30.06.2013 Views

ALLOPLASTIC MATERIALS IN PLASTIC SURGERY

ALLOPLASTIC MATERIALS IN PLASTIC SURGERY

ALLOPLASTIC MATERIALS IN PLASTIC SURGERY

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

1<br />

<strong>ALLO<strong>PLASTIC</strong></strong> <strong>MATERIALS</strong><br />

<strong>IN</strong> <strong>PLASTIC</strong> <strong>SURGERY</strong><br />

David Leshem M.D.<br />

DEPARTMENT OF <strong>PLASTIC</strong> <strong>SURGERY</strong><br />

TEL AVIV SOURASKY MEDICAL CENTER<br />

January 2001<br />

ALLOPLASTS – DEF<strong>IN</strong>ITIONS<br />

• Foreign, non-autogenous materials implanted into tissues for purpose of<br />

augmenting, reconstructing or replacing tissues, organs or functions of the<br />

body.<br />

• Does not depend on local tissues for survival.<br />

• Temporary implants must disintegrate gradually within a predictable time<br />

without the production of non-compatable, harmful disintegration products.<br />

• Permanent implants must provide maintenance-free function in a<br />

physiologic environment over the patient’s lifetime.<br />

• Advantageous because: 1. No donor site morbidity.<br />

2.Unlimited availability.<br />

3.No operative time for harvesting the graft.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

2<br />

Criteria for the IDEAL ALLOPLAST (Scales)<br />

1. Not physically modified by soft tissue.<br />

2. Chemically inert.<br />

3. Elicits no inflammatory or foreign body reaction.<br />

4. Non-carcinogenic.<br />

5. Produces no state of allergy or hypersensitivity.<br />

6. Resists mechanical strains.<br />

7. Capable of fabrication in the form desired.<br />

8. Sterilizable.<br />

9. Effective in its intended application.<br />

10. Temporary (degradable) implants must resorbe in<br />

predictable non-toxic fashion.<br />

Biocompatibility (Williams)<br />

“A state of affairs when a biomaterial exists<br />

within a physiologic environment without<br />

either the material adversely and<br />

significantly affecting the body, or the<br />

environment of the body adversely and<br />

significantly affecting the material.”


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

3<br />

Mechanical properties<br />

Mechanical properties<br />

• Elastic: X-Y<br />

• Plastic: Y-F<br />

• D: Permanent deformation<br />

• U: Ultimate strength<br />

• F: Ultimate failure


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

4<br />

Mechanical properties<br />

• Brittle - Ceramics<br />

• Ductile - Metals<br />

• Rubbery - Polymers<br />

Bone – intermediate<br />

(ceramic & polymer)<br />

Mechanical properties<br />

• Load – static or cyclic<br />

• Fatigue curve –<br />

interplay load repetition<br />

• Endurance limit – load<br />

below applied repetitively<br />

without failure.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

5<br />

• Toxicity<br />

• Immunogenicity<br />

Biologic properties<br />

• Carcinogenicity (Solid state Carcinogenicity theory)<br />

• Efficacy<br />

• Potentiation of infection<br />

• Porosity and tissue ingrowth<br />

<strong>ALLO<strong>PLASTIC</strong></strong> IMPLANT CONSIDERATIONS<br />

TISSUE BED<br />

• Tension of soft tissue closure<br />

• Thickness of overlying soft tissue<br />

• Mobility of surrounding tissues<br />

• Vascularity of recipient site<br />

• Adequacy of pocket dissection<br />

• Proximity to bacteria-laden cavities<br />

• Exposure to mechanical loading


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

6<br />

<strong>ALLO<strong>PLASTIC</strong></strong> IMPLANT CONSIDERATIONS<br />

IMPLANT CHARACTERISTICS<br />

• Flexibility<br />

• Hardness<br />

• Surface texture<br />

• Porosity<br />

• Antibiotic absorption<br />

• Ease of material contouring<br />

• Adaptability to recipient site<br />

• Implant fixation<br />

TECHNICAL CONSIDERATION WHEN<br />

IMPLANT<strong>IN</strong>G ALLOPLAST<br />

• Ensure medical acceptability & quality controlled material.<br />

• Suitable mechanical properties for role.<br />

• Avoid chemical sterilization.<br />

• Avoid sharp edges and corners.<br />

• Stable tension free tissue coverage.<br />

• Avoid hematoma or dead space in recipient pocket.<br />

• Remote incision site.<br />

• Avoid soiling the implant.<br />

• Minimal or no implant mobility.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

7<br />

COMPLICATIONS OF IMPLANT<strong>IN</strong>G<br />

ALLOPLASTS<br />

• Implant does not fulfill the intended role.<br />

• Mechanical failure.<br />

• Infection of implant.<br />

• Severe or persistent inflammation around the implant.<br />

• Immune alterations secondary to the implant.<br />

• Toxicity or carcinogenicity.<br />

• Exposure and/or extrusion.<br />

• Excessive capsule formation.<br />

• Capsular contracture.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

8<br />

CLASSIFICATION OF ALLOPLASTS<br />

By composition<br />

• Metals Corrodible -stainless steel<br />

Noncorrodible -vitallium<br />

-titanium<br />

• Polymers Nonelastomeric -polyamide<br />

-polyesters<br />

-polyethylenes<br />

-polyurethanes<br />

-polymethylmethacrylate<br />

-polypropylene<br />

Elastomeric -silicones<br />

• Ceramics -tricalciumphosphates<br />

-hydroxyapatite<br />

CLASSIFICATION OF ALLOPLASTS<br />

By resorbability<br />

• Resorbable<br />

• Nonresorbable<br />

By Origin<br />

• Natural<br />

• Synthetic<br />

• Semisynthetic


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

9<br />

METALS<br />

• Uses: skeletal application<br />

skin staples<br />

suture<br />

• Biocompatability: release of ions – toxicity<br />

• Saline environment – corrosion<br />

• Oxide layer – resistance to corrosion<br />

• Corrosion – pain and tenderness, possible<br />

erythema and sinus tract<br />

STA<strong>IN</strong>LESS STEEL<br />

• Alloy – iron, nickel, molybdenum,<br />

chromium oxide.<br />

• Annealed – ductile (plastic deformation)<br />

• Cold worked – stronger


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

10<br />

Advantages<br />

STA<strong>IN</strong>LESS STEEL<br />

• Extensive experience<br />

• Easily fabricated<br />

• Readily available<br />

Uses<br />

• Plates<br />

• Screws<br />

• K wires<br />

Disadvantages<br />

• Corrosion (removal 2-5y)<br />

• Annealed easily<br />

deformed<br />

• Scatter on CT scan<br />

STA<strong>IN</strong>LESS STEEL


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

11<br />

VITALLIUM<br />

Alloy – chromium, cobalt<br />

Advantages<br />

• Corrosion resistant<br />

• Fatigue resistance<br />

• Strength<br />

• Little scatter on CT scan<br />

Disadvantages<br />

• Brittle<br />

• Premature fracture<br />

Uses<br />

• Fracture plates (Luhr mandibular compression and<br />

miniplates)<br />

TITANIUM<br />

• Pure – element 22 (grade 1-4)<br />

• Alloy – Ti6Al4V (grade 5)<br />

• Fabrication more difficult then stainless or<br />

vitalium


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

12<br />

Advantages<br />

• Strong<br />

• Light weight<br />

• Ductile<br />

• Corrosion resistant<br />

• Little scatter on CT<br />

Uses<br />

• Fracture plates<br />

• Screws<br />

• Mesh<br />

TITANIUM<br />

Disadvantages<br />

• Difficult and<br />

expensive to<br />

manufacture<br />

TITANIUM<br />

• Osseointegrated implants (dental implants)<br />

• Bone-anchored suturing devices


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

13<br />

OSSEO<strong>IN</strong>TEGRATED<br />

IMPLANTS<br />

OSSEO<strong>IN</strong>TEGRATION – Direct contact<br />

between metal and bone, without a fibrous<br />

interface, at light microscopic level.<br />

(Branemark)


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

14<br />

GOLD<br />

• Gold plate repair of cleft palate - 1565<br />

• Nobel element - number 76 on periodic table<br />

• No oxide layer<br />

• Lack of strength – softness<br />

• Expensive<br />

• Upper eyelid weight – 0.6-1.6 gr. (ptosis)<br />

POLYMERS<br />

• Polymers – long chins of repeating units<br />

that can reach massive molecular weights.<br />

• Mainly used for soft tissue applications


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

15<br />

POLYMERS<br />

Properties determined by<br />

• Chemical composition<br />

• Ester and amide links permit enzymatic<br />

degradation<br />

• Linear, branched and cross link – viscosity<br />

• Length of chain: low mwt – liquid<br />

increase mwt gel solid elastomer<br />

Polyethylene<br />

• Nonresorbable, synthetic, relatively LMWT<br />

• Manufactured in forms with increasing strength and<br />

stiffnes:<br />

low density – LDPE<br />

high density – HDPE<br />

ultrahigh density – UHDPE<br />

• Porous and woven forms allow fibrovascular ingrowth


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

16<br />

Disadvantages<br />

Polyethylene<br />

• Solid form difficult to sculpt<br />

• Mild persistent chronic foreign body<br />

reaction<br />

• Not autoclavabel (melts)<br />

Polyethylene<br />

Uses<br />

• Porous solid (Plastipore, Medpor) –<br />

augmentation implants, orbital floor<br />

reconstruction. (pore size 100-250m –<br />

fibrovascular ingrowth).<br />

• UHDPE – component of artificial joints<br />

• Marlex – abd. & chest wall recon., superior<br />

tensile strength. Not autoclavabel.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

17<br />

Polypropylene<br />

• Nonresorbable, synthetic.<br />

• Highly inert.<br />

• Similar properties of polyethylene.<br />

• Can be autoclaved.<br />

Uses<br />

Woven mesh (Prolene), suture.<br />

Polytetrafluoroethylene (PTFE)<br />

• Non-resorbable, synthetic<br />

• Inert, antifriction and non-adhesive properties<br />

• Low tensile strength, pliable.<br />

uses<br />

• Woven – vascular prosthesis<br />

– suture coating - antifriction


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

18<br />

Polytetrafluoroethylene (PTFE)<br />

Proplast – PTFE combined with fiber,<br />

increased porosity and tissue ingrowth for<br />

stabilization.<br />

• Proplast 1 – graphite<br />

• Proplast 2 – alumina<br />

• Proplast HA – hydroxyapatite<br />

Polytetrafluoroethylene (PTFE)<br />

Proplast<br />

• Augmentation – chin, malar, nose.<br />

• Black – not for subcutaneous use.<br />

• Removed from market – biomechanical<br />

failure and foreign body reaction in TMJ<br />

reconstruction.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

19<br />

Polytetrafluoroethylene (PTFE)<br />

GORTEX – expanded PTFE<br />

• Inert, non-allergenic, non-carcinogenic.<br />

• Low infection rate.<br />

Uses<br />

• Sutures.<br />

• Soft tissue patches.<br />

• Subcutaneous augmentation materials – lip,<br />

chin, nasal, malar, forehead and muscle sling.<br />

• Dura defects.<br />

Polyurethane<br />

• Alternating hard (urethane) and soft (polyether)<br />

segments.<br />

Uses<br />

• Meme, Ashley natural Y breast implant – open cell<br />

PU foam coating for breast implant<br />

- allow tissue ingrowth in mammary pocket<br />

and reduced rate of capsular contracture.<br />

- PU foam fragmented and degraded releasing<br />

potentially toxic breakdown products.<br />

- No reports of cancer caused by PU – removed from<br />

market 1991


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

20<br />

Polyester<br />

• Most widely used family of biomaterials in<br />

surgery.<br />

• Synthetic polymers with repeating carbonoxygen<br />

esoteric groups.<br />

• Chemical structure variation – permanent<br />

Polyester<br />

Polyethylene terephthalate<br />

• Most common of the Polyesters.<br />

• Widely used in the textile industry.<br />

– resorbable<br />

• Permits tissue anchoring to smooth substrate.<br />

• Early fibrous encapsulation with minimal<br />

foreign body reaction.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

21<br />

Uses<br />

Polyester<br />

• Dacron – arterial prostheses, suture material.<br />

• Mersilene – abd. & chest wall reconstruction,<br />

facial onlay augmentation.(genioplasty)<br />

• Xomed – reinforced with polyurethane,<br />

craniofacial reconstruction.<br />

Polyester<br />

Aliphatic polymers<br />

• More then 20 years of use.<br />

• Resorbable – hydrolysis of ester bond<br />

• Sutures –Dexon (polyglycolic acid)<br />

–Vicryl (polyglactin–polyglycolic/lactic)<br />

– Maxon (polyglyconate)<br />

– Monocryl (polyglecaprone 25)


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

22<br />

Polyester<br />

LactoSorb – 82% polylactic and 18% polyglycolic acid<br />

• Bone fixation device.<br />

• Strength – 6 to 8 weeks.<br />

• Complete resorption – approx. 1 year.<br />

Polymethylmethacrylate<br />

• Non-resorbable, inert synthetic polymer.<br />

• Hard transparent resin.<br />

• Prefabricated or shaped at surgery.<br />

• Exothermic reaction - 80ºc, 8-10 min.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

23<br />

Polymethylmethacrylate<br />

Advantages<br />

• Inexpensive<br />

• Once cured, it can be contoured with burrs.<br />

• Can be custom prefabricated.<br />

• Radiolucent.<br />

• Dureable.<br />

• Biocompatible.<br />

• Low thermal conductivity.<br />

Polymethylmethacrylate<br />

Disadvantages<br />

• Offensive odor - allergic reaction.<br />

• High cure temperature – require irrigation.<br />

• High bacterial adhesion.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

24<br />

Uses<br />

Polymethylmethacrylate<br />

• Cranioplasty.<br />

• Orthopedic surgery – bone cement.<br />

• Impregnated with gentamicin – infected<br />

long bone fractures.<br />

Polymethylmethacrylate<br />

HTR-PMI – Composite: Polymethylmethacrylate and<br />

Polyhydroxyethylmethacrylate<br />

• Significant strength.<br />

• Porosity.<br />

• Hydrophilicity.<br />

• Calcium hydroxide coating – negative charge.<br />

• Preformed craniofacial implant.<br />

• Extensive fibrovascular ingrowth, limited<br />

bony ingrowth.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

25<br />

• Derivatives of nylon.<br />

Polyamides<br />

• Nonresorbable inert alloplast.<br />

• Hydroscopic, unstable in vivo.<br />

• Degraded, mild foreign body reaction.<br />

• Supramid – mesh – not in use.<br />

uses<br />

• Suture material.<br />

Polydimethylsiloxane - SILICONE<br />

• Nonresorbable synthetic polymer containing<br />

noncarbon chain, repeating - (Si – O) – backbone<br />

with organic groups (methyl) attached to the<br />

silicone atom.<br />

• Silicone – generic name for high MWT polymer<br />

• Liquid oil, gel or rubber elastomer.<br />

• Viscosity – length of chain and crosslinking.<br />

• Silica particles added to rubbery form – increase<br />

tensile strength.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

26<br />

SILICONE<br />

Properties<br />

• Thermal and oxidative stability.<br />

• Resistance to weathering.<br />

• Hydrophobic nature.<br />

• Low surface tension.<br />

• Good dielectric strength.<br />

• Versatility of structural forms.<br />

• Nonporous – resist tissue ingrowth.<br />

• Gas or steam sterilized.<br />

Properties – cont.<br />

SILICONE<br />

• Chemically and physically inert – controversial<br />

• Degrades in water, soil, air and in-vivo.<br />

• Shell of breast implant – semipermeable – bleeds


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

27<br />

Local reaction to silicone<br />

Injected liquid silicone oil-<br />

• Granulomatous reaction locally and<br />

regional lymph nodes.<br />

• Chronic infection, tissue breakdown and<br />

extrusion.<br />

• Impurities ? Reported in medical grade.<br />

• Liquid silicone not recommended.<br />

Local reaction to silicone<br />

Silicone gel-<br />

• Breast implant bleed or rupture – increase<br />

capsular contracture – Si in capsule.<br />

• Ab. Found in serum - after rupture.<br />

• Siliconomas – granulomas after rupture or<br />

bleed.<br />

Histology – phagocytic cells – silicone.<br />

Chronic inflammatory reaction, foreign body<br />

reaction.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

28<br />

Local reaction to silicone<br />

Silicone elastomer-<br />

• May cause capsular contracture.<br />

• Persistent seromas.<br />

Silicone synovitis-<br />

• Infrequent severe synovial inflammatory<br />

response to silicone joint implants.<br />

• Reaction to fragmented particles.<br />

systemic reaction to silicone<br />

• Hematogenous and lymphatic dissemination.<br />

• Human Adjuvant Disease (HAD) – Miyoshi 1973<br />

- stimulation of autoimmune mediated illness after<br />

implantation of foreign body.<br />

- nonspecific connective tissue symptoms (fever,<br />

malasie, arthralgia, arthritis, lymphadenopathy,<br />

ESR, +Rh factor).


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

29<br />

systemic reaction to silicone<br />

Connective tissue disease-<br />

• Controversial – whether silicone and CT<br />

dis. Are related.<br />

• RA, Scleroderma, SLE, Sjogren’s, Mixed<br />

CT dis., etc.<br />

• Scleroderma most commonly associated<br />

with breast implants.<br />

• Epidemiologic studies – no risk of CT dis.<br />

systemic reaction to silicone<br />

Malignancy-<br />

• Silicone injected into mice is carcinogenic.<br />

• No evidence that silicone is carcinogenic in<br />

humans.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

30<br />

Uses of silicone<br />

Silicone rubbers have been implanted every where in<br />

the body.<br />

• Orbital floor recon. – Silastic sheets<br />

• Malar augmentation – preformed implants<br />

• Maxillary and zygomatic recon. – custom implants<br />

• Chin augmentation – prefabricated implants<br />

• Mandibular condyle – silicon blocks (no longer)<br />

• Ear recon. – custom implants<br />

• Nasal augmentation - preformed implants and block<br />

Uses of silicone – con.<br />

• Breast augmentation and reco. - preformed implants<br />

• Small joint arthroplasty: hand - preformed implants<br />

• First stage tendon recon. – silastic rods<br />

• Cranioplasty & forehead contouring – prefabricated<br />

implants<br />

• Tissue expansion - prefabricated expanders<br />

• Scar revision – silastic sheets


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

31<br />

Properties-<br />

Ceramics<br />

• Brittle – minimal deformation per unit force.<br />

• Strong compressive strength.<br />

• Weakened by flaws, microcracks and porosity.<br />

• Highly inert.<br />

• Used as bone substitutes, not in load bearing<br />

areas.<br />

Hydroxyapatite (HA)<br />

• Most common apatite crystal is calcium HA<br />

• Synthetic varieties:<br />

- sintering Ca and P particles<br />

- dense or porous<br />

• Natural varieties:<br />

- porous coralline HA (50-200m)<br />

• No inflammatory or foreign body giant cell response<br />

• Bone regeneration by osteoconduction (scaffold)<br />

• No osteoinduction


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

32<br />

Hydroxyapatite (HA)<br />

• Bone growth enhanced by fixation of HA<br />

• HA resorbed after bone regenerated<br />

Tricalcium Phosphates (TCP)<br />

• Bone ingrowth (less than HA)<br />

• Resorbable over time, unpredictable<br />

• Very inert<br />

• No advantage over HA


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

33<br />

HA Cement (Paste)<br />

• Calcium phosphate based (terra & bi CaP)<br />

• Microporous<br />

• Resorbable<br />

• Inlay position<br />

HA Cement (Paste)


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

34<br />

Bioglass<br />

synthetic bone graft<br />

• Silicone, calcium, phosphorous oxide.<br />

• “Osteoconductive” – scaffold.<br />

• High osteoblastic activity ?<br />

• Can be combined with auto and allograft bone.<br />

• New biomaterials.<br />

Future<br />

• Pharmacologic technology – merge<br />

antibiotics, growth factors etc.


ע"<br />

שת/<br />

תבט/<br />

ד"<br />

י<br />

35<br />

References<br />

• Flood J. Implantation:bone, cartilage, and<br />

alloplasts. Selected readings in plastic<br />

surgery, volume 9(8), 2000.<br />

• Barry L. Eppley, Alloplastic Implantation,<br />

PRS – NOVEMBER 1999.<br />

• Christine Tang, Alloplastic materials in<br />

plastic surgery, April 1997.<br />

THANK YOU!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!