23.07.2013 Views

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

Asymptotic behaviour of the Kazdan-Warner solution in the annulus ∗

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lemma 2.7. Let ū <strong>the</strong> function def<strong>in</strong>ed <strong>in</strong> (2.13). Then we have<br />

and<br />

ū(r) < 1 for any r = r0 (2.17)<br />

ū(r0) = 1 (2.18)<br />

Pro<strong>of</strong>. By Lemma 2.6 we have that ū(r) ≤ 1. Let us suppose that <strong>the</strong>re exists<br />

r ′ = r0 such that ω(r ′ ) = 1. S<strong>in</strong>ce u ′ p(r) is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> [a, rp] we have that<br />

ū(r) ≡ 1 for any r ∈ (r ′ , r0). By (2.10) we can pass to <strong>the</strong> limit <strong>in</strong> (2.11) and<br />

<strong>the</strong>n ū satisfies<br />

− ū ′′ −<br />

N − 1<br />

ū<br />

r<br />

′ = 1 <strong>in</strong> (r ′ , r0) (2.19)<br />

This leads to a contradiction with ū(r) ≡ 1 <strong>in</strong> r ∈ (r ′ , r0). This proves (2.17).<br />

F<strong>in</strong>ally (2.18) follows by (2.8). ⊓⊔<br />

Pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Theorem 1.1<br />

Let us consider only <strong>the</strong> case N ≥ 3 (<strong>the</strong> case N = 2 is analogous).<br />

By (2.10) and Lemma (2.6) we can pass to <strong>the</strong> limit <strong>in</strong> (2.11). Then <strong>the</strong><br />

limit ū satisfies ⎧ ⎪⎨<br />

−ū ′′ − N−1<br />

r ū′ = 0 <strong>in</strong> (a, r0)<br />

⎪⎩<br />

ū(a) = 0, ū(r0) = 1<br />

(2.20)<br />

and <strong>the</strong> same happens for r ∈ (r0, b). A straightforward computation shows<br />

that ū = ω. We f<strong>in</strong>ish <strong>the</strong> pro<strong>of</strong> comput<strong>in</strong>g <strong>the</strong> value <strong>of</strong> r0.<br />

By Proposition 2.4 we have that up converges strongly to ω <strong>in</strong> H1 0(a, b).<br />

Then<br />

<br />

2 <br />

Ω |∇up|<br />

Ipn = =<br />

<br />

Ω<br />

Ω up p<br />

2<br />

p<br />

|∇ω| 2 = (2 − N)ωN<br />

|∇up|<br />

Ω<br />

2<br />

2 1− p<br />

≥<br />

<br />

1<br />

b2−N +<br />

− |r0| 2−N<br />

1<br />

|r0| 2−N − a2−N <br />

(2.21)<br />

If r 2−N<br />

0 = a2−N +b 2−N<br />

1<br />

2 we deduce that b2−N −|r0| 2−N 1 + |r0| 2−N −a2−N > 4(2−N)<br />

b2−N −a2−N and this is a contradiction with Proposition 2.1. Hence r 2−N<br />

0 = a2−N +b 2−N<br />

2 ant<br />

this f<strong>in</strong>ishes <strong>the</strong> pro<strong>of</strong> ⊓⊔<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 1.3<br />

It follows by Theorem 1.1 observ<strong>in</strong>g that<br />

<br />

Ω |∇u|2<br />

<br />

2 |∇up| Ω<br />

<br />

≥ Cp = Ω<br />

up+1 2<br />

p+1<br />

7<br />

Ω up+1 p<br />

2<br />

p+1<br />

<br />

→<br />

Ω<br />

|∇ω| 2 . (2.22)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!