20.07.2013 Views

Homework Solution 3

Homework Solution 3

Homework Solution 3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Problem 1<br />

Given: Truck traveling down 7% grade<br />

Width = 10ft<br />

m = 25 tons = 50,000 lb<br />

Rolling resistance on concrete = 1.2% of weight<br />

CD = 0.96 without air deflector<br />

CD = 0.70 with air deflector<br />

Find: Velocity of truck for both drag situations<br />

Equations:<br />

For force balance analysis:<br />

F x = max<br />

Fy<br />

= ma y Fz<br />

maz<br />

∑ ∑ ∑ =<br />

Lift and Drag:<br />

Coefficient<br />

Coefficient<br />

<strong>Solution</strong>:<br />

of<br />

drag = C<br />

D<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

FL<br />

of lift = CL<br />

≡<br />

1<br />

ρV<br />

2<br />

2<br />

A<br />

2<br />

A<br />

V<br />

Drag<br />

100<br />

F<br />

7<br />

Weight<br />

1. Use force balance to find equation for motion of truck.<br />

2. Calculate drag due to rolling resistance by 0.012*weight.<br />

3. Calculate aerodynamic drag using both given CD (separately) and eqn. for drag.<br />

4. Plug information into original force balance eqn. to find truck velocity.<br />

Numbers:<br />

12ft<br />

θ


Problem 2<br />

Given: Box kite blowing in wind<br />

U = 20ft/s<br />

Vwind = 20 ft/s<br />

W = 0.9 lb θ<br />

Tension in string = 3.0 lb<br />

Angle to ground = 30 o<br />

Frontal area = 6.0 ft 2<br />

Find: a) Determine the lift and drag coefficients<br />

b) If Vwind = 30 ft/s and CD and CL are as found, will the kite rise or fall?<br />

Assumptions:<br />

Equations:<br />

For force balance analysis:<br />

F x = max<br />

Fy<br />

= ma y Fz<br />

maz<br />

∑ ∑ ∑ =<br />

Lift and Drag:<br />

Coefficient<br />

Coefficient<br />

<strong>Solution</strong>:<br />

a)<br />

of<br />

drag = C<br />

D<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

FL<br />

of lift = CL<br />

≡<br />

1<br />

ρV<br />

2<br />

1. Find the density of air from Table A.9.<br />

2<br />

A<br />

2<br />

A<br />

2. Use force balance in both x and y to find equations for drag and lift respectively.<br />

3. Using equations for lift and drag calculate CD and CL.<br />

b)<br />

1. Plug new velocity into equations for lift and drag and recalculate θ .<br />

y<br />

x<br />

T<br />

L<br />

W<br />

D


Numbers:


Problem 3<br />

Given: Old airplane with wires used to strengthen design, with: U = 70mph, Awing =<br />

148 ft 2 , CD wing = 0.020, Lwire = 160 ft, Dwire = 0.05 in<br />

Find: Ratio of drag from wire bracing to that from the wings<br />

Assumptions: (1) Wires modeled as smooth cylinders<br />

Equations:<br />

Lift and Drag:<br />

FD<br />

Coefficient<br />

of drag = CD<br />

≡<br />

1 2<br />

ρV<br />

A<br />

2<br />

FL<br />

Coefficient<br />

of lift = CL<br />

≡<br />

1 2<br />

ρV<br />

A<br />

2<br />

<strong>Solution</strong>:<br />

1. Calculate the Reynolds number of the wire braces.<br />

2. Look up CD for wires in Fig 9.13.<br />

3. Calculate Dwire / Dwing.<br />

Numbers:


Problem 4<br />

Given: Old airplane with wires used to strengthen design, with: U = 150 km/h, Lwire =<br />

60 m, Dwire = 6 mm<br />

Find: Power required to move the guy wires<br />

Assumptions: (1) Wires modeled as smooth cylinders<br />

Equations:<br />

Lift and Drag:<br />

FD<br />

Coefficient<br />

of drag = CD<br />

≡<br />

1 2<br />

ρV<br />

A<br />

2<br />

FL<br />

Coefficient<br />

of lift = CL<br />

≡<br />

1 2<br />

ρV<br />

A<br />

2<br />

<strong>Solution</strong>:<br />

1. Look up the kinematic viscosity and density of air at 15 o C in Table A.10.<br />

−5<br />

2<br />

3<br />

ν = 1. 45x<br />

10 m / s,<br />

ρ = 1.<br />

23kg<br />

/ m<br />

2. Calculate the Reynolds number of the wire braces.<br />

km 1000m<br />

1hr<br />

1m<br />

150<br />

6mm<br />

UD<br />

=<br />

hr 1km<br />

3600s<br />

1000mm<br />

= 17,<br />

241<br />

5<br />

ν<br />

1.<br />

45x10<br />

m / s<br />

Re = − 2<br />

3. Look up CD(Re) for wires in Fig 9.13. CD ~ 1.2<br />

4. Calculate the force of drag using the equation for the coefficient of drag.<br />

FD<br />

CD<br />

≡<br />

1 2<br />

ρV<br />

A<br />

2<br />

FD<br />

1.<br />

2 =<br />

3<br />

2<br />

( 0.<br />

5)(<br />

1.<br />

23kg<br />

/ m )( 150km<br />

/ hr * 1000m<br />

/ km * 1hr<br />

/ 3600s)<br />

( 0.<br />

006m)(<br />

60m)<br />

F<br />

D<br />

=<br />

461.<br />

25<br />

N<br />

5. Now calculate power necessary, knowing P = FV = (461.25 N)(41.7m/s) = 19.2 kW.


Problem 5<br />

Given: Optimally faired wires of the same length and other properties as in problem 4<br />

Find: Percent power saved by fairing guy wires<br />

Equations:<br />

Lift and Drag:<br />

FD<br />

Coefficient<br />

of drag = CD<br />

≡<br />

1 2<br />

ρV<br />

A<br />

2<br />

FL<br />

Coefficient<br />

of lift = CL<br />

≡<br />

1 2<br />

ρV<br />

A<br />

2<br />

<strong>Solution</strong>:<br />

1. Look up the kinematic viscosity and density of air at 15 o C in Table A.10.<br />

−5<br />

2<br />

3<br />

ν = 1. 45x<br />

10 m / s,<br />

ρ = 1.<br />

23kg<br />

/ m<br />

2. Calculate the Reynolds number of the wire braces.<br />

km 1000m<br />

1hr<br />

1m<br />

150<br />

6mm<br />

UD<br />

=<br />

hr 1km<br />

3600s<br />

1000mm<br />

= 17,<br />

241<br />

5<br />

ν<br />

1.<br />

45x10<br />

m / s<br />

Re = − 2<br />

3. Look up CD(Re) for streamlined strut in Fig 9.14. CD ~ 0.06<br />

4. Calculate the force of drag using the equation for the coefficient of drag.<br />

FD<br />

CD<br />

≡<br />

1 2<br />

ρV<br />

A<br />

2<br />

FD<br />

0.<br />

06 =<br />

3<br />

2<br />

( 0.<br />

5)(<br />

1.<br />

23kg<br />

/ m )( 150km<br />

/ hr * 1000m<br />

/ km * 1hr<br />

/ 3600s)<br />

( 0.<br />

006m)(<br />

60m)<br />

F<br />

D<br />

= 23N<br />

5. Now calculate power necessary, knowing P = FV = (23 N)(41.7m/s) = 960 W.<br />

6. Comparing this to the power in problem 4:<br />

P − Pstreamline<br />

19,<br />

200W<br />

− 960W<br />

x100<br />

% =<br />

x100%<br />

= 95%<br />

less power necessary!!!<br />

P<br />

19,<br />

200W


Problem 6<br />

Given: Spherical hailstones, D = 10mm, falling through air at STP<br />

Find: Terminal velocity<br />

Equations:<br />

(1)<br />

Coefficien t of<br />

<strong>Solution</strong>:<br />

drag = C<br />

D<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

2<br />

A<br />

−5<br />

2<br />

1. Look up properties for air in Table A.10: ν = 1. 45x<br />

10 m / s,<br />

ρ = 1.<br />

23kg<br />

/ m<br />

2. Look up the specific gravity of ice in Table A.1 and calculate the density of ice.<br />

= 0. 917 → ρ = SG ρ 2<br />

3<br />

3<br />

= ( 0.<br />

917)(<br />

1000kg<br />

/ m ) = 917kg<br />

/ m<br />

SGice ice ice H 0<br />

3. Since the sum of the forces in y is zero when terminal velocity is reached, sum<br />

forces:<br />

∑<br />

Fy = 0 = mg − FD<br />

4. Rearrange equation (1) for the drag force and plug it into the force balance<br />

equation just found to find Vt.<br />

mg = C<br />

D<br />

( 0.<br />

5)<br />

ρV<br />

2<br />

t<br />

A<br />

→<br />

V<br />

t<br />

=<br />

2mg<br />

C ρA<br />

3<br />

3 π ( 0.<br />

01m)<br />

−4<br />

5. Calculate the mass of the hail: m = ρ V = 917kg<br />

/ m<br />

= 4.<br />

8x10<br />

kg<br />

6<br />

6. Calculate the area:<br />

7. Now calculate Vt(CD):<br />

πD<br />

A =<br />

4<br />

V<br />

t<br />

2<br />

π 0.<br />

01<br />

=<br />

4<br />

D<br />

2<br />

= 7.<br />

85x10<br />

−5<br />

m<br />

−4<br />

2<br />

2(<br />

4.<br />

8x10<br />

kg)(<br />

9.<br />

81m<br />

/ s ) 9.<br />

87m<br />

/ s<br />

=<br />

3<br />

5 2<br />

C ( 1.<br />

23kg<br />

/ m )( 7.<br />

85x10<br />

m ) C<br />

= −<br />

8. Assume CD is in the flat region of Figure 9.11 so that CD ~ 0.47.<br />

9.<br />

87m<br />

/ s<br />

9. Now calculate: Vt = = 14.<br />

4m<br />

/ s<br />

0.<br />

47<br />

Vt D ( 14.<br />

4m<br />

/ s)(<br />

0.<br />

01m)<br />

10. For this velocity calculate: Re = =<br />

= 9931<br />

−5<br />

2<br />

ν 1.<br />

45x10<br />

m / s<br />

11. Now go back to Figure 9.11 and look up CD for this Reynolds number: CD ~ 0.41<br />

9.<br />

87m<br />

/ s<br />

12. Recalculate: Vt = = 15.<br />

4m<br />

/ s<br />

0.<br />

41<br />

* Although hailstones are not perfectly spherical this is probably a good estimate<br />

2<br />

D<br />

D<br />

3


Problem 7<br />

Given: Bicycle with frontal A = 3.9 ft 2 , and CD = 0.88, and peddling at 15 mph in still air<br />

Find: Extra power necessary to peddle against a 20 mph head wind<br />

Equations:<br />

(1)<br />

Coefficien t of<br />

<strong>Solution</strong>:<br />

drag = C<br />

D<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

1. Look up density of air in Table A.10:<br />

2<br />

A<br />

ρ =<br />

0. 00238slug<br />

/ ft<br />

2. Change units of bike velocity: Vbike = 15 mph (88ft/s)/(60mph) = 22 ft/s<br />

3. Wind speed relative to bike: Vrel = (15+20)mph(88ft/s)/(60mph)=51.3 ft/s<br />

4. Rearrange equation (1) into an equation for drag:<br />

2<br />

3<br />

2 2<br />

−4<br />

2<br />

FD<br />

= 0. 5C<br />

D ρV<br />

A = ( 0.<br />

5)(<br />

0.<br />

88)(<br />

0.<br />

00238slug<br />

/ ft )( 039 ft ) Vrel<br />

= 4.<br />

08x10<br />

Vrel<br />

5. Get equation for power necessary to peddle bike:<br />

P = V F =<br />

=<br />

bike<br />

D<br />

−3<br />

2<br />

2<br />

( 22 ft / s)(<br />

4.<br />

08x10<br />

) Vrel<br />

0.<br />

0898Vrel<br />

6. Calculate power for peddling in still air:<br />

2<br />

2<br />

P = 0.<br />

0898Vrel<br />

= ( 0.<br />

0898)(<br />

22 ft / s)<br />

= 43.<br />

5 ft − lb / s<br />

7. Calculate power for peddling in 20mph headwind:<br />

2<br />

Prel = 0.<br />

0898Vrel<br />

=<br />

( 0.<br />

0898)(<br />

51.<br />

3<br />

ft / s)<br />

2<br />

= 236 ft − lb / s<br />

8. Additional power necessary: Prel –P = (236-43.5)(ft-lb/s)(1hp/550ft/lb/s) = 0.35 hp<br />

3


Problem 8<br />

Given: Power to overcome aerodynamic drag: P ~ U n<br />

Find: n<br />

Equations:<br />

(1) Power = UFDrag<br />

(2)<br />

Coefficient<br />

<strong>Solution</strong>:<br />

of<br />

drag = C<br />

D<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

1. Combining equations (1) and (2) for power:<br />

2<br />

A<br />

= 0. 5UC<br />

ρU<br />

P D<br />

2. For many vehicles the drag coefficient is essentially independent of Reynolds<br />

3<br />

number, thus CD is not a function of U so that =<br />

0. 5C<br />

ρU<br />

A.<br />

So n = 3.<br />

P D<br />

2<br />

A


Problem 9<br />

Given: Cork ball in water with: d = 0.3m, SG = 0.12, angle = 30 o<br />

Find: Current speed, U<br />

Equations:<br />

(1) For force balance for stationary object:<br />

F x = 0 Fy<br />

= 0 Fz<br />

0<br />

(2)<br />

∑ ∑ ∑ =<br />

Coefficient<br />

<strong>Solution</strong>:<br />

of<br />

drag = C<br />

D<br />

θ<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

2<br />

A<br />

U<br />

FD<br />

W = mg<br />

Buoyancy force = FB<br />

Tension = T<br />

1. Do some geometry and use equations (1) to find in the x-direction: FD = Tcos30 o ,<br />

and in the y-direction: FB = W + Tsin30 o .<br />

2. Calculate the buoyancy force and weight of the ball: FB = ρgVol = (9.80<br />

kN/m 3 )(4π/3)(0.3/2 m) 3 = 0.1385 kN, and W = SG FB = 0.21 (0.1385 kN) =<br />

0.0291 kN<br />

3. Now balancing forces in the y-direction and using equation (2): 0.1385 kN =<br />

0.0291 kN + D tan30 o , Or D = 0.189 kN, where D = CD ½ U 2 A = CD U 2 (1/2)<br />

(999 kg/m 3 ) (π(0.3m) 2 /4) = 35.3CDU 2 N, where U ~ m/s.<br />

HENCE: (eq. A) 5.3 CDU 2 = 189 (in N) or CDU 2 = 5.35<br />

(eq. B) Re = UD/ν = 0.3m U/ 1.12x10 -6 m 2 /s =2.68 x 10 5 U<br />

4. Now the strategy is to use trial and error to determine U. Assume CD, then<br />

calculate U from Eq. (A) and Re from Eq. (B); check CD from Fig. 9.11, and<br />

iterate until CD’s converge. See below.<br />

Assume CD = 0.5 then from Eq. (A) U = 3.27 m/s and Re = 8.76 x 10 5 , and from Fig<br />

9.11 CD = 0.15 which does not equal 0.5 so try again<br />

Assume CD = 0.15 then from Eq. (A) U = 5.97 m/s and Re = 1.6 x 10 6 , and from Fig.<br />

9.11 CD = 0.20 which does not equal 0.15 so try again<br />

Assume CD = 0.19 then from Eq. (A) U = 5.31 m/s and Re = 1.42 x 10 6 , and from Fig.<br />

9.11 CD = 0.19 so U = 5.31 m/s


Problem 10<br />

Given: Flow around UN building where: w = 87.5m, h = 154m, CD = 1.3, U = 20 m/s<br />

Find: Drag<br />

Assumptions: (1) Air is at STP<br />

Equations:<br />

(1)<br />

Coefficient<br />

<strong>Solution</strong>:<br />

of<br />

drag = C<br />

D<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

1. Look up density of air at STP in Table A.10.<br />

2. Rearrange equation (1) to find:<br />

2<br />

A<br />

= 0. 5C<br />

ρV<br />

FD D<br />

3. Plug in the given conditions and calculate the drag:<br />

F D<br />

ρ = 1. 23kg<br />

/ m<br />

3<br />

2<br />

=<br />

( 0.<br />

5)(<br />

1.<br />

3)(<br />

1.<br />

23kg<br />

/ m )( 20m<br />

/ s)<br />

( 87.<br />

5m)(<br />

154m)<br />

= 4.<br />

31x10<br />

2<br />

A<br />

3<br />

6<br />

N


Problem 11<br />

Given: Flow around UN building where: w = 87.5m, h = 154m, CD = 1.3, U = 20 m/s at<br />

y = h/2 = 77m<br />

Find: Drag<br />

Assumptions: (1) Air is at STP<br />

Equations:<br />

(1) Velocity profile given: u = Cy 0.4<br />

(2)<br />

(3)<br />

Coefficient<br />

of<br />

drag = C<br />

total drag = FD<br />

= dFD<br />

<strong>Solution</strong>:<br />

∫<br />

D<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

1. Look up density of air at STP in Table A.10.<br />

2<br />

A<br />

ρ = 1. 23kg<br />

/ m<br />

2. Rearrange equation (1) to find C, knowing u(h/2): C = 20/(77 0.4 ) = 3.52<br />

3. Rearrange equation (2) to find:<br />

= 0. 5C<br />

ρV<br />

FD D<br />

2<br />

4. Plug this into equation (3) to find: FD = ∫∫ 0. 5C<br />

D ρ u dxdy<br />

5. Now plug in equation (1) and known values and integrate from the ground to the<br />

top of the building.<br />

F<br />

F<br />

D<br />

D<br />

2<br />

= 0.<br />

5C<br />

ρw<br />

∫ u dy = 0.<br />

5C<br />

ρwC<br />

D<br />

154<br />

0<br />

D<br />

⎡ y<br />

⎢<br />

⎣ 1.<br />

8<br />

2<br />

1.<br />

8<br />

3<br />

2 154<br />

= ( 0.<br />

5)(<br />

1.<br />

3)(<br />

1.<br />

23kg<br />

/ m )( 87.<br />

5m)(<br />

3.<br />

52)<br />

⎤<br />

⎥<br />

⎦<br />

154<br />

0<br />

1.<br />

8<br />

* Drag is just less than with a uniform flow profile<br />

2<br />

1.<br />

8<br />

A<br />

3<br />

6<br />

= 4.<br />

17x10<br />

N


Problem 12<br />

Given: Nuclear submarine cruising submerged<br />

V = 27 knots<br />

y<br />

x<br />

L = 107m<br />

δ<br />

w = pi*D = 34.6m<br />

Find: a) Estimate percentage of hull length with laminar BL<br />

b) Calculate drag due to skin friction<br />

c) Estimate power consumed<br />

Assumptions: (1) Can treat hull as a flat plate with same wetted area<br />

(2) Neglect laminar boundary layer (if small percent of hull length)<br />

Equations:<br />

Boundary Layer:<br />

Re transition = 500,<br />

000<br />

displacement<br />

*<br />

thickness = δ =<br />

momentum thickness = θ =<br />

∞<br />

∫<br />

0<br />

∞<br />

∫<br />

0<br />

⎛ u<br />

⎜1−<br />

⎝ U<br />

⎞<br />

⎟dy<br />

≈<br />

⎠<br />

u ⎛ u ⎞<br />

⎜1−<br />

⎟dy<br />

≈<br />

U ⎝ U ⎠<br />

Flow over flat plate parallel to the flow:<br />

friction drag = F = τ dA<br />

∫<br />

plate surface<br />

Turbulent Boundary Layer:<br />

5 x 10 5 < ReL < 10 7 :<br />

0.<br />

0742<br />

C D =<br />

Re<br />

1<br />

5<br />

L<br />

ReL < 10 9 :<br />

D<br />

w<br />

δ<br />

∫<br />

0<br />

δ<br />

∫<br />

0<br />

⎛ u<br />

⎜1−<br />

⎝ U<br />

⎞<br />

⎟dy<br />

⎠<br />

u ⎛ u<br />

⎜1−<br />

U ⎝ U<br />

⎞<br />

⎟dy<br />


C D =<br />

0.<br />

455<br />

(log Re<br />

L<br />

Lift and Drag:<br />

Coefficient<br />

Coefficient<br />

<strong>Solution</strong>:<br />

a)<br />

of<br />

)<br />

2.<br />

58<br />

drag = C<br />

D<br />

FD<br />

≡<br />

1<br />

ρV<br />

2<br />

FL<br />

of lift = CL<br />

≡<br />

1<br />

ρV<br />

2<br />

1. Look up value of viscosity of seawater in Table A.2.<br />

2. Calculate ReL.<br />

2<br />

A<br />

3. Calculate the ratio Rext / ReL which will give us the ratio xt / L.<br />

2<br />

A<br />

4. Multiply this ratio by 100% to get the percent of hull length with BL (it is small).<br />

b)<br />

1. Find CD using equation for turbulent boundary layer.<br />

4. Plug CD into equation to find FD.<br />

c)<br />

1. Power = FD V, so calculate the power.


Fox <strong>Solution</strong>:


Problem 13<br />

Given: Paddle wheel is immersed in a river current.<br />

Find: a) Expression for force produced by the wheel<br />

b) Expression for torque produced by the wheel<br />

c) Expression for power produced by the wheel<br />

d) Find the optimum angular speed, ω<br />

Assumptions: (1) Neglect air resistance since ρ air


Fox <strong>Solution</strong>:


Problem 14


Problem 15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!