05.07.2013 Views

Polymerisation Processes Polymerisation Processes Polyethylene ...

Polymerisation Processes Polymerisation Processes Polyethylene ...

Polymerisation Processes Polymerisation Processes Polyethylene ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Polymerisation</strong> <strong>Processes</strong><br />

Polymer <strong>Processes</strong><br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

<strong>Polyethylene</strong><br />

Homo- und Copolymers of ethylene:<br />

n<br />

• PE is industrially produced bay radical- and coordinative polymerization<br />

• <strong>Polyethylene</strong> (PE) is semi-crystalline, non-polar thermoplastic material<br />

• Most important standard plastics with highest production volume<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

1<br />

3<br />

<strong>Polymerisation</strong> <strong>Processes</strong><br />

Why look processes like as they do?<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

<strong>Polyethylene</strong><br />

structure<br />

crystallinity [%]<br />

Melting point [°C]<br />

density [g/cm 3 ]<br />

LDPE LLDPE HDPE PP<br />

Long- and<br />

Short chainbranching<br />

50 - 55<br />

106 - 120<br />

0,91 - 0,93<br />

Linear with<br />

short chainbranches<br />

55 - 60<br />

125 - 130<br />

0,91 - 0,93<br />

Linear with few<br />

short chainbranches<br />

70 - 80<br />

128 - 136<br />

0,93 - 0,96<br />

Linear<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

~ 70<br />

164 - 166<br />

0,91<br />

2<br />

4


<strong>Polyethylene</strong> applications<br />

• Films<br />

• packaging material<br />

• injection molding<br />

• pipes<br />

• electrical insulation material<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

<strong>Polyethylene</strong> melt flow index<br />

Melt Flow Rate / Melt Flow Index<br />

= a measure for chain length / molecular weight<br />

Amount of molten polymer [dg/min], that flows at defined conditions (pressure<br />

and temperature) through a defined capillary.<br />

Standards: ASTM 1238 / ISO R1133<br />

weight 2,16 kg / 21,6 kg<br />

temperature 190 °C<br />

geometry capillary:<br />

D=2,095 mm<br />

L=8 mm<br />

High MFR = low molecular weight<br />

Low MFR = high molecular weight<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

5<br />

7<br />

<strong>Polyethylene</strong> density<br />

Density correlates with crystallinity and structure of PE:<br />

amorphous PE: ρ = 860 kg/m³<br />

crystalline PE: ρ = 1000 kg/m³<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Polyethylen <strong>Processes</strong><br />

PE<br />

radical coordinative<br />

homogen homogenous<br />

• bulk<br />

(LDPE high<br />

pressure process)<br />

homogenous heterogenous<br />

• solution • Suspension<br />

(3 Phase „Slurry“<br />

polymerization)<br />

• Gas phase<br />

• bimodal:<br />

slurry-slurry<br />

slurry-GP<br />

GP-GP<br />

Reactions -<br />

mechanism<br />

phases<br />

processes<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

6<br />

8


High Pressure <strong>Polyethylene</strong> <strong>Processes</strong><br />

High pressure process<br />

in one phase region<br />

low pressure process in<br />

two phase region<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

R2<br />

Side Reactions inHigh Pressure <strong>Polyethylene</strong><br />

R1<br />

Chain scission – unsaturated chains<br />

R1 CH 2 CH CH 2 R2<br />

Intermolecular transfer to polymer – long chain branching<br />

CH CH 2<br />

2<br />

CH C<br />

2<br />

H2 +<br />

CH CH CH CH 2<br />

2<br />

2<br />

2<br />

CH CH CH R3<br />

2<br />

2<br />

2<br />

R2<br />

R1<br />

CH CH 2<br />

2<br />

CH CH 2<br />

3<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

+<br />

CH CH C<br />

2<br />

2<br />

CH CH H<br />

2<br />

2<br />

CH 2<br />

n<br />

CH 2<br />

R3<br />

C<br />

H 2<br />

CH 2<br />

R2<br />

H2 C<br />

+<br />

+<br />

R1 CH CH2 R2 H2C<br />

H C CH R2 2 R1 C<br />

C<br />

H 2<br />

H2 C<br />

C<br />

H 2<br />

C<br />

H 2<br />

C<br />

H 2<br />

HC<br />

CH 2<br />

CH 2<br />

C<br />

H 2<br />

H 2<br />

H2 C<br />

R3<br />

9<br />

11<br />

High Pressure <strong>Polyethylene</strong> <strong>Processes</strong><br />

Primary<br />

compressor<br />

Granules<br />

Hyper Compr.<br />

Autoclave<br />

High pressure cycle<br />

150-300 bar<br />

Low pressure<br />

cycle<br />

Extruder<br />

M<br />

alternative<br />

High pressure<br />

separator<br />

Low pressure<br />

separator<br />

T = 200 - 300°C<br />

P = 2000 - 3000 bar<br />

Tubular reactor<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Side Reactions inHigh Pressure <strong>Polyethylene</strong><br />

Intramolecular transfer to polymer – short chain branching<br />

R1 CH 2 CH 2 CH<br />

H<br />

CH 2<br />

C<br />

H 2<br />

R1 CH 2 CH 2 CH<br />

R1 CH 2 CH 2 CH<br />

CH 2<br />

CH 2<br />

CH 2<br />

CH H 2<br />

C<br />

H2 CH 2<br />

CH 2<br />

CH 3<br />

C<br />

H 2<br />

CH CH 2 CH 3<br />

CH CH 2 CH 3<br />

R1 CH 2 CH 2 C H<br />

CH 2<br />

n<br />

C<br />

H 2<br />

n<br />

C<br />

H 2<br />

CH 2<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

CH 2<br />

C<br />

H 3<br />

CH 2<br />

CH 2<br />

CH 2<br />

n<br />

M<br />

C<br />

H 2<br />

CH 2<br />

R1 CH 2 CH 2 CH<br />

CH 2<br />

CH 2<br />

CH 2<br />

CH 3<br />

CH 2 CH 2 CH 2 CH 2 CH 2<br />

R1 CH CH CH CH CH CH CH CH 2 2 2<br />

2 2 2<br />

CH 2<br />

CH 3<br />

CH 2<br />

CH 3<br />

Butyl side groups<br />

Ethyl side groups<br />

10<br />

12


Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

I, M<br />

300<br />

200<br />

100<br />

Activation energy and volumes in LDPE<br />

Different operation modes in LDPE reactors<br />

Single monomer feed of monomer<br />

Multiple initiator possible<br />

Single initiator feed<br />

I<br />

double initiator feed<br />

300<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

200<br />

100<br />

I, M<br />

Multiple feed of monomer and initiator<br />

I, M<br />

I, M<br />

13<br />

15<br />

Process parameters and properties - Trends<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Coordinative <strong>Polyethylene</strong> <strong>Processes</strong><br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

14<br />

16


Solution Coordinative <strong>Polyethylene</strong> <strong>Processes</strong><br />

Solution process:<br />

• broad range of comonomer types and densities possible<br />

• pure products<br />

• limitation: high molecular weight (high temperature, transfer to solvent)<br />

• temperature well above melting point of PE<br />

• commercial processes:<br />

• processes with very short residence time, e.g. 2 min:<br />

• Nova Sclairtech / Advanced Sclairtech<br />

• Sabic / Stamicarbon Compact solution process<br />

• processes with longer residence time e.g. 30 min:<br />

• Dowlex<br />

• Mitsui<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Solution Coordinative <strong>Polyethylene</strong> <strong>Processes</strong><br />

Sclairtech Dowlex<br />

temperature 200 - 300 °C 160 °C<br />

pressure bis zu 100 bar 27 bar<br />

solvent cyclohexane C8 / C9 paraffines<br />

Residence time approx. 2 min approx. 30 min<br />

heat removal: convective convective and conductive<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

17<br />

19<br />

Solution Coordinative <strong>Polyethylene</strong> <strong>Processes</strong><br />

Flowsheet for solution polymerization (DSM)<br />

Ethylen<br />

Comonomer<br />

solvent<br />

Solvent recycle<br />

venting<br />

Additives<br />

Absorber Reactor Flash-Tank<br />

Mixer<br />

Extruder<br />

Additive<br />

solvent Hexane<br />

Temperature 130°C<br />

Residence time ~ 10 min<br />

Solid content < 10 %<br />

adiabatic<br />

High space time yield<br />

Reactor volume 5 m 3 for 5 t HDPE/h<br />

Solvent purification<br />

Flash<br />

-Tank<br />

HDPE-Granules<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Slurry Coordinative <strong>Polyethylene</strong> <strong>Processes</strong><br />

Slurry process:<br />

• developed for HDPE<br />

• Limitation: low density, low molecular weight: partial solubility of the polymer<br />

in the suspension media, fouling<br />

• suitable for densities above 930 kg/m³ resp. 920 kg/m³ (with SSC)<br />

• CSTR‘s or slurry-loop reactors used<br />

• suspension media: paraffines, e.g. hexane, isobutane<br />

• many commercial processes:<br />

• processes with loop reactor<br />

• Phillips Loop<br />

• Solvay<br />

• processes with stirred tank reactors<br />

• Hostalen<br />

• Mitsui CX<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

18<br />

20


Slurry Coordinative– Phillips Loop<br />

Flowsheet of the Phillips Loop process<br />

a) Catalyst hopper and feed valve; b) Double loop reactor; c) Flash tank; d) Purge<br />

drier; e) Powder-fed extruder; f) Impeller; g) Sedimentation leg<br />

Suspension media:<br />

isobutane<br />

T = 85 – 100 C<br />

p = 37 bar<br />

residence time 30 – 60 min<br />

solid content: up to 50 %<br />

high specific surface<br />

reactor completely filled<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Polypropylene applications<br />

PP is versatile in application:<br />

• packaging material (flexible films and rigid packings)<br />

• fibers<br />

• injection molding parts for automotive, electrical applications, consumer<br />

electronics<br />

• Chemical equipment, piping<br />

High growth rates for PP<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

21<br />

23<br />

Fluidized Bed <strong>Polyethylene</strong> <strong>Processes</strong><br />

Fluidized-bed process<br />

a) Catalyst hopper and feed valve; b) Fluidized-bed reactor; c) Cyclone; d) Filter;<br />

e) Polymer take-off system; f) Product recovery cyclone; g) Monomer recovery<br />

compressor; h) Purge hopper; i) Recycle compressor; j) Recycle gas cooler<br />

T=80 – 100° C<br />

P = 7 – 20 bars<br />

RTD comparable to CSTR<br />

Body widening in upper<br />

part of the reactor in order<br />

to reduce gas velocity<br />

Partly condensation<br />

cooling („condensed mode“<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Polypropylene structure<br />

Crystallinity correlates with stereo selectivity and melting point<br />

Isotactic = crystalline<br />

Atactic = amorphous<br />

Isotactic PP<br />

misinsertion<br />

syndiotactic PP<br />

atactic PP<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

22<br />

24


Types of Polypropylene<br />

• homopolymers<br />

• random-copolymers<br />

with ethylene (1-8 wt.-%)<br />

mit 1-butene<br />

terpolymers<br />

• heterophasic copolymers<br />

at least two-stage processes,<br />

in which a second,<br />

elastomeric phase is generated<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Spheripol Process<br />

Spheripol process<br />

a) Loop reactors; b) Primary cyclone; c) Copolymer fluidized bed; d) Secondary and copolymer cyclone;<br />

e) Deactivation; f) Purging<br />

1. Stage:<br />

Matrix homopolymer in bulk<br />

in loop-reactors<br />

2. stage:<br />

Impact-Copolymers in gas<br />

phas polymerization<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

25<br />

27<br />

Polypropylene <strong>Processes</strong> – a variety<br />

Slurry process in hydrocarbon slurry, tank or loop reactors<br />

Novolen gas phase, vertical stirred powder bed<br />

Innovene gas phase, horizontal stirred powder bed<br />

Unipol fluidized bed<br />

Spheripol slurry loop reactors ( + gas phase copolymer)<br />

Mitsui slurry bulk + gas phase<br />

Borstar liquid / scf proyplen (+gas phase copolymer)<br />

MZCR gas phasem, multi zone circulating reactor<br />

Cat, cocat.<br />

C 3 , H 2 ,<br />

1.Reactor<br />

PP homopolymer<br />

slurry<br />

gas<br />

Active<br />

powder<br />

C 3 , C 2 ,<br />

2. Reactor<br />

PP copolymer<br />

gas<br />

Extrusion<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

BASF/ Novolen Gas Phase Process<br />

BASF gas-phase Novolen process<br />

a) Primary reactor; b) Copolymerizer; c) Compressors; d) Condensers; e) Liquid pump; f)<br />

Filters; g) Primary cyclone; h) Deactivation/purge<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

26<br />

28


Amoco Gas Phase Process<br />

Amoco – Chisso gas-phase process<br />

a) Horizontal reactor; b) Fluidized-bed deactivation; c) Compressor; d) Condenser;<br />

e) Hold/separator tank<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Borstar Process<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

29<br />

31<br />

Unipol Fludized Bed Gas Phase Process<br />

UCC/Shell – Unipol fluidized-bed process<br />

a) Primary fluidized bed; b) Copolymer fluidized bed; c) Compressors; d) Coolers; e),<br />

f) Discharge cyclones; g) Purge<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

processes with different reaction zones in one reactor:<br />

M Z C R<br />

RISER<br />

fa st<br />

fluidization<br />

(upw ard<br />

tra n s p o rt)<br />

Catalyst<br />

in le t<br />

Propylene<br />

barrier<br />

stream<br />

DOWNER<br />

packed<br />

bed<br />

(m oving<br />

downward)<br />

Product<br />

discharge<br />

Gas<br />

circulating<br />

com pressor<br />

B A R R IE R S E C TIO N<br />

Condenser<br />

Ethylene<br />

stripping<br />

colum n<br />

Propylene<br />

fe e d<br />

Heat<br />

exchanger<br />

Basell‘s spherizone® Draught tube reactor proposed by<br />

Weickert<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

30<br />

32


Tailoring of mwd and comonomer distribution<br />

:<br />

• new property combinations<br />

different approaches possible:<br />

• multistage process<br />

• reactors with different reaction zones<br />

• multisite - catalysts<br />

%<br />

Reduced<br />

impact<br />

strength.<br />

Migration,<br />

taste.<br />

Smoke<br />

and odour<br />

during<br />

extrusion<br />

Processability,<br />

stiffness<br />

Matrix<br />

Mechanical<br />

strength<br />

Conventional<br />

ESCR and creep resistance<br />

Melt<br />

strength<br />

during<br />

extrusion<br />

Molecular weight (= polymer chain length)<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Bimodal<br />

Controlling mmd by different methods<br />

Aternative processes for<br />

bimodal PP<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

M<br />

H 2<br />

H 2<br />

t<br />

33<br />

35<br />

Melt flow dependent in mwd<br />

normierte Viskosität η/η o<br />

10 0<br />

-1<br />

10<br />

-2<br />

10<br />

-3<br />

10<br />

melt flow behaviour of different HDPE at 190°C<br />

rel. Häufigkeit<br />

HDPE 3<br />

HDPE 2<br />

HDPE 1<br />

Molmasse<br />

-4<br />

10<br />

-5<br />

10<br />

-3<br />

10<br />

-1<br />

10<br />

Scherrate γ / s<br />

1<br />

10<br />

3<br />

10<br />

-1<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Weight %<br />

Controlling mmd by different methods<br />

V<br />

M i<br />

Ti<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

V<br />

V<br />

V<br />

Ti<br />

Ti<br />

Ti<br />

34<br />

36


Bimodal properties by multi-site catalyst<br />

unimodal process with multi-site catalysts:<br />

• bimodal polymers can be produced with multi-site catalysts in<br />

single stage processes:<br />

Kim, J. D., Soares, J. B. P., Journal of Polymer Science: Part A:<br />

Polymer Chemistry, 38, 1427-1432, (2000)<br />

• lower investment costs compared to multireactor processes /<br />

processes with multizone reactors<br />

• control of polymer structure more difficult / less flexible<br />

• narrower product window compared to multistage processes<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Bimodal properties in a reactor cascade<br />

catalyst Cocatalyst<br />

M Propylene<br />

hydrogen<br />

1. Reactor 2. Reactor<br />

M<br />

Silo<br />

Catalyst poison<br />

Propylene<br />

hydrogen<br />

Temperatur[°C]<br />

H 2 -concentration<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

M w<br />

Catalyst poison<br />

controls fraction in 2.<br />

reactor<br />

37<br />

1. Reactor 2. Reactor<br />

low high<br />

low high<br />

800.000-<br />

1,5 Mio<br />

50.000-<br />

200.000<br />

39<br />

hydrogen response for Ziegler catalysts<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Bimodal properties in an oscillating reactor<br />

M<br />

1. Reaktor<br />

Katalysator Cokatalysator<br />

Propylen<br />

Wasserstoff<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

38<br />

40


Styrenic Polymers<br />

α-MeS<br />

P[S/a-MS]<br />

P[a-MS/AN]<br />

-heat resistant<br />

S/Bu (block-)<br />

copolymers<br />

- tough<br />

- translucent<br />

- low weather<br />

resistance<br />

Bu<br />

PS<br />

- transparent<br />

-stiff<br />

-brittle<br />

MMA<br />

Polybutadienerubber<br />

HIPS<br />

- tough<br />

- opaque<br />

- low weather<br />

resistance<br />

MBS, MABS<br />

- tough<br />

- transparent<br />

Acrylnitril<br />

Polybutadienrubber<br />

ABS<br />

- tough<br />

- opaque<br />

- low weather<br />

resistance<br />

MMA<br />

PSAN<br />

-environmental<br />

stress resistant<br />

Polyacrylaterubber<br />

ASA<br />

- tough<br />

- opaque<br />

- weather<br />

resistance<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Styrenic Polymers – processes over the years<br />

IG Farben, 1936 Union Carbide, 1943 Dow, 1952 BASF 1965<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

41<br />

43<br />

Styrenic Polymers – thermal initiation<br />

*<br />

.<br />

*<br />

+<br />

*<br />

*<br />

* *<br />

H<br />

+<br />

H<br />

*<br />

CH3 * CH<br />

Pn*<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Styrenic Polymers –process and mwd<br />

* *<br />

dm<br />

10<br />

dP<br />

-2<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

+ Pn<br />

Styrene / EB<br />

50-80% conv.<br />

130-170°C<br />

2000 4000 6000 8000<br />

42<br />

44


Degassing polymer solutions / melts<br />

Heat<br />

exchanger<br />

Vacuum<br />

Falling strand devolatiizer<br />

Vacuum<br />

Extruder<br />

Falling strangs<br />

Long diffusion<br />

Adiabatic flash<br />

Renewal of melt surface<br />

Short diffusion paths<br />

Nearly isothermal flash<br />

Vacuum<br />

Vacuum<br />

´tubular / pipe degassing<br />

Separation melt/gas<br />

in tubes<br />

Heating during evaporation<br />

Non-isothermal flash<br />

Thin film evaporator<br />

Extremely thin films<br />

Short diffusion ways<br />

Heating during evaporation<br />

Nearly isothermal flash<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Brittle and tough materials<br />

Pure thermoplastic polymer, T g >T use<br />

brittle, hard tough, hard<br />

stress, strain, σ<br />

Area= energy<br />

elongation, ε<br />

Thermoplastic polymer + rubber, T g


HIPS, solution/mass ABS - principles<br />

Rubber ( PBu) dissolved in Styrene<br />

(/ Ethyl benzene)<br />

Polymerization of styrene, homo-PS<br />

and grafted PBu<br />

Phase separation ( PBu/S and PS/S)<br />

Phase inversion<br />

Particle formation<br />

End of reaction<br />

A<br />

B<br />

D<br />

C<br />

Course of reaction<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

HIPS – phase inversion in first 2 reactors<br />

Viscosity<br />

Reactor 1 Reactor 2<br />

in out in out<br />

Homogene<br />

Lösung<br />

Polybutadiene in styrene<br />

Polystyrene in styrene<br />

conversion<br />

Phase inversion when<br />

volume ratio = 1:1 of<br />

disperse : continuous phase<br />

Stabilization of particles by<br />

graft polymers formed in 1. reactor<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

49<br />

51<br />

HIPS grafting and phase inversion<br />

PBu in S PS in S<br />

S S<br />

Phase separation Phase inversion<br />

S<br />

B<br />

B<br />

B<br />

B<br />

S S<br />

S S<br />

B<br />

B<br />

B<br />

S B B<br />

S<br />

S<br />

Graft copolymers needed for<br />

stabilization of morphology<br />

S<br />

B<br />

B<br />

B<br />

B<br />

B<br />

S<br />

S<br />

S<br />

S<br />

B<br />

BS<br />

B<br />

B B<br />

S<br />

S<br />

S<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

HIPS – phase inversion in first 2 reactors<br />

Viscosity<br />

Conversion<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

S<br />

50<br />

52


HIPS – various continuous processes<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Specific heat removal capacity for different reactors<br />

1 – SMR, 2- static mixers, 3- empty tube, 4 – stirred tank, 5 extruder<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

53<br />

55<br />

HIPS – process with static mixers<br />

solvent<br />

monomer<br />

comonomer<br />

additives<br />

Recycle solvent<br />

water<br />

additives<br />

water<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

SAN copolymers<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

54<br />

56


SAN copolymerization behaviour<br />

X_Styrol<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Copolymerisationsdiagramm für<br />

Styrol / Acrylnitril<br />

0 0.2 0.4 0.6 0.8 1<br />

x_Styrol<br />

r S=0.34<br />

r AN=0.05<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

SAN copolymers in CSTR<br />

To flare<br />

SAN,<br />

EB<br />

Multiple degassing unit:<br />

toxic AN<br />

high temperatures give<br />

yellow polymer<br />

W-% AN in polymer<br />

SAN-melt<br />

To Extruder<br />

65% AN<br />

30% AN<br />

24% AN<br />

conversion<br />

10% AN<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

M<br />

PRC<br />

continous<br />

SAN-<strong>Polymerisation</strong><br />

degassing<br />

SAN-Granulat<br />

57<br />

59<br />

SAN copolymers by….<br />

Suspension polymerization<br />

only azeotropic composition<br />

water- solubility of AN<br />

Emulsion polymerzation<br />

semi- batch, starved feed<br />

shows some haze<br />

Continuous solution polymerization in CSTR<br />

all compositions available<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Rubber modification of SAN –> ABS<br />

rubber from emulsion or solution process<br />

Emulsion polymerization<br />

•High glance of surface<br />

•Yellowish colour<br />

•waste water<br />

•Separate polymerization of SAN<br />

(solution polymerization) and rubber<br />

(in emulsion)<br />

1µm<br />

Solution polymerisation<br />

Mat surface<br />

White<br />

No waste water<br />

Solution polymerization of SAN in the<br />

presence of rubber as for HIPS<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

1µm<br />

58<br />

60


Emulsion Rubbers for impact modification of SAN<br />

100-250nm<br />

Product<br />

Rubber type<br />

Double bonds<br />

T g<br />

Weather resistance<br />

Low temperature impact resistance<br />

SAN matrix<br />

Crosslinked<br />

rubber<br />

SAN graft<br />

ABS<br />

Polybutadiene<br />

Many<br />

-80°C<br />

-<br />

high<br />

ASA<br />

Acrylic ester+ bifunctional<br />

monomer<br />

-<br />

-40°C<br />

High<br />

low<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

PMMA – Polymethyl methacrylate<br />

Some special features<br />

Strong gel effect<br />

Low ceiling temperature<br />

Tendency to depolymerization<br />

High shrinkage<br />

Termination by combination and disproportionation<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

61<br />

63<br />

ABS, ASA via emulsion rubber and solution SAN<br />

SAN-melt<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

PRCS<br />

M<br />

vapor<br />

PMMA – gel an glass effect effect<br />

M<br />

PRC<br />

conversion<br />

M<br />

M<br />

M<br />

M M M M<br />

Due to<br />

glass effect<br />

M<br />

Vacuum<br />

Base rubber<br />

SAN grafting<br />

Storage tank<br />

precipitation<br />

De-watering<br />

extruder<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

ABS<br />

Due to<br />

Ceiling temperature<br />

50 100 150 200<br />

100%<br />

T/°C<br />

62<br />

64


PMMA – weak links<br />

From combination<br />

O<br />

O O<br />

O<br />

O<br />

O<br />

From disproportionation<br />

Comonomers stop unzipping<br />

O<br />

O<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

2<br />

C*<br />

O<br />

CH 3<br />

O<br />

+ CH2 *<br />

C*<br />

O<br />

CH 3<br />

O<br />

O<br />

Starting point for depolymerization<br />

MMMMMMMMMMMMMMMMMXMMMMMM* MMMMMMMMMMMMMMMMMX* + M<br />

PMMA – process for plates and sheets<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

O<br />

65<br />

67<br />

PMMA – continuous bulk process<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

PVC – suspension process<br />

⎛ ⎞<br />

1 ln⎜ p<br />

⎟ = ln( 1−<br />

Φ<br />

0<br />

2)<br />

+ Φ2<br />

+ χΦ<br />

⎜ ⎟<br />

⎝ p1<br />

⎠<br />

χ=0.98<br />

s = kH<br />

2<br />

2<br />

p<br />

0<br />

p<br />

p=const- =<br />

separate monomer phase<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

66<br />

68


PVC – suspension process<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

PVC – bulk process, post reactors<br />

High solid<br />

Particle size 0.08-0.2 mm<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

69<br />

71<br />

PVC – bulk process<br />

Prepolymerization up to 10%<br />

Post polymerization up to 85-90%<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

PVC – bulk process, particle size and stirring<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

70<br />

72


The Nylon revolution 1945<br />

O O<br />

N (CH2 ) N 6 C (CH2 ) C 6 n<br />

H H<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Polyamides – base materials<br />

ε-Caprolactam: OH<br />

+6H<br />

(Ni)<br />

OH<br />

H<br />

-2H<br />

O<br />

+H2NOH -H2O N H<br />

Phenol Cyclohexanol Cyclohexanon Cyclohexanon-oxim<br />

Hexamethylene diamine:<br />

Adipic acid:<br />

+6H<br />

(Ni)<br />

Benzene Cyclohexan<br />

H 2C = CH – CH = CH 2<br />

H2C – CH = CH – CH2 CN CN<br />

+CINO<br />

- HCI<br />

(H 2 SO 4 )<br />

H2 C<br />

H2C CO<br />

H2C NH<br />

H2C CH2 ε-Caprolactam:<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

+Cl 2<br />

+2H<br />

(Ni)<br />

+2NaCN<br />

H2C = CH – CH = CH2 -2NaCl<br />

Cl Cl<br />

NC – (CH2) 4 –CN<br />

+8H<br />

(Ni, NH3 )<br />

H2N – (CH2) 6 –NH2 Adiponitrile Hexamethylendiamin<br />

H2C H2C CH2 C<br />

H2C CH2 H<br />

OH<br />

H2C H2C CH2 C = O<br />

COOH<br />

(CH2 ) 4<br />

H2C CH2 COOH<br />

Cyclohexanol Cyclohexanone Adipic acid<br />

73<br />

75<br />

Polyamides – basic structures<br />

PA 6: Perlon PA6.6: Nylon<br />

O<br />

NH ( CH ) 2 C<br />

NH ( NH<br />

5<br />

CH ) 2 C (<br />

6 CH ) 2 C<br />

4<br />

n<br />

n<br />

PA 6: Caprolactam<br />

PA 11: Undecanlactam<br />

PA 12: Laurinlactam<br />

PA 6.6: Hexamethylendiamine<br />

+ Adipic acid<br />

PA 6.10: Hexamethylendiamien<br />

+ Sebacic acid<br />

PA 4.6: Butandiamine<br />

+ Adipic acid<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

PA6 – basic reactions<br />

1. Ring opening<br />

NH (CH2 ) CO + H 5 2O H NH (CH2 ) COOH<br />

5<br />

2. Polyaddition<br />

NH (CH2 ) CO + H NH (CH CO OH<br />

5<br />

2 ) 5<br />

3. Polycondensation<br />

n<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

O<br />

H NH (CH2 ) CO OH<br />

5<br />

H NH (CH2 ) CO OH + H NH (CH CO OH H NH CO OH + H2O 5 2 ) (CH 5 2 ) 5<br />

n<br />

m<br />

n+1<br />

n+m<br />

O<br />

74<br />

76


Polyamide 6 - VK column<br />

water<br />

ε-Caprolactame<br />

melting<br />

80°C<br />

preparation<br />

Melt filter<br />

Pre condensation<br />

250°C, 40 bar<br />

Mean residence time VK column ≈ 15 - 30 h<br />

throughput:<br />

≈ 2000 moto<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

M<br />

VK-column<br />

270°C<br />

280°C<br />

Water<br />

granulation<br />

Extractor<br />

95°C<br />

silo<br />

dryer 80°C<br />

PA6-process – modelling of melt process<br />

Model input:<br />

Kinetic scheme and<br />

parameters<br />

Non-ideal phase behavior<br />

using NRTL model<br />

Model output:<br />

Molecular weight<br />

end groups<br />

Residual monomer<br />

Oligomer concentration<br />

Granules<br />

Vacuum<br />

(1 mbar)<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

simulation results taking into account exp. binary VLE date<br />

Extract, %, CL, H2O, Oligomers<br />

NH2-end groups<br />

degree of polymerization<br />

dimer, %<br />

0<br />

0<br />

235 240 245 250 255 260 265 270 275 280<br />

temperature in top of VK-Rohr<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

77<br />

79<br />

PA6-process – modelling of each process unit<br />

Melt polymerization<br />

Schmelzepolymerisation im VK - Rohr Extraction Extraktion of oligomers Trocknung/Temperung<br />

Drying,<br />

N 2<br />

Caprolactam<br />

(+Kettenregler) (+chain regulator + 0,5% + H2O) H 2O Bedingungen:<br />

τ : 9 - 17 h<br />

T : 250 - 280 °C<br />

p : 0 - 0,3 bar<br />

PA 6 - Granules<br />

Extracttwater<br />

Bedingungen:<br />

τ : 17 - 30 h<br />

T : 95 - 120 °C<br />

Water<br />

solid state polymerization<br />

N2 -O2 Granulation<br />

air<br />

Polyamide 6<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

PA6-process – modelling of extraction<br />

Model assumptions:<br />

Nernst law at phase<br />

boundaries<br />

Nernst coefficient dependent<br />

on monomer concentration<br />

Fick diffusion in polymer<br />

phase and liquid boundary<br />

layer<br />

Model output:<br />

Concentration profile of<br />

residual monomer and<br />

oligomer in polymer and<br />

liquid phase<br />

-H 2 O<br />

Bedingungen:<br />

τ : 20 - 40 h<br />

T : 135 - 180 °C<br />

nitorgen<br />

Top2 4 6 8 10 bottom 12<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

10<br />

8<br />

6<br />

4<br />

2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

% extractable<br />

% dimer in granules<br />

Top 2 4 6 8 10 12 bottom<br />

78<br />

80


PA6-process – modelling of solid state condensation<br />

Model assumptions:<br />

Polymer end groups, water,<br />

monomer und oligomere only in<br />

amorphous phase<br />

reaction kinetics as in melt<br />

diffusion coefficients dependent on<br />

degree of crystallinity<br />

surface is free of water<br />

Isothermal spherical particle<br />

Model output<br />

Pn, monomer and oligomer<br />

concentration<br />

0 10 20 30 40 50<br />

reaction tim e [h]<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Polyamide 66 - tank process<br />

mass fraction of caprolactam [%]<br />

number-average chain length<br />

0.20<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

0 10 20 30 40 50<br />

T = 125°C<br />

T = 145°C<br />

T = 165°C<br />

T = 180°C<br />

T = 190°C<br />

model<br />

reaction tim e [h]<br />

T = 145°C<br />

T = 165°C<br />

T = 190°C<br />

model<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

81<br />

83<br />

PA66- basic reactions<br />

O O<br />

HO C (CH2 ) C<br />

4<br />

OH<br />

Adipic acid Hexamethylene diamine<br />

–H 2 O<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

+<br />

+ H 2 O<br />

AH-salt solution<br />

Polycondensation<br />

O O<br />

HO C (CH2 ) C<br />

4<br />

NH<br />

NH<br />

(CH 2 ) 6<br />

H2N (CH CH2<br />

) NH<br />

6 2<br />

Polyamide 66 – continous tubular process<br />

H 2 O-Steam<br />

tube reactor<br />

Pump<br />

Separator<br />

40-60%<br />

AH-Salt Solution<br />

Devolatilisation<br />

e.g. Extruder<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

H<br />

Pump<br />

Polymer<br />

Melt<br />

Postcondensation<br />

82<br />

High energy consumption<br />

Evt. loss of volatiles in<br />

vapor<br />

84


Polyamide 66 – countercurrent process – reactive<br />

distillation<br />

Reactive<br />

distillation<br />

Temperature<br />

conventional<br />

Molten diacid<br />

feed (bb)<br />

Steam<br />

Pressure<br />

atmospheric<br />

typically<br />

Gaseous diamine<br />

feed (aa)<br />

Polymer<br />

(aabb)<br />

Product Mn<br />

9000<br />

typically<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Some processes – PET, PBT from DMT<br />

O O<br />

CH3 O C C O CH3 Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

85<br />

87<br />

Polyethylen(butylen)terephtalat, PET, PBT<br />

O O<br />

O O<br />

CH3 O C C O CH3HO (CH2 ) OH<br />

x<br />

HO C C OH<br />

Terephtalic acid ester Diol Terephtalic acid<br />

transesterification esterfication<br />

O O<br />

HO (CH2 ) O<br />

x<br />

C C O (CH2 ) OH<br />

x<br />

Pre-condensation<br />

Post-condensation<br />

O O<br />

HO C C O (CH2 ) O H<br />

x<br />

x=2: PET<br />

x=4: PBT<br />

Side reactions: acetaldehyde, THF from butane diol (PBT)<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Rotating disc reactor for PET, PBT<br />

n<br />

To force conversion from 0.95 to 0.99 –<br />

0.995 ( or P n >100), water removal more<br />

important than for polyamides, because<br />

of low equilibrium constants<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

86<br />

88


Polyoxymethylene – anionic polymerization of CH 2 O<br />

CH 2 O<br />

Purification, drying<br />

CH 2 O<br />

R Hexane<br />

Suspensions polymerization<br />

Formaldehyde<br />

(water solution.)<br />

Formaldehyde<br />

(Gas)<br />

R O CH2 O CH2O n<br />

Acetic anhydride<br />

End group stabilization by chemical modification<br />

R O CH2 O CH2O O CH<br />

n<br />

3<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Polyoxymethylene – end group stabilization<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

O<br />

89<br />

91<br />

Polyoxymethylene – anionic polymerization of CH 2 O<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

Polyoxymethylene – cationic bulk process –<br />

‘Schalenkreis’<br />

Milling<br />

Vacuum<br />

Heat Stabilizier<br />

Antioxidant<br />

Polymerized<br />

Material<br />

Additives<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

90<br />

92


Polyoxymethylene – cationic kneader process<br />

Dr. Klaus-Dieter Hungenberg, BASF AG Ludwigshafen Vorlesung <strong>Polymerisation</strong>stechnik, Universität Paderborn, WS 07/08 Polymer processes<br />

93

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!