02.07.2013 Views

Lecture 5: Chapter 4 • Basic molecular genetic ... - Genome Tools

Lecture 5: Chapter 4 • Basic molecular genetic ... - Genome Tools

Lecture 5: Chapter 4 • Basic molecular genetic ... - Genome Tools

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lecture</strong> 5: <strong>Chapter</strong> 4<br />

<strong>•</strong> <strong>Basic</strong> <strong>molecular</strong> <strong>genetic</strong> mechanisms<br />

– Nucleic Acids<br />

– Information flow in biological system<br />

– RNA Transcription<br />

– Protein Translation<br />

– DNA replication<br />

– Viruses


<strong>•</strong>Classic EM DNA and RNA txn


<strong>•</strong>EM nucleolus, RNAP and rRNPs<br />

<strong>•</strong>“old” = heavy and radio isotopes probes<br />

<strong>•</strong>“new” = fluorescent and luminescent probes


Biochemistry inside the cell<br />

<strong>•</strong>Central Dogma


Nucleotides: Common structure


Anti vs syn


Why DNA and not RNA, if they are the same?<br />

<strong>•</strong>1) RNA less stable under certain conditions<br />

<strong>•</strong>Alkaline<br />

<strong>•</strong>2) C-OH more reactive, than C-H<br />

<strong>•</strong>3) Polymer- larger grooves, more accessible by enzymes<br />

<strong>•</strong>4) also, hereditary base info POV difference


Chargaff’s Rules<br />

<strong>•</strong>Review article, 1950” ‘Chargaff’s Rules’ - ‘regularities’<br />

<strong>•</strong><strong>Lecture</strong>d at Cambridge, 1952


<strong>•</strong>1952<br />

<strong>•</strong>Franklin and Wilkins had a general idea what DNA looked like<br />

<strong>•</strong>But “They had done no proper model building”…‘missed the<br />

base pairing and overlooked Chargaff’s Rules’ (Crick)<br />

<strong>•</strong>Pauling built models but didn’t consider Chargaff’s Rules, also did not have crys data<br />

<strong>•</strong>http://www.dnai.org/text/mediashowcase/index2.html?id=66<br />

Plus…


Leads to…<br />

<strong>•</strong>http://nobelprize.org/educational_games/medicine/dna_double_helix/readmore.html<br />

<strong>•</strong>http://www.cumc.columbia.edu/news/journal/journal-o/fall-2003/dna.html<br />

<strong>•</strong>Nature, Apr 25, 1953<br />

…leading to…


‘immediate’ answers…<br />

<strong>•</strong>http://nobelprize.org/educational_games/medicine/dna_double_helix/readmore.html<br />

<strong>•</strong>http://www.chem.ucsb.edu/~kalju/chem110L/public/tutorial/intro.html<br />

<strong>•</strong>http://www.dnai.org/text/mediashowcase/index2.html?id=66<br />

<strong>•</strong>Nature, Apr 1953


Leads to…<br />

<strong>•</strong>Two months earlier….<br />

<strong>•</strong>Working to fit cardboard cutouts of the bases into Franklin’s data, Watson…<br />

<strong>•</strong>“Francis kept telling me there’s Chargaff’s pairs; would they pair to each other?”<br />

<strong>•</strong>“But I didn’t like Chargraff… I didn’t want to use his data in finding the structure.”<br />

<strong>•</strong>http://nobelprize.org/educational_games/medicine/dna_double_helix/readmore.html<br />

<strong>•</strong>http://www.cumc.columbia.edu/news/journal/journal-o/fall-2003/dna.html


<strong>•</strong>dsDNA, complementary and anti-parallel


<strong>•</strong>http://www.cumc.columbia.edu/news/journal/journal-o/fall-2003/dna.html


DNA forms: A, B and Z<br />

<strong>•</strong>Right handed<br />

<strong>•</strong>Left handed


Views of the double helix


Using the double helix: Proteins ‘bridge’<br />

nucleic acids to the ‘world’


Using the double helix


What is DNA?<br />

<strong>•</strong>Native vs denatured


Native vs denatured DNA


Using the double helix


Physicochemical characterizations


DNA secondary structures


DNA ‘bridges’ chemistry to life<br />

<strong>•</strong>Double strand to single strand


RNA secondary structures


Why is secondary structure, and stability of, important?<br />

<strong>•</strong>role in structural aspects of complexes<br />

<strong>•</strong>gene expression/transcription regulation<br />

<strong>•</strong>genome regulation (large regions)


Nucleic acids have “3-D” structure<br />

<strong>•</strong>http://nobelprize.org/educational_games/medicine/dna_double_helix/readmore.html<br />

<strong>•</strong>http://www.chem.ucsb.edu/~kalju/chem110L/public/tutorial/intro.html<br />

<strong>•</strong>http://www.dnai.org/text/mediashowcase/index2.html?id=66


Biochemistry inside the cell


Biochemistry of<br />

[or manipulation of] nucleic acids<br />

involve:<br />

<strong>•</strong>template<br />

<strong>•</strong>resolution of double-strand and<br />

<strong>•</strong>secondary structure<br />

<strong>•</strong>chemistry


ACTGGTCAACGTTGCA….. [and?]


Overview of information flow:<br />

Central dogma [paradigm] of <strong>molecular</strong><br />

biology<br />

<strong>•</strong> 1958 Crick<br />

<strong>•</strong> Information flow<br />

<strong>•</strong> Described ‘knowing everything’ about<br />

<strong>molecular</strong> mechanisms inside cell<br />

<strong>•</strong> DNA DNA->RNA->protein


?<br />

Central dogma of <strong>molecular</strong> biology<br />

(but...)<br />

Exceptions:<br />

<strong>•</strong> Temin ‘64 predicted RNA viruses<br />

Temin, Baltimore ‘70 found RTase<br />

<strong>•</strong> Prusiner ~82 “prion”<br />

*There’s more than we know


Central dogma of <strong>molecular</strong> biology<br />

(but...)<br />

Prusiner ~82 “prion in disease”<br />

Prions (kuru, N. Guinea, early ‘00s;<br />

Gadjusek, ‘57; slow virus ‘66)<br />

(BSE; UK, Nov86)<br />

Also,<br />

<strong>Genome</strong> size paradox<br />

‘05 ‘recent’ gene estimates<br />

<strong>•</strong>Monod ‘54, “What was true for E. coli would be true for the elephant.”<br />

-> but, miRNA parallel regulatory system acting on DNA, RNA and protein<br />

–Allows structural complexity in humans?


Exception: CWD and<br />

deer<br />

Oct 5, 2006 EHoover<br />

<strong>•</strong>“Deer spread a brain-destroying disease through saliva”<br />

<strong>•</strong>white-tailed deer at CSU Chronic Wasting Disease Research Facility<br />

<strong>•</strong>saliva from CWD-infected deer to healthy tame from unaffected area<br />

<strong>•</strong>18 month surveillance of tonsil tissue and eventually brain<br />

<strong>•</strong>all deer from saliva exposure as well as single blood transfusion<br />

<strong>•</strong>also, additional work: not just casual contact but contact with environment, eg secretions


ED Belay et al., Emerging Infect Dis 04<br />

Chronic wasting disease of elk and deer in CO, WY, NE<br />

Spread from focus<br />

Food-borne transmission of BSE to humans<br />

Species barrier [?]<br />

Sept 05 WVa, MD?<br />

Apr 06 prions stable in soil<br />

Exception: Protein to protein


<strong>Genome</strong> content paradox<br />

[and elephants and E. coli]<br />

-Resolution as non-coding RNAs (siRNA, RNAi, microRNA)?<br />

-regulatory RNA<br />

2005


Central Dogma of Molecular Biology<br />

[seemingly ‘often refuted’ by new understandings]<br />

<strong>•</strong>Describes ‘information flow inside the cell’<br />

<strong>•</strong>How can this be the ‘Central Dogma’ if it does not hold up?<br />

<strong>•</strong>LMoran blog: http://sandwalk.blogspot.com/2007/01/central-dogma-of-<strong>molecular</strong>-biology.html


Central Dogma of Molecular Biology<br />

[seemingly ‘often refuted’]<br />

<strong>•</strong>Many [younger] scientists or the Recombinant DNA, Molecular Biology and Genomics era<br />

read/studied Watson’s “Molecular Biology of the Gene”<br />

<strong>•</strong>[not many have read the original paper[s]]<br />

<strong>•</strong>LMoran blog: http://sandwalk.blogspot.com/2007/01/central-dogma-of-<strong>molecular</strong>-biology.html


<strong>•</strong>http://sandwalk.blogspot.com/2007/01/central-dogma-of-<strong>molecular</strong>-biology.html<br />

Central Dogma of Molecular Biology<br />

[perception corrected]


<strong>•</strong>Still, prions?<br />

<strong>•</strong>http://sandwalk.blogspot.com/2007/01/central-dogma-of-<strong>molecular</strong>-biology.html<br />

Central Dogma of Molecular Biology<br />

[perception corrected]


Replication: DNA chemistry<br />

<strong>•</strong>Biochemistry as information storage dsDNA, ssDNA


Transcription (txn): RNA chemistry<br />

<strong>•</strong>Biochemistry as mRNA, tRNA and rRNA, also ATP/GTP energy


Transcription (Txn) is RNA from DNA<br />

RNA ‘bridge’ DNA to the ‘world’


<strong>•</strong>Bacterial RNAP<br />

<strong>•</strong>Note DNA bend


Biochemistry of txn: Model process


Current model of RNA polymerase


<strong>•</strong>Refinements thru better<br />

tools, better understanding


RNA transcription: Structural basis<br />

RKornberg, Sci Jun01 x2 articles<br />

<strong>•</strong>Structural basis of transcription @2.8 and 3.3A<br />

<strong>•</strong>RNApol II transcribing a gene<br />

<strong>•</strong>Protein: gray, orange clamp and green bridge<br />

<strong>•</strong>DNA: blue template strd;<br />

<strong>•</strong>green non-template strd<br />

<strong>•</strong>RNA: red;<br />

<strong>•</strong>Mg ++ : pink


A:<br />

<strong>•</strong>Refined Pol II structure<br />

<strong>•</strong>Electron density<br />

<strong>•</strong>Ribbon of 10 subunits<br />

B:<br />

<strong>•</strong>Structure of Rpb1:<br />

<strong>•</strong>domains and domain-like regions<br />

R. Kornberg, Nobel Chemistry 2006<br />

Transcription: Structural and <strong>molecular</strong> basis


<strong>•</strong> Prokaryotes<br />

<strong>•</strong> Eukaryotes<br />

Organization of genes<br />

<strong>•</strong> [using the genome]


DNA to RNA to protein, what and when?


Example of “on/off:” Need tryptophan


Different strategies: Prok vs Euk


Different strategies: Euk


Eukaryotic gene structure in [a little more] detail


RNA transcript processing


Cell type-specific splicing of fibronectin<br />

<strong>•</strong>75 kb gene<br />

<strong>•</strong>Twenty isoforms, glycoprotein, ca 5% carbohydrates, where<br />

<strong>•</strong>EIIIB and EIIA exons encode binding domains for fibroblast surface proteins<br />

<strong>•</strong>Fibroblast mRNA contains both- fibronectin adheres to Extracellular Matrix<br />

<strong>•</strong>Hepatocyte version is missing both- secreted and circulated<br />

<strong>•</strong>during blood clots, fibrin-binding domains bind to fibrin;<br />

<strong>•</strong>complex bind integrins on platelets- cascade


Drosophila to Mammals<br />

<strong>•</strong>Dscam, Ig superfamily member<br />

<strong>•</strong>Isolated by its affinity to Dreadlocks (Dock)<br />

<strong>•</strong>Homolog of mammalian oncogene Nck (appearance of the photoreceptor cell axon projection pattern)<br />

<strong>•</strong>Dscam, Dock, Pak (Ser/Thr kinase) together direct pathfinding of<br />

Bolwig’s nerve, subclass of sensory axons, to target in embryo<br />

<strong>•</strong>Dscam required for formation of axon pathways in embryonic CNS<br />

<strong>•</strong>http://fruitfly.files.wordpress.com/2006/11/fruitfly.jpg<br />

<strong>•</strong>http://sdbonline.org/fly/hjmuller/dscam1.htm


Record alternative splicing<br />

<strong>•</strong>D. melanogaster Dscam gene<br />

<strong>•</strong>[“Down Syndrome cell adhesion molecule”]<br />

<strong>•</strong>Ig superfamily protein<br />

<strong>•</strong>115 exons of which 95 mutually exclusive exons,eg, organized into 4 clusters<br />

<strong>•</strong>exons 4, 6, 9 and 17 clusters contain 12, 48, 33 and 2 mutually exclusive alt exons<br />

<strong>•</strong>38,016 mRNA isoforms for distinct axon guidance receptors<br />

<strong>•</strong>for neuronal wiring specificity (innate immunity)


Good gene, bad gene [?]<br />

(splicing is important also as…)<br />

<strong>•</strong>BCL-X gene (“B-cell lymphoma”)<br />

<strong>•</strong>Normally, sans blue portion of Exon II,<br />

produces Bcl-X S mRNA, a protein that induces apoptosis<br />

<strong>•</strong>If splice to include all Exon II,<br />

produces Bcl-X L mRNA, a protein to inhibit apoptosis<br />

<strong>•</strong> -> Many cancers have high incidence of Bcl-X L<br />

<strong>•</strong> -> Successful chemotherapy results in higher proportion<br />

of Bcl-X S


Euk gene: “editing” post-RNA synthesis<br />

<strong>•</strong>http://en.wikipedia.org/wiki/Apolipoprotein_B<br />

<strong>•</strong>http://en.wikipedia.org/wiki/Messenger_RNA<br />

<strong>•</strong>Some cases,’editing’ occurs<br />

<strong>•</strong>Changing nucleotide composition of mRNA<br />

<strong>•</strong>Ex, human apolipoprotein B mRNA<br />

<strong>•</strong>[primary apolipoprotein of low density lipoproteins (bad)]<br />

<strong>•</strong>Edited in some tissues not in others<br />

<strong>•</strong>Two main isoforms in plasma: APOB48 and APOB100<br />

<strong>•</strong>First by small intestine, second by liver<br />

<strong>•</strong>Same single transcript >16kb<br />

<strong>•</strong>“48” lacks C-terminal LDL-receptor binding region<br />

<strong>•</strong>Editing creates early stop codon<br />

<strong>•</strong>FNassir… NODavidson. ‘96 JNutrition. “[ApoB] mRNA editing<br />

preserved in intestine and liver of Zn-deficient rats”<br />

<strong>•</strong>Zn: Essential trace element<br />

<strong>•</strong>key role in gene expression, DNA replication, cell growth and<br />

division; essential for many enzymes


Euk gene: polyA tails<br />

<strong>•</strong>http://en.wikipedia.org/wiki/Polyadenylation<br />

<strong>•</strong>Cleavage and polyadenylation<br />

<strong>•</strong>Multi-protein complex cleaves 15-30 nucleotides downstream<br />

<strong>•</strong>Of usually AAUAAA<br />

<strong>•</strong>Polyadenylate polymerase adds A+<br />

<strong>•</strong>Linked to spliceosome


Euk gene: mature transcript<br />

<strong>•</strong>http://en.wikipedia.org/wiki/Polyadenylation


Prok gene expression regulation: Lac operon<br />

<strong>•</strong>catabolic pathway<br />

<strong>•</strong>repressor<br />

<strong>•</strong>inducer<br />

<strong>•</strong>“CAP” protein


Prok gene expression regulation: Trp operon<br />

<strong>•</strong> anabolic pathway<br />

<strong>•</strong> repressor<br />

<strong>•</strong> inducer<br />

<strong>•</strong> attenuation:<br />

-tRNA<br />

-amino acid


Finer mechanism of gene regulation at txn<br />

[more to learn from prokaryotes…]<br />

MJ Cromie et al. Cell Apr06<br />

<strong>•</strong>RNA sensor for intracellular Mg ++<br />

<strong>•</strong>‘Mfold’ software<br />

<strong>•</strong>Salmonella model for regulation of Mgt Mg ++ transporter<br />

<strong>•</strong>Above threshold, Mg ++ binds and promotes txn stop<br />

<strong>•</strong>Recall Attenuation


Gene expression regulation by<br />

<strong>•</strong> Inducers<br />

<strong>•</strong> Repressors<br />

small molecules<br />

<strong>•</strong> Specific activator proteins, eg CAP


<strong>•</strong>Regulate nitrogen assimilation<br />

<strong>•</strong>Ex., Bradyrhizobium japonicum<br />

<strong>•</strong>NtcC mutants cannot use potassium nitrate<br />

<strong>•</strong>Lacked glnII transcripts<br />

<strong>•</strong>(Glutamine synthase (GS))<br />

<strong>•</strong>Rice prefers ammonium over nitrate<br />

<strong>•</strong>Either taken up by plant or produced by<br />

<strong>•</strong>Reduction of nitrate, then assimilated by<br />

<strong>•</strong>GS produces amino group of Gln<br />

DNA looping


Translation: roles of RNA


Universal <strong>genetic</strong> code


Multiple reading frames<br />

<strong>•</strong>what does this mean?


-> mRNA is a string of codons


-> mRNA is a string of codons<br />

--> which encode a protein<br />

<strong>•</strong>http://www.ornl.gov/sci/techresources/Human_<strong>Genome</strong>/posters/chromosome/hbb.shtml<br />

<strong>•</strong>http://sickle.bwh.harvard.edu/scd_background.html<br />

<strong>•</strong>One base, one amino acid, one protein


<strong>•</strong>“HbA” to “HBS”<br />

<strong>•</strong>Red box is amino acid #6<br />

<strong>•</strong>G6V<br />

<strong>•</strong>(glutamine to valine)<br />

<strong>•</strong>GAG to GTG<br />

<strong>•</strong>http://www.ornl.gov/sci/techresources/Human_<strong>Genome</strong>/posters/chromosome/hbb.shtml<br />

<strong>•</strong>http://sickle.bwh.harvard.edu/scd_background.html<br />

-> mRNA is a string of codons<br />

-->which encode a protein<br />

--->that affects the whole organism, species?<br />

<strong>•</strong>One base, one amino acid, one protein<br />

<strong>•</strong>Many effects<br />

<strong>•</strong>Pleiotrophism


Importance of codon usage to biotechnology


Universal?


Structure of tRNA determines function<br />

<strong>•</strong>“translating”/decoding nucleic acid sequence<br />

<strong>•</strong> into amino aci sequence


tRNA


Nucleic acids have “3-D” structure<br />

<strong>•</strong>http://nobelprize.org/educational_games/medicine/dna_double_helix/readmore.html<br />

<strong>•</strong>http://www.chem.ucsb.edu/~kalju/chem110L/public/tutorial/intro.html<br />

<strong>•</strong>http://www.dnai.org/text/mediashowcase/index2.html?id=66


wobble<br />

<strong>•</strong>Allows tRNA to recognize >1 mRNA codon<br />

<strong>•</strong>Same amino acid<br />

<strong>•</strong>I = inosine, prs with C, A, U


RNA in translation, and proteins…


<strong>•</strong>Early attempts at structures


<strong>•</strong>E. coli 70S crystal structure<br />

<strong>•</strong>16S rRNA, proteins green/23S rRNA, proteins purple<br />

<strong>•</strong>5S rRNA dark blue


The end of the story is the beginning…<br />

<strong>•</strong>Termination releases all components


<strong>•</strong>After termination, re-associates to initiate<br />

<strong>•</strong>Preinitiation complex: 40S + eIF3 with<br />

<strong>•</strong>eIF1A+Met-tRNA/eIF2-GTP<br />

<strong>•</strong>GTPeIF2GDP<br />

<strong>•</strong>But eIF2-GTP only with Met-tRNA, then<br />

<strong>•</strong>40S and 60S subunits + eIF3, eIF6<br />

<strong>•</strong>Above scans for Kozak sequence:<br />

ACCAUGG<br />

Stepwise synthesis of peptide:<br />

Initiation of translation


elongation


Translation termination<br />

“function by absence”


PABP 1 and recycling translation<br />

<strong>•</strong>Two ways to increase protein synthesis<br />

<strong>•</strong>Simultaneous ribosomes and recycling<br />

<strong>•</strong>Circular polysomes<br />

<strong>•</strong>polyA-binding proteins (PABP)<br />

<strong>•</strong>Bridges- circular mRNA


Recycling model


Third component= DNA replication

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!