22.07.2013 Views

SET Single Electron Transistor

SET Single Electron Transistor

SET Single Electron Transistor

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

<strong>SET</strong><br />

<strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong><br />

Jürgen Wurm, Teresa Lermer<br />

Universität Regensburg<br />

27. Juni 2006<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Setup<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Coulomb Blockade<br />

◮ Equilibrium Charge<br />

Q0 = CL · VL + CR · VR + Cg · Vg<br />

◮ Total energy of the island with n electrons<br />

(Q − Q0) 2<br />

Ech(Q) =<br />

2CΣ<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Transition Rates and Master Equation<br />

◮ Rates Γ can be calculated via Fermi golden rule<br />

◮ pn: propability to find the system in a state with n electrons<br />

◮ → Masterequation<br />

d<br />

dt pn = Γn+1→npn+1 + Γn−1→npn−1 − (Γn→n+1 + Γn→n−1)pn<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Steady State and Current<br />

◮ Condition of Detailed Balance<br />

◮ ⇒ pn<br />

Γn→n+1pn = Γn+1→npn+1<br />

◮ Current through the left junction<br />

I = −e <br />

pn(Γ L n→n+1 − Γ L n→n−1)<br />

n<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Stability Diagram for T = 20mK<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Conservation of Energy - Tunneling<br />

◮ from left junction onto island<br />

<br />

ɛi =<br />

k L max<br />

<br />

ɛf =<br />

k<br />

kL max<br />

k<br />

ɛk + Ech(n) +<br />

R max<br />

ɛk<br />

k<br />

ɛk − ɛk ′ + Ech(n<br />

k<br />

+ 1) +<br />

R max<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong><br />

k<br />

k<br />

ɛk


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

◮ ɛi = ɛf<br />

∆Ech = ɛk ′ ≤ ɛ k L max<br />

◮ from island to right junction<br />

◮ from right junction onto island<br />

◮ from island to left junction<br />

∆Ech ≥ −e V<br />

2<br />

∆Ech ≤ −e V<br />

2<br />

∆Ech ≥ e V<br />

2<br />

= e V<br />

2<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Tunneling condition - straight lines in stability diagram<br />

◮ calculate ∆Ech for positive population n and consider equal<br />

signs<br />

◮ from left to island and v.v.<br />

(2n + 1)e<br />

V =<br />

CΣ<br />

◮ from right to island and v.v.<br />

− 2Cg<br />

CΣ<br />

(2n + 1)e<br />

V = − +<br />

CΣ<br />

2Cg<br />

CΣ<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong><br />

· Vg<br />

· Vg


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

◮ calculate ∆Ech for negative population -n and consider equal<br />

signs<br />

◮ from left to island and v.v.<br />

(2n + 1)e<br />

V =<br />

CΣ<br />

◮ from right to island and v.v.<br />

+ 2Cg<br />

CΣ<br />

(2n + 1)e<br />

V = − −<br />

CΣ<br />

2Cg<br />

CΣ<br />

◮ slope and axis intercept yield CΣ and Cg<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong><br />

· Vg<br />

· Vg


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Coulomb Oscillations for V = 1nV<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

I vs. V = VR − VL<br />

for Vg = 0<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Stability Diagram for T = 0.15K<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Stability Diagram for T = 2K<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Different resistance: RR = 100Ω, RL = 10Ω<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>


Coulomb Blockade Stability Diagram Coulomb Oscillations I vs. V Higher Temperatures different resistance Conclusion<br />

Conclusion<br />

◮ We learned the basics of the Coulomb Blockade Effect and<br />

the concept of the <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong><br />

◮ We gained insight into numerical working with matlab and its<br />

graphical features<br />

Jürgen Wurm, Teresa Lermer Universität Regensburg<br />

<strong>SET</strong> <strong>Single</strong> <strong>Electron</strong> <strong>Transistor</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!