02.07.2013 Views

Perturbative and non-perturbative infrared behavior of ...

Perturbative and non-perturbative infrared behavior of ...

Perturbative and non-perturbative infrared behavior of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

B.1. Feynman rules for the general action (4.3.124)<br />

in terms <strong>of</strong> cov. On a generic superfield in the adjoint representation <strong>of</strong> SU(N) ⊗ U(1) we have<br />

A 1<br />

(cov ∗ φ) A =<br />

=<br />

2 ¯ ∇ α ˙α ∗ ¯ ∇α ˙α ∗ φ<br />

<br />

φ − i[Γ α ˙α ,∂α ˙αφ]∗ − i<br />

2 [(∂α ˙α Γα ˙α),φ]∗ − 1<br />

2 [Γα ˙α ,[Γα ˙α,φ]∗]∗<br />

≡ AB<br />

cov ∗ φ B<br />

Using the general NAC rule<br />

[F,G] A ∗<br />

= 1<br />

2 ifABC {F B ,G C }∗ + 1<br />

2 dABC [F B ,G C ]∗<br />

A<br />

(B.1.13)<br />

(B.1.14)<br />

valid for any couple <strong>of</strong> field functions in the adjoint representation <strong>of</strong> the gauge group, <strong>and</strong><br />

exp<strong>and</strong>ing the ∗–product we find<br />

AB<br />

cov = δAB + f ACB Γ C α ˙α ∂α ˙α + id ACB F αβ (∂αΓ C γ ˙γ )∂β∂γ ˙γ − 1<br />

2 fACB F 2 (∂ 2 Γ C α ˙α )∂ 2 ∂α ˙α<br />

+ · · · (B.1.15)<br />

Only the first two terms in (B.1.13) have been explicitly indicated. The rest can be treated in a<br />

similar manner.<br />

The 1 ˆ <strong>and</strong> 1 e propagators can be exp<strong>and</strong>ed in powers <strong>of</strong> the background fields. We formally<br />

write<br />

1<br />

ˆ<br />

1<br />

= +<br />

cov<br />

1<br />

cov<br />

1 1<br />

= +<br />

cov<br />

1<br />

∗<br />

cov<br />

<br />

∗<br />

i ˜ W α ∇α + iW ˙α ∗ ¯ ∇ ˙α<br />

<br />

∗ 1<br />

ˆ<br />

<br />

i ˜ W α ∇α − i<br />

2 ( ¯ ∇ ˙α <br />

∗ W ˙α) ∗ 1<br />

<br />

(B.1.16)<br />

Exp<strong>and</strong>ing the right h<strong>and</strong> side we obtain terms proportional to ˜ Wα,W ˙α <strong>and</strong> terms proportional<br />

to the bosonic connections coming from 1/cov. As follows from dimensional considerations <strong>and</strong><br />

confirmed by direct inspection, terms proportional to the field strengths never enter divergent<br />

diagrams as long as we focus on contributions linear in the NAC parameter. Therefore, at this<br />

stage we can neglect them. Using the expansion (B.1.15) we then find<br />

ab 00 AB 1 1 1<br />

, →<br />

ˆ cov<br />

≃ 1<br />

δAB − 1<br />

fACB Γ C α ˙α 1 1 1<br />

∂α ˙α −<br />

2 fACDf DEB Γ C α ˙α Γ E 1<br />

α ˙α<br />

<br />

− 1<br />

idACB F αβ (∂αΓ C γ ˙γ 1 1 1<br />

) ∂β∂γ ˙γ +<br />

2 fACB F 2 (∂ 2 Γ C α ˙α ) ∂ 2 1<br />

∂α ˙α<br />

<br />

+ · · ·<br />

(B.1.17)<br />

In this expression we recognize the ordinary bare propagator 1/ plus a number <strong>of</strong> gauge interaction<br />

vertices.<br />

Further interactions come from the expansion <strong>of</strong> the remaining terms in (4.2.77) or (4.2.78).<br />

Their explicit expression can be found in Appendix E <strong>of</strong> [18].<br />

181

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!