30.06.2013 Views

Principles of Microvascular Surgery.

Principles of Microvascular Surgery.

Principles of Microvascular Surgery.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Principles</strong> <strong>of</strong><br />

<strong>Microvascular</strong> <strong>Surgery</strong>.<br />

Arik Zaretski M.D.<br />

Department <strong>of</strong> Plastic <strong>Surgery</strong><br />

Tel-Aviv Sourasky Medical Center.<br />

History<br />

• In the late 1890’s and early 1900’s -<br />

» surgeons began approximating blood vessels.<br />

» Laboratory animals and humans.<br />

» No magnification.<br />

• Hallowell, 1759 - repair <strong>of</strong> the brachial artery by<br />

hand suture.<br />

• J.B. Murphy, 1897 - described the first vascular<br />

anastomosis.<br />

• Alexis Carrel, 1902 - the triangulation method in<br />

end-to-end anastomosis in animals.<br />

1


History<br />

• Zachariah Janssen, 1590 -<br />

invention <strong>of</strong> the compound<br />

microscope.<br />

• Nylen, 1921 - first clinical<br />

application <strong>of</strong> monocular<br />

operating microscope - for<br />

human eardrum surgery.<br />

• Halmgren, 1921 -<br />

stereoscopical microscope<br />

for otolaryngological<br />

procedures.<br />

History<br />

• Perritt, 1950 - microsurgery in clinical<br />

ophthalmology.<br />

• Kurze, 1957 - microsurgery in neurosurgery.<br />

• Jacobson & Suarez, 1960 - microsurgical<br />

anastomosis in carotid arteries (1.4mm) <strong>of</strong><br />

laboratory animals with 100% patency rate.<br />

• Jacobson, 1965 - vessels 1mm in diameter with<br />

100% patency.<br />

• Green, 1966 - used 9-0 nylon suture on rat aortas<br />

(1.3mm) & vena cavas (2.7mm) with patency <strong>of</strong> 37<br />

out <strong>of</strong> 40 animals at 21 days.<br />

2


History<br />

• Malt & McKhann, 1962 - the first successful<br />

clinical replantation - 2 patients with arm<br />

amputations.<br />

• Chinese surgeons, 1963 - successful replantation<br />

<strong>of</strong> a hand amputated at the wrist.<br />

• kleinert & kasdan, 1963 - revascularized near<br />

amputated digits.<br />

» Loupe magnification.<br />

» Vain grafts.<br />

History<br />

• Nakayama, <strong>Surgery</strong> 1964 - The first clinical series<br />

<strong>of</strong> free tissue microsurgical transfers - cervical<br />

esophageal reconstruction with vascularized<br />

intestinal segments in 21 patients.<br />

• Buncke & Schulz, PRS 1965 - experimental<br />

replantation <strong>of</strong> rabbit ears and monkey digits.<br />

3


History<br />

• Komatsu & Tamai, PRS 1968 - first successful<br />

replantation <strong>of</strong> completely amputated digit.<br />

» Used surgical microscope.<br />

History<br />

• Krizek, PRS 1968 - first successful series <strong>of</strong> free<br />

flap transfers in a dog model.<br />

• Cobbett, J Bone Joint Surg 1968 - transferred a<br />

great toe to the hand.<br />

• Antia & Buch, Br J Plast Surg 1971 - superficial<br />

epigastric artery free flap (skin and fat) to fill a<br />

s<strong>of</strong>t-tissue defect in the cheek.<br />

• McLean & Bunke, PRS 1971 - omental free flap for<br />

large scalp defect.<br />

4


History<br />

• Danil & Taylor + O’brien, PRS 1973 - free groin<br />

flaps for lower extremity reconstruction.<br />

• Since the early 1970’s:<br />

» More donor sites.<br />

History<br />

» Refinement in microvascular tools and techniques.<br />

» Microsurgery became more prevalent.<br />

» Rapid gain <strong>of</strong> clinical experience.<br />

Improved results - better than 90% in most<br />

series.<br />

5


History<br />

• Khouri, 1992 - review <strong>of</strong> the clinical experience <strong>of</strong><br />

9 microsurgens.<br />

• Khouri found that:<br />

History<br />

» “Operative experience is the single most critical<br />

factor related to improved success rates…”<br />

6


Basic Science Concepts in<br />

Microsurgery<br />

• Vessel injury, repair and regeneration.<br />

• Process <strong>of</strong> vasospasm and thrombosis.<br />

» Pharmacological control.<br />

• Effects ischemia and hypoxia on revscularized<br />

tissue.<br />

• Three basic layers:<br />

Vessel Anatomy<br />

» Intima - endothelial lining.<br />

» Media - smooth muscle.<br />

» Adventitia - outer connective tissue.<br />

7


Artery<br />

and vein<br />

Vein<br />

Vessel Injury and Regeneration<br />

• The beginning steps in the formation <strong>of</strong> a<br />

thrombotic plug:<br />

» Exposure <strong>of</strong> the subendothelium to the bloodstream.<br />

» Platelet aggregation.<br />

• The collagen (media and adventitia) stimulates<br />

platelet clumping.<br />

• <strong>Microvascular</strong> anastomoses can disturbs the<br />

endothelium and subendothelium.<br />

8


Vessel Injury and Regeneration<br />

• Weinstein, 1979 - full thickness sutures:<br />

» <strong>of</strong>fer intimal continuity.<br />

» Less amount <strong>of</strong> anastomotic bleeding.<br />

» Less platelet aggregation.<br />

• Harashima, PRS 1976 - no difference in patency<br />

(94%) between adventitial or full thickness<br />

sutures.<br />

First day<br />

Group A Group B<br />

X100 X100<br />

9


Group B<br />

5th day 7th day<br />

Group A<br />

X300<br />

Two weeks<br />

X300<br />

Group B<br />

X100<br />

X100<br />

10


Vessel Wall Healing<br />

• At the time <strong>of</strong> the anastomosis - a layer <strong>of</strong> platelet<br />

covers the denuded endothelium.<br />

• Next 24-72 h - platelets gradually disappear.<br />

• Pseudointima forms within 5 days.<br />

• After 1 - 2 weeks - new endothelium covers the<br />

anastomotic site.<br />

• The elastic and muscular layers rarely return to<br />

their preinjury state.<br />

The critical period <strong>of</strong> thrombus formation<br />

is the first 3-5 days.<br />

Vessel Regeneration<br />

• Only the endothelial layer is damaged -<br />

reconstituted from surrounding cells, 7-10 days.<br />

• Damage to subendothelial structures -<br />

regeneration <strong>of</strong> epithelium by migration and<br />

differentiation <strong>of</strong> myoendothelial cells from the<br />

cut vessel ends.<br />

• Regeneration <strong>of</strong> other layers - proliferation <strong>of</strong><br />

fibroblasts, collagen and myointimal thickening at<br />

the anastomotic site.<br />

11


Endothelial Damage<br />

• Margic, PRS 1985 - dissection and exposure <strong>of</strong><br />

vessels from their beds.<br />

• Bipolar coagulation too close to the branch<br />

origin.<br />

• Dryness - exposed vessels should be kept in<br />

moist environment.<br />

• Prolonged vasospasm, more then 2h.<br />

• Injury from microvascular clips.<br />

• Needles and suture penetration + technique <strong>of</strong><br />

placement.<br />

Injury from microvascular clips<br />

• Directly related to clip pressure.<br />

• Curved or angled clip cause more damage than<br />

flat clip.<br />

• Closing pressures should remain below 30<br />

gr/mm 2 .<br />

Balloons<br />

Granulocyte<br />

Crater-like defect<br />

12


Damage from needles, sutures and technique<br />

• Large needles, obliquely placed sutured -<br />

» Endothelial lacerations.<br />

» Exposing subendothelium.<br />

» Platelet aggregation.<br />

• Repeat needle puncture -<br />

» Bleeding.<br />

» Large platelet plugs.<br />

• Unequal distances between sutures -<br />

» Endothelial gaps, distortion, constriction.<br />

» Exposure <strong>of</strong> intimal flaps.<br />

Damage from needles, sutures and technique<br />

• Loosely tied sutures -<br />

» Exposure <strong>of</strong> sub endothelial elements.<br />

» Excessive anastomotic bleeding.<br />

» Platelet plug formation.<br />

• Too many sutures or sutures tied too tightly -<br />

» Endothelial slough.<br />

• Excessive trauma to vessel walls, tension and<br />

loosely approximation -<br />

» Medial discontinuity.<br />

» Pseudoaneurysms.<br />

13


Damage from needles, sutures and technique<br />

• Chow, Br J plast surg 1982 - found greater<br />

tolerance for microanastomotic tension.<br />

• Acland & Trachtenberg, PRS 1977 - used SEM to<br />

evaluate microanastomoses, found 100% patency<br />

rate despite:<br />

» Intimal loss below the site <strong>of</strong> clamp pressure.<br />

» Medial necrosis at the site <strong>of</strong> the anastomosis.<br />

Some tissue damage is tolerated.<br />

Local factors<br />

• Lidman & Daniel, Ann Plast Surg 1981-<br />

» Anastomoses preformed in the zone <strong>of</strong> injury.<br />

» External compression <strong>of</strong> the anastomosis by<br />

hematoma, tight wound closure, swelling.<br />

14


The clotting mechanism<br />

• Platelets do not adhere to undamaged, healthy<br />

intimal surfaces.<br />

• Intimal injury - exposed collagen - platelet<br />

adhesion to the vessel surfaces.<br />

• Platelet activation.<br />

• Release <strong>of</strong> platelet granules.<br />

• Attract more platelet = aggregation.<br />

1<br />

The clotting mechanism<br />

• The activated platelet stimulates receptor site to<br />

which fibrinogen adheres.<br />

• Fibrinogen forms proteinaceous bridges between<br />

platelets.<br />

• Activated platelet - promote<br />

the change <strong>of</strong> fibrinogen to<br />

fibrin.<br />

• Fibrin promotes the “red clot”<br />

formation.<br />

2<br />

15


The clotting mechanism<br />

• Platelet contain 2 types <strong>of</strong> granules, contribute to<br />

platelet recruitment:<br />

» Alpha granules -<br />

• Von Willebrand factor.<br />

• Fibrinogen.<br />

» Dense granules -<br />

• ADP.<br />

• Calcium ions.<br />

• Serotonin.<br />

• When platelet aggregation reach a critical mass<br />

that causes thrombus formation by:<br />

» occluding the vessel, or-<br />

» Initiation <strong>of</strong> the classic extrinsic pathway <strong>of</strong> coagulation<br />

Antithrombotic therapy<br />

Heparin<br />

• Increases the action <strong>of</strong> antithrombin3 -inactivates<br />

thrombin.<br />

• Decrease platelet adhesion.<br />

• Decrease the conversion <strong>of</strong> fibrinogen to fibrin.<br />

» Greenberg, Masem and May, PRS 1988 - in a rabbit<br />

model, low dose heparin infusion significantly<br />

prevented anastomotic occlusion for 72 hours.<br />

» Khouri, PRS 1990 - single bolus <strong>of</strong> heparin given<br />

before blood flow was reestablished inhibited thrombus<br />

formation - preventing the conversion <strong>of</strong> fibrinogen to<br />

fibrin.<br />

16


Antithrombotic therapy<br />

Heparin (cont.)<br />

• Complications - hematoma formation, in animals<br />

12.5% (3 <strong>of</strong> 24).<br />

• Clinically - heparin is given to save free flaps.<br />

• Others - Johnson PC, PRS 1990 - heparin dose<br />

not improve the patency in uncomplicated repairs<br />

and increases the risk <strong>of</strong> bleeding.<br />

Antithrombotic therapy<br />

• Khouri, PRS 1998 -<br />

Heparin (cont.)<br />

» total <strong>of</strong> 493 free flaps preformed by 23 members <strong>of</strong> the<br />

International <strong>Microvascular</strong> Research Group in a<br />

prospective study.<br />

» The use <strong>of</strong> heparin solution for luminal irrigation had no<br />

apparent effect on thrombosis or failure.<br />

» Only subcutaneous heparin given post operatively had<br />

a significant effect - lower occurrence <strong>of</strong> postoperative<br />

thrombosis.<br />

17


Antithrombotic therapy<br />

Aspirin<br />

• Administered in low doses - 0.1 mM (325mg - PO).<br />

• Inhibits initial platelet aggregation at the<br />

anastomotic site.<br />

• Inhibits cyclooxygenase - blockage <strong>of</strong><br />

thromboxane A2.<br />

• Even at low doses - some inhibition <strong>of</strong> the release<br />

<strong>of</strong> prostacyclin (a potent vasodilator and platelet<br />

inhibitor).<br />

Antithrombotic therapy<br />

• Polysaccharide, molecular weights <strong>of</strong>: 40,000 or<br />

70,000.<br />

• Volume expander.<br />

• Antiplatelet.<br />

• Antifibrin.<br />

» Explanations:<br />

Dextran<br />

• raising <strong>of</strong> negative electrical charge on platelets.<br />

• Inactivation <strong>of</strong> von Willebrand factor.<br />

• Rothkopf, PRS 93 - patency <strong>of</strong> 85% in the dextran<br />

group and 48% in controls.<br />

18


Antithrombotic therapy<br />

Low molecular weight heparin<br />

• Ritter, J Reconstr Microsurg 1998 -<br />

» Anti factor 10a.<br />

» 66 epigastric free flap in rats.<br />

» Anastomotic patency was significantly improved .<br />

» Total tissue survival area was improved.<br />

» LMWH - improved anastomotic patency while<br />

minimizing hemorrhage.<br />

Antithrombotic therapy<br />

Proteolytic enzymes - Streptokinase & Urokinase<br />

• Streptokinase - produced by group C beta<br />

hemolytic streptococci.<br />

• Urokinase - produced by human kidney cells.<br />

• Both convert plasminogen into plasmin, a highly<br />

specific fibrinolytic enzyme.<br />

• Goldberg, J Reconst Microsurg 1989 - salvage <strong>of</strong><br />

6 <strong>of</strong> 7 thrombosed free flaps vessels ( subflap<br />

hematoma in 1 case).<br />

19


Antithrombotic therapy<br />

Tissue plasminogen activator (tPA)<br />

• Produced by human vascular endothelium.<br />

• Activates plasminogen (inactive precursor to<br />

plasmin).<br />

• Levy, J Reconst Microsurg 1991 - no difference<br />

between tPA and urokinase in the rat model.<br />

• Others report cases <strong>of</strong> free flap salvage with tPA<br />

infusion - Fedem & Walton, J Reconst Microsurg<br />

1989. Arnljots, PRS 1992. Romano, 1991.<br />

• Reports on selective tPA infusion.<br />

Antithrombotic therapy<br />

• Davies, Br J Plast Surg 1982 - surveyed the use <strong>of</strong><br />

anticoagulation in clinical microsurgery.<br />

» 73 centers in 22 countries.<br />

» Found equal success rates (89%) for free flaps with<br />

anticoagulation (n=691) and flaps without<br />

anticoagulation (n=134).<br />

» For limb replantation - success rat was lower with<br />

anticoagulation (76%) than without (89%).<br />

20


Antithrombotic therapy<br />

conclusions:<br />

• No definite indications when mechanical and<br />

vascular factors are optimal.<br />

• When there is thrombosis in the post operative<br />

period - flap reexploration and treatment with<br />

fibrinolytic and/or anticoagulation therapy.<br />

• Anticoagulation or fibrinolytic therapy may be<br />

indicated where mechanical or metabolic factors<br />

are not favorable and cannot be improved.<br />

Tissue response to ischemia and hypoxia<br />

• Free tissue transfer requires a period <strong>of</strong> tolerance<br />

to ischemia by the donor tissue.<br />

• Skin and subcutis are relatively resistant to<br />

anoxia -<br />

» Intracellular pH changes - reversible up to 24h.<br />

• Mammalian skeletal muscle -<br />

» much less tolerance to ischemia.<br />

» Irreversible damage to energy metabolism - 4h.<br />

» Irreversible damage starts at 6 hours.<br />

• Connective tissue (fibroblast, chondroblast,<br />

osteoblast) relatively resistant to hypoxia.<br />

21


Tissue response to ischemia and hypoxia<br />

• Cooling prolongs tolerance to ischemia in all<br />

types <strong>of</strong> tissues.<br />

» Donski, Br J Plast Surg 1980 - effect <strong>of</strong> cooling on<br />

groin flaps in rabbit - 86% survival after cooling for 1-3<br />

days.<br />

» Anderl, 1977 - stored a human groin flap for 24h.<br />

» Cooley, J Microsurg 1981 - in rats, max ischemia 6h at<br />

body temp and 48h if cooled.<br />

» Walkinshaw, PRS 1988 - proximal bowel segments<br />

are more resistant to warm ischemia at 2h.<br />

Tissue response to ischemia and hypoxia<br />

Tissue Warm Cold<br />

Skin & subcutaneous t. 4-6h Up to 12h<br />

Muscle


The no-reflow effect<br />

• Ames, Am J Pathol 1968 - studied the effect <strong>of</strong><br />

ischemia on rabbit brains.<br />

» Some ischemic organs failed to reperfuse after their<br />

blood supply was reestablished.<br />

» Called this - the no-reflow phenomenon.<br />

• Mechanism -<br />

» Cellular swelling in the vascular endothelium.<br />

» Intravascular platelet aggregation.<br />

» Leakage <strong>of</strong> intravascular fluid to the interstitial space.<br />

• Clinical observations -<br />

The no-reflow effect<br />

» Excellent blood flow immediately after anastomosis.<br />

» Decrease in blood flow shortly after.<br />

» The low flow state triggers intravascular thrombosis.<br />

» Flap ischemia.<br />

• May, PRS 1978 - no-reflow in groin flap in rabbits-<br />

» Mild obstruction to blood flow 1h post ischemia.<br />

» Increasing severity at 8 and 12h.<br />

» Histologic changes reversible at 4 and 8h.<br />

23


The no-reflow effect<br />

• Zdeblick, J Hand Surg 1985 - no-reflow in rat hind<br />

limbs.<br />

» Predictors -<br />

• RBC aggregates 5min after replantation.<br />

• Tissue pH change persisting for 1h or more<br />

postreplantation.<br />

» Mechanism -<br />

• Ongoing arterial obstruction.<br />

• AV shunting.<br />

• Altered thrombogenic / fibrinolitic system.<br />

• Jacobs, PRS 1981 -<br />

The no-reflow effect<br />

» relationship between warm ischemia time and<br />

fibrinolitic activity.<br />

» Greatest drop in fibrinolysis - 0-6h <strong>of</strong> warm ischemia.<br />

• Suval, J Surg Res 1987 -<br />

» Changes in microvascular permeability in reperfusion<br />

after 30min or 2h <strong>of</strong> ischemia.<br />

» First manifestation <strong>of</strong> tissue damage in reperfusion<br />

injury - d/t leukocytic and endothelial cell interaction.<br />

» The no-reflow - in 30% <strong>of</strong> muscle tissue regardless <strong>of</strong><br />

ischemia time.<br />

24


• Treatment -<br />

The no-reflow effect<br />

» Reports <strong>of</strong> flaps salvage with thrombolytic drugs.<br />

» Nonsteroidal antiinflamatory agents - inhibit<br />

cyclooxygenase - blocks thromboxane A2<br />

(vasoconstriction and thrombus formation).<br />

• Douglas, PRS 1987 - ibupr<strong>of</strong>en treated flaps survive<br />

longer periods <strong>of</strong> ischemia.<br />

• Accelerated fluorescein uptake - reversal <strong>of</strong> thrombosis<br />

and vasoconstriction.<br />

Flap failure - summary<br />

• Endothelial disruption.<br />

• Exposure <strong>of</strong> subendothelial collagen.<br />

• Platelet adherence and aggregation.<br />

• When critical mass - trigger <strong>of</strong> fibrin deposition.<br />

• Vasospasm.<br />

• Stenosis.<br />

• Thrombosis <strong>of</strong> the vessel.<br />

• Blood flow falls.<br />

• When critical level - flap failure.<br />

25


• Instruments.<br />

• Sutures.<br />

TECHNICAL FACTORS<br />

• Type <strong>of</strong> anastomoses.<br />

• Technique <strong>of</strong> anastomosis.<br />

Instruments and sutures<br />

• Loupes or operating microscope?<br />

• Loupes -<br />

» Shenaq, Klebuc and Vargo, PRS 1995 - 8 year<br />

experience. 251 free flaps with 5.5X loupes -<br />

• 97.2% successful.<br />

• Partial flap necrosis - 1.2%.<br />

• Revision 8.3%.<br />

• Free flap 98.5%, toe-to-hand 96.4%, digital replantation<br />

79.2%.<br />

• Good for vessels > 1mm.<br />

• Cost effective, portable, operator freedom.<br />

26


• Loupes…<br />

• Or microscope?<br />

Microsugical instruments<br />

• “few in number and high in quality”.<br />

27


• The number is critical!!!<br />

Number <strong>of</strong> sutures<br />

» Too few - excessive bleeding and thrombus formation.<br />

» Too many - increased damage to the endothelium.<br />

• The goal - well approximated, sealed,<br />

nonbleeding union with a minimum number <strong>of</strong><br />

sutures.<br />

• Cohen, PRS - 1979 - in rat femoral vessels 8-<br />

suture anastomosis is optimal.<br />

Type <strong>of</strong> sutures<br />

• Absorbable and nonabsorbale.<br />

• Mii, J Microsurg 1980 - smoother endothelial<br />

regeneration with polyglycolic acid sutures than<br />

with nonabsorbale material.<br />

• Thiede, J Microsurg 1979 - no increased<br />

aneurysm or pseudoaneurysm formation and no<br />

vascular raptures d/t decreased mechanical<br />

endurance with polyglycolic acid or polyglactin<br />

sutures.<br />

• Most surgeons use nonabsorable sutures - nylon<br />

or prolene.<br />

28


• Key sutures -<br />

Anastomotic technique<br />

» Carrel’s triangulation method- 120°.<br />

» 180° halving sutures.<br />

Interrupted or continuous sutures?<br />

• Simple interrupted full thickness<br />

sutures are preferred and are the<br />

standard to which all techniques<br />

are compared.<br />

• Continuous sutures -<br />

» Same patency rate.<br />

» Faster.<br />

» May narrow the caliber <strong>of</strong> the<br />

vessel lumen.<br />

» Cordeiro, Ann Plast Surg 1998<br />

- continuous suture<br />

anastomosis in 200 consecutive<br />

free flap - similar success rate.<br />

29


Interrupted or continuous sutures?<br />

• The sleeve technique -<br />

» Originally described by Lauritzen,<br />

Scan PRS 1980 -<br />

» Said to be:<br />

• faster, Simpler.<br />

• Suture cause less trauma to the<br />

vessels.<br />

• Less intraluminal suture exposure.<br />

• Lauritzen: “ endothelialization in<br />

haft the time”.<br />

» Clinically:<br />

• Difficult in veins.<br />

• Reports <strong>of</strong> stenosis, thrombus and<br />

aneurysm formation.<br />

• Sully, PRS 1982 - lower patency<br />

rate - 84% (normal - 98%).<br />

• O’Brien - “not superior in clinical<br />

situation”.<br />

End-to-end, end-to-side anastomosis<br />

• End-to-end anastomosis -<br />

» The most common type.<br />

» Size discrepancy up to 2:1.<br />

• End-to-side anastomosis -<br />

» when size discrepancy more then 2:1.<br />

» When limb or organ depends on a<br />

single vessel for perfusion.<br />

30


End-to-end, end-to-side and end-in-end<br />

• End-to-side anastomosis -<br />

» Godina, PRS 1979 -<br />

• higher failure rate with end-toend<br />

anastomosis.<br />

• End-to-side - choice for lower<br />

extremity free flaps.<br />

» Samaha, PRS 1997 -<br />

• no differences in patency rates<br />

in 1051 free flaps.<br />

» Animal experiments -<br />

• No difference in patency.<br />

• When different size - end-toside<br />

is better.<br />

• Flow dynamics in end-to-side<br />

are favorable.<br />

Stapling technique - anastomotic<br />

coupling systems<br />

• Nakayama, <strong>Surgery</strong> 1962 - the first ring device.<br />

• Ostrup & Berggren, Ann Plast Surg 1986 -<br />

modification, evolved into 3M microvascular<br />

anastomotic coupler.<br />

31


Stapling technique - anastomotic<br />

coupling systems<br />

• Clinical series -<br />

» Equal or greater patency<br />

rates.<br />

» Considerably faster.<br />

» Blair, Microsurgery 1989 -<br />

Histology - similar healing<br />

process.<br />

» Gilbert, Microsurgery 1989 -<br />

At 16 weeks postrepair<br />

coupled anastomoses are<br />

50% stronger.<br />

Nonpenetrating microvascular stapling device<br />

• Yamamoto, Ann Plast Surg 1999 -<br />

32


Laser anastomosis<br />

• Various experimental models and few clinical<br />

series.<br />

» Patency rate favorable.<br />

» Shorter operating time.<br />

» Limited endothelial trauma.<br />

» No suture material to induce foreign body reaction.<br />

Laser anastomosis<br />

• Wide rang <strong>of</strong> laser wavelengths -<br />

CO2, argon, neodymium:YAG, KPT<br />

and diode lasers.<br />

• Mechanism - still undefined.<br />

• Initial strength - physical factors<br />

(collagen coiling, crosslinking) not<br />

biological processes (inflammation<br />

and healing).<br />

33


Laser anastomosis<br />

• Tissue welding may be d/t simply heat generated<br />

by the laser energy or wavelength dependent.<br />

• The us <strong>of</strong> photosensitizing dyes makes low<br />

energy discharges possible - minimal collateral<br />

tissue damage.<br />

• To date - still investigational -<br />

» Aneurysm formation.<br />

» Low breaking and tensile<br />

strength in the early post<br />

operative period.<br />

» Cost.<br />

Monitoring perfusion<br />

• Free flap success is enhanced by the rapid<br />

identification and salvage <strong>of</strong> failing flaps.<br />

• Clinical assessment -<br />

» Skin color.<br />

» Temperature.<br />

» Capillary refill<br />

» Pinprick testing.<br />

• Devices to monitor blood flow should be -<br />

» highly reliable.<br />

» Simple to operate and interpret.<br />

» Inexpensive.<br />

34


Monitoring perfusion<br />

• Doppler ultrasound flowmeter -<br />

» The most common.<br />

» Arterial + venous flow.<br />

• Laser Doppler -<br />

Monitoring perfusion<br />

» Helium neon laser, penetrate 1.5mm,<br />

some light will be reflected by RBC<br />

moving in the capillaries in 1mm 3 <strong>of</strong><br />

tissue.<br />

» Continuously record the microcirculatory<br />

flow in all type <strong>of</strong> cutaneous and<br />

musculocutaneous free flaps.<br />

» Walkinshaw, Ann Plast Surg 1987 -<br />

• Unable to predict future clinical events.<br />

• No more accurate than clinical<br />

assessment in pointing the need for<br />

intervention.<br />

35


Monitoring perfusion<br />

• Temperature monitoring -<br />

» First described by Baudet, PRS 1976.<br />

» Good for skin or skin island flaps.<br />

» Unreliable in free muscle flaps.<br />

» Khouri & Shaw, PRS 1992 -<br />

• Series <strong>of</strong> 600 consecutive free flaps.<br />

• Monitored the temp difference between the flap and a<br />

control site.<br />

• Detected 52 thrombosed flaps - 45 salvaged.<br />

» Jones, PRS 1992 -<br />

• Pulse oxymeter is better for replanted digit.<br />

• Good only for skin that can be monitored more easily by<br />

capillary refill and Doppler probes.<br />

Monitoring perfusion<br />

• Implantable ultrasonic Doppler -<br />

» Direct monitoring.<br />

» Distinguish between arterial and<br />

venous occlusion.<br />

» More reliable than thermocouple<br />

probe.<br />

» Disa, Cordiero & Hidalgo, PRS<br />

1999 -<br />

• 750 free flaps, 673 nonburied.<br />

• Flap loss - 2.3%.<br />

• Buried flap loss - 6.5%, non were<br />

salvaged in reexploration.<br />

• The use <strong>of</strong> Implantable Doppler is<br />

recommended in buried flaps.<br />

36


The influence <strong>of</strong> patient factors<br />

• Tobacco use -<br />

» Cigarette smoking affect -<br />

• Cutaneous blood flow.<br />

• Wound healing.<br />

• Survival <strong>of</strong> pedicaled flaps.<br />

» Byproducts <strong>of</strong> cigarette smoke produce a<br />

thrombogenic state and vasoconstricting effect.<br />

» Large clinical series failed to show any damaging effect<br />

<strong>of</strong> cigarette smoking on free tissue transfer.<br />

» Reus, PRS 1992 - no difference in patency in 162 free<br />

flaps.<br />

» Buncke, J Reconstr Microsurgery 1996 -<br />

• 963 free flaps.<br />

• No survival or patency difference.<br />

• In smokers - higher incidence <strong>of</strong> healing complications at<br />

the flap interface or donor-site.<br />

The influence <strong>of</strong> patient factors<br />

» Cigarette smoking adversely affect the outcome <strong>of</strong><br />

digital replantation.<br />

» Blondeel, Br J Plast Surg 1999 - large series - 100<br />

free DIEP flaps for breast reconstruction - smoking was<br />

found to be a risk factor.<br />

37


Microanastomoses to irradiated vessels<br />

• Radiotherapy is known to impair wound healing -<br />

» decreasing the number <strong>of</strong> blood vessels.<br />

» Tissue ischemia.<br />

» Decreasing fibroblast proliferation and collagen<br />

production.<br />

• In earlier studies - patency was significantly lower<br />

in irradiated vessels.<br />

• Mulholland, PRS 1993 - similar failure rates in 226<br />

irradiated and in 108 nonirradiated.<br />

• Schusterman, PRS 1994 - large clinical series in<br />

prior radiotherapy do not predispose to a higher<br />

rate <strong>of</strong> acute flap loss or wound complications.<br />

Microanastomoses to irradiated vessels<br />

• Kroll, PRS 1996 - 854 consecutive free flaps - no<br />

effect to previous irradiation.<br />

• Guelincks, PRS 1984 -<br />

» limit dissection to recipient vessels.<br />

» Restrict electrocoagulation <strong>of</strong> arterial side branches.<br />

» Use small gauge needles.<br />

» Pass the needle from inside to outside.<br />

» Shorten the period <strong>of</strong> vessel cross clamping.<br />

» Flush vessels in heparinized solution.<br />

38


Free flaps<br />

• Twenty years ago - free tissue transfer was in the<br />

hands <strong>of</strong> few pioneers.<br />

• 10 years ago - primarily practiced at university<br />

centers.<br />

• Today -<br />

» free flap surgery is performed at an increasing rate and<br />

for expanding indications.<br />

» Free flaps in more difficult situations -<br />

• Irradiated fields.<br />

• Elderly patients.<br />

• Occlusive peripherovascular disease <strong>of</strong> lower extremity<br />

from arteriosclerosis or diabetes mellitus.<br />

• Success rates -<br />

Free flaps<br />

» 10 years ago - 90 - 94%, with 10% incidence <strong>of</strong><br />

thrombosis.<br />

» Khouri, PRS 1998 - in data from 9 microsurgical<br />

centers -<br />

• The success rate was 98.8%<br />

• Only 3.7% <strong>of</strong> flaps were reexplored for thrombosis.<br />

• Today - microsurgery is more than just to cover<br />

the wound - an esthetic final result is what most<br />

plastic surgeons currently strive for.<br />

39


Free flaps<br />

Free flaps<br />

• Failure <strong>of</strong> free tissue transfers -<br />

• Most <strong>of</strong>ten due to technical factors.<br />

• Khouri, PRS 1998 -<br />

» Most <strong>of</strong> the complications occurred in post traumatic<br />

reconstructions.<br />

» The magnitude <strong>of</strong> the traumatic insult is the single<br />

most important factor.<br />

» One should always seek the vascular pedicle <strong>of</strong> largest<br />

diameter - failures are high when small diameter<br />

pedicles are used, especially if ,1mm.<br />

40


• Free groin flap -<br />

Free flaps - skin<br />

» Superficial circumflex iliac a+v.<br />

» Concealment <strong>of</strong> the donor<br />

deformity.<br />

» Donor site - closed primarily.<br />

» Non hair bearing flap.<br />

» Short donor pedicle.<br />

» Arterial anomaly's.<br />

» Small external diameter 0.8-<br />

1.8mm.<br />

» Flap morbidity 15-20%.<br />

Free flaps - skin<br />

• Free radial forearm flap -<br />

» Radial a, cephalic/basilic v.<br />

» The most common and versatile<br />

skin flap.<br />

» Head and neck reconstructions.<br />

» Thin flap.<br />

» Osseous segment.<br />

» Long vascular pedicle, up to<br />

20cm.<br />

» Can be sensate flap.<br />

» Skin graft to donor site.<br />

» Donor site morbidity.<br />

41


• Free scapular flap -<br />

» Circumflex scapular a+v.<br />

Free flaps - skin<br />

» long vascular pedicle 6-14cm,<br />

arterial diameter 1.5-4.5mm.<br />

» Large flap.<br />

» Donor site closed primarily (up to<br />

9-10cm) - min morbidity.<br />

» Elevation - rapid and easy.<br />

» Nonsansate flap.<br />

» Thickness is variable (1.5-3cm).<br />

» Positioning the patient in lateral<br />

decubitus position.<br />

• Free parascpular flap -<br />

» Terminal branch <strong>of</strong> the<br />

descending circumflex<br />

scapular artery.<br />

» May be combined with the<br />

scapular flap.<br />

Free flaps - skin<br />

42


Free flaps - fascia<br />

• Useful where thin, well<br />

vascularized cover is needed.<br />

• Can provide unrestricted<br />

gliding <strong>of</strong> tendons in the hand.<br />

• Free temporoparietalis<br />

fascial flap -<br />

» Superficial temporal artery +v.<br />

Free flaps - muscle<br />

• Tamai, PRS 1970 - first report <strong>of</strong> free muscle<br />

transfer - rectus femoris muscle transfer in dogs.<br />

• Harii, Ohmori & Torii, PRS 1973 - free gracilis<br />

muscle for facial reanimation.<br />

• Surgical team in china - the lateral portion <strong>of</strong> the<br />

pectoralis major muscle to the forearm.<br />

• A common operation in plastic surgery.<br />

• The majority are to bring bulk <strong>of</strong> s<strong>of</strong>t tissue cover<br />

in traumatic losses, oncologic resections or<br />

osteomyelitis.<br />

43


• The most common -<br />

Free flaps - muscle<br />

» Latissimus dorsi and Rectus abdominis.<br />

• Reliable.<br />

• Large caliber.<br />

• Long vascular pedicles.<br />

• Relatively low donor site morbidity.<br />

• Histology - muscle fibers that are not reinnervted<br />

gradually degenerate and eventually replaced by<br />

fat cells.<br />

• Functional muscles -<br />

Free flaps - muscle<br />

» transfer <strong>of</strong> skeletal muscle by microvascular<br />

anastomosis + reinervation by microsurgical technique.<br />

» The working strength <strong>of</strong> a skeletal muscle is directly<br />

proportional to the cross-section area <strong>of</strong> the contracting<br />

muscle fibers.<br />

» The range <strong>of</strong> muscle contraction is a factor <strong>of</strong> fiber<br />

length.<br />

» The donor muscle nerve should match the anatomy <strong>of</strong><br />

the recipient nerve as possible.<br />

» Terzis, J Hand Surg 1978 - in rabbit rectus femoris -<br />

despite 100% patency <strong>of</strong> the anastomosis, only 25%<br />

working capacity.<br />

» Importance <strong>of</strong> reestablishing correct resting tension.<br />

44


Free flaps - muscle<br />

• Free latissimus dorsi muscle<br />

flap -<br />

» Thoracodorsal system.<br />

» The most common donor site.<br />

» Large - good for extensive defects.<br />

» Good for contaminated wounds.<br />

» Augments blood supply to areas <strong>of</strong><br />

deficiency.<br />

» Long and constant vascular pedicle -<br />

good for lower extremity.<br />

» Can be mayocutaneous.<br />

» Low donor site morbidity.<br />

• Free latissimus dorsi<br />

muscle flap -<br />

» Disadvantages -<br />

• Loss <strong>of</strong> functional<br />

motor unit - minimal<br />

effect on healthy<br />

patient.<br />

• Scar.<br />

Free flaps - muscle<br />

• Seroma at donor site.<br />

• Some winging <strong>of</strong> the<br />

scapula.<br />

45


Free flaps - osseous / osseocutaneous<br />

• First transfer - Ostrup & Friedrickson, PRS 1974 -<br />

• Buncke, PRS 1977 - free rib osseocutaneous flap<br />

to lower leg for tibial pseudoarthrosis.<br />

• Serafin, Br J Plast Surg 1977 - rib<br />

osseocutaneous flap for mandibular<br />

reconstruction.<br />

• Taylor, 1979 - first to report the free fibula flap.<br />

• Taylor, PRS 1978 - free iliac crest flap.<br />

Free flaps - osseous / osseocutaneous<br />

• The free fibula flap -<br />

» Peroneal vessels a+v.<br />

» Up to 26cm <strong>of</strong> vascularized cortical bone.<br />

» Blood supply - endosteal + musculoperiosteal.<br />

» Good for reconstruction <strong>of</strong> - femor, tibia, humerus,<br />

radius and ulna that are not amenable to grafting by<br />

conventional nonvascularized bone graft.<br />

» Mandibular reconstruction.<br />

» Cortical bone - stress and weight bearing.<br />

» The epiphysis <strong>of</strong> the fibular head supplied by branches<br />

<strong>of</strong> the tibial artery.<br />

46


Free fibula flap<br />

47


...<br />

הדות<br />

48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!