23.07.2013 Views

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Let us write down <strong>the</strong> equation satisfied by w(r) = u ′ (r) and v = v(r). We<br />

have<br />

and<br />

− w ′′ −<br />

N − 1<br />

r w′ N − 1<br />

+<br />

r2 w = f ′ (u)w (4.4)<br />

− v ′′ −<br />

N − 1<br />

v<br />

r<br />

′ = f ′ (u)v (4.5)<br />

Multiply<strong>in</strong>g (4.4) by r N−1 v and (4.5) by r N−1 w and <strong>in</strong>tegrat<strong>in</strong>g on [rmax, ¯r] we<br />

get<br />

¯r<br />

(N − 1)<br />

rmax<br />

r N−3 u ′ (r)v(r)dr = u ′ (rmax)v ′ (rmax)r N−1<br />

max − u ′ (¯r)v ′ (¯r)¯r N−1 = 0<br />

This gives a contradiction s<strong>in</strong>ce v does not change sign <strong>in</strong> [rmax, ¯r] ⊂ [a ′ , b ′ ] and<br />

u ′ (r) < 0 for r > rmax. ⊓⊔<br />

Next lemma characterizes <strong>the</strong> set <strong>of</strong> <strong>the</strong> <strong>solution</strong>s <strong>of</strong> <strong>the</strong> l<strong>in</strong>earized equation<br />

<strong>of</strong> (3.1) at U.<br />

Lemma 4.2. All <strong>the</strong> <strong>solution</strong>s <strong>of</strong> <strong>the</strong> equation<br />

are given by<br />

for some constant α, β ∈ R.<br />

− v ′′ =<br />

4e √ 2r<br />

(1 + e √ 2r ) 2<br />

v(r) = α 1 − e√ 2r<br />

1 + e √ <br />

√2r1 − e<br />

+ β<br />

2r √ 2r<br />

1 + e √ <br />

+ 2<br />

2r<br />

Pro<strong>of</strong>. S<strong>in</strong>ce <strong>the</strong> functions v1(r) = 1−e<br />

√<br />

2r<br />

1+e √ 2r and v2(r) =<br />

v <strong>in</strong> R (4.6)<br />

(4.7)<br />

√ √2r 2r<br />

1−e<br />

1+e √ <br />

+ 2 verify<br />

2r<br />

<strong>the</strong> equation (4.3) <strong>the</strong> claim follows by classical ODE results. ⊓⊔<br />

<br />

a−rp b−rp<br />

Proposition 4.3. Let us consider, for r ∈ , , <strong>the</strong> function<br />

εp εp<br />

Then, we have that<br />

˜vp(r) → z(r) = α 1 − e√ 2r<br />

+ β<br />

for some constant α, β ∈ R.<br />

˜vp(r) = vp(εpr + rp). (4.8)<br />

1 + e √ 2r<br />

√2r 1 − e √ 2r<br />

Pro<strong>of</strong>. Let us write down <strong>the</strong> equation satisfied by ˜vp,<br />

˜v ′ p<br />

1 + e √ 2r<br />

+ 2<br />

˜v ′′<br />

p − (N − 1)εp = pε<br />

εpr + rp<br />

2 pup(εpr + rp) p−1 ˜vp<br />

11<br />

<br />

(4.9)<br />

(4.10)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!