20.07.2013 Views

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

3+1 formalism and bases of numerical relativity - LUTh ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.3 Perfect fluid 81<br />

Finally, by applying formula (4.7), we get the fluid stress tensor with respect to the Eulerian<br />

observer:<br />

or, taking into account Eq. (5.52),<br />

5.3.4 Energy conservation law<br />

S = γ ∗ T = (ρ + P) γ ∗ u<br />

<br />

=ΓU<br />

⊗ γ ∗ u<br />

<br />

=ΓU<br />

+P γ ∗ g<br />

<br />

=γ<br />

= P γ + Γ 2 (ρ + P)U ⊗ U, (5.62)<br />

S = P γ + (E + P)U ⊗ U . (5.63)<br />

By means <strong>of</strong> Eqs. (5.61) <strong>and</strong> (5.63), the energy conservation law (5.12) becomes<br />

<br />

∂<br />

− Lβ<br />

∂t<br />

<br />

E +N D · [(E + P)U] − (E + P)(K + KijU i U j ) +2(E +P)U ·DN = 0 (5.64)<br />

To take the Newtonian limit, we may combine the Newtonian limit <strong>of</strong> the baryon number<br />

conservation law (5.50) with Eq. (5.18) to get<br />

∂E ′<br />

∂t + D · [(E′ + P)U] = −U · (ρ0DΦ), (5.65)<br />

where E ′ := E − E0 = Ekin + Eint <strong>and</strong> we clearly recognize in the right-h<strong>and</strong> side the power<br />

provided to a unit volume fluid element by the gravitational force.<br />

5.3.5 Relativistic Euler equation<br />

Injecting the expressions (5.61) <strong>and</strong> (5.63) into the momentum conservation law (5.23), we get<br />

<br />

∂<br />

<br />

− Lβ [(E + P)Ui] + NDj Pδ<br />

∂t j<br />

i + (E + P)Uj <br />

Ui + [Pγij + (E + P)UiUj]D j N<br />

−NK(E + P)Ui + EDiN = 0. (5.66)<br />

Exp<strong>and</strong>ing <strong>and</strong> making use <strong>of</strong> Eq. (5.64) yields<br />

<br />

∂<br />

− Lβ Ui + NU<br />

∂t j DjUi − U j DjN Ui + DiN + NKklU k U l Ui<br />

+ 1<br />

<br />

∂<br />

NDiP + Ui − Lβ P = 0. (5.67)<br />

E + P<br />

∂t<br />

Now, from Eq. (5.41), NU j DjUi = V j DjUi + β j DjUi, so that −Lβ Ui + NU j DjUi = V j DjUi −<br />

UjDiβ j [cf. Eq. (A.7)]. Hence the above equation can be written<br />

∂Ui<br />

∂t + V j DjUi + NKklU k U l Ui − UjDiβ j = − 1<br />

<br />

∂P<br />

NDiP + Ui<br />

E + P<br />

∂t<br />

−DiN + UiU j DjN.<br />

∂P<br />

− βj<br />

∂xj <br />

(5.68)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!