<br />

(98) Zhou, J.; Fu, L.; Lv, M.; Liu, J.; Pei, D.; Ding, K. Synthesis<br />

2008, 3974.<br />

(99) Ju, Y.; Liu, F.; Li, C. Org. Lett. 2009, 11, 3582.<br />

(100) Tietze, M.; Iglesias, A.; Merisor, E.; Conrad, J.; Klaiber, I.;<br />

Beifuss, U. Org. Lett. 2005, 7, 1549.<br />

Synthesis 2011, No. 1, 1–22 © Thieme Stuttgart · New York<br />

(101) Emoto, T.; Kubosaki, N.; Yamagiwa, Y.; Kamikawa, T.<br />

Tetrahedron Lett. 2000, 41, 355.<br />

(102) Hasegawa, K.; Kimura, N.; Arai, S.; Nishida, A. J. Org.<br />

Chem. 2008, 73, 6363.<br />

(103) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L.<br />

J. Am. Chem. Soc. 2006, 128, 10694.<br />

(104) Liao, Y.; Smith, J.; Fathi, R.; Yan, Z. Org. Lett. 2005, 7,<br />

2707.<br />

(105) Zhao, D.; Wu, N.; Zhang, S.; Xi, P.; Su, X.; Lan, J.; You, J.<br />

Angew. Chem. Int. Ed. 2009, 48, 8729.<br />

(106) (a) Willis, M. C.; Taylor, D.; Gillmore, A. T. Org. Lett.<br />

2004, 6, 4755. (b) Willis, M. C.; Taylor, D.; Gillmore, A. T.<br />

Tetrahedron 2006, 62, 11513.<br />

(107) Faragó, J.; Kotschy, A. Synthesis 2009, 85.<br />

(108) Chen, C.-y.; Dormer, P. G. J. Org. Chem. 2005, 70, 6964.<br />

(109) Carril, M.; SanMartin, R.; Tellitu, I.; Domínguez, E. Org.<br />

Lett. 2006, 8, 1467.<br />

(110) Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149.<br />

(111) Tadd, A. C.; Fielding, M. R.; Willis, M. C. Tetrahedron Lett.<br />

2007, 48, 7578.<br />

(112) Terao, Y.; Satoh, T.; Miura, M.; Nomura, M. Bull. Chem.<br />

Soc. Jpn. 1999, 72, 2345.<br />

(113) Churruca, F.; SanMartin, R.; Tellitu, I.; Domínguez, E. Eur.<br />

J. Org. Chem. 2005, 2481.<br />

(114) Lu, B.; Wang, B.; Zhang, Y.; Ma, D. J. Org. Chem. 2007, 72,<br />

5337.<br />

(115) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802.<br />

(116) Barbero, N.; Carril, M.; SanMartin, R.; Domínguez, E.<br />

Tetrahedron 2007, 63, 10425.<br />

(117) Ma, H. C.; Jiang, X. Z. Synlett 2008, 1335.<br />

(118) Kantam, M. L.; Venkanna, G. T.; Kumar, K. B. S.;<br />

Balasubramanyam, V.; Bhargava, S. Synlett 2009, 1753.<br />

(119) Xu, D.; Xu, X.; Liu, Z.; Sun, L.-P.; You, Q. Synlett 2009,<br />

1172.<br />

(120) Altenhoff, G.; Glorius, F. Adv. Synth. Catal. 2004, 346,<br />

1661.<br />

(121) Wang, L.; Shen, W. Tetrahedron Lett. 1998, 39, 7625.<br />

(122) Tadd, A. C.; Fielding, M. R.; Willis, M. C. Chem. Commun.<br />

2009, 6744.<br />

(123) (a) Fernández-Rodríguez, M. A.; Hartwig, J. F. J. Org.<br />

Chem. 2009, 74, 1663. (b) Eichman, C. C.; Stambuli, J. P.<br />

J. Org. Chem. 2009, 74, 4005. (c) Lee, J.-Y.; Lee, P. H.<br />

J. Org. Chem. 2008, 73, 7413. (d) Fernández-Rodríguez,<br />

M. A.; Hartwig, J. F. Chem.Eur. J. 2006, 12, 7782.<br />

(e) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60,<br />

7397.<br />

(124) Bryan, C. A.; Braunger, J. A.; Lautens, M. Angew. Chem.<br />

Int. Ed. 2009, 48, 7064.<br />

(125) Itoh, T.; Mase, T. Org. Lett. 2007, 9, 3687.<br />

(126) Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y.<br />

Angew. Chem. Int. Ed. 2009, 48, 4222.<br />

(127) Bowman, W. R.; Heaney, H.; Smith, P. H. G. Tetrahedron<br />

Lett. 1982, 23, 5093.<br />

(128) Bendi, C.; Bravo, F.; Uriz, P.; Fernández, E.; Claver, C.;<br />

Castillón, S. Tetrahedron Lett. 2003, 44, 6073.<br />

(129) Joyce, L. L.; Evindar, G.; Batey, R. A. Chem. Commun.<br />

2004, 446.<br />

(130) Wang, J.; Peng, F.; Jiang, J.-l.; Lu, Z.-j.; Wang, L.-y.; Bai,<br />

J.; Pan, Y. Tetrahedron Lett. 2008, 49, 467.<br />

(131) Ding, Q.; He, X.; Wu, J. J. Comb. Chem. 2009, 11, 587.<br />

(132) Vera, M. D.; Pelletier, J. C. J. Comb. Chem. 2007, 9, 569.<br />

(133) Murru, S.; Ghosh, H.; Sahoo, S. K.; Patel, B. K. Org. Lett.<br />

2009, 11, 4254.<br />

(134) Murru, S.; Mondal, P.; Yella, R.; Patel, B. K. Eur. J. Org.<br />

Chem. 2009, 5406.<br />

(135) Lv, X.; Liu, Y.; Qian, W.; Bao, W. Adv. Synth. Catal. 2008,<br />

350, 2507.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!