25.07.2013 Views

Instantaneous release problems in natural rivers ... - MANHAZ

Instantaneous release problems in natural rivers ... - MANHAZ

Instantaneous release problems in natural rivers ... - MANHAZ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Instantaneous</strong> <strong>release</strong> <strong>problems</strong> <strong>in</strong><br />

<strong>natural</strong> <strong>rivers</strong>: experiments and<br />

alarm models.<br />

Paweł M. Rowiński<br />

Institute of Geophysics<br />

Polish Academy of<br />

Sciences<br />

Warsaw, Poland<br />

orkshop on Modell<strong>in</strong>g of pollutant transport <strong>in</strong> water bodies for decision mak<strong>in</strong>g<br />

ay 30 - 31, 2005, Centre of Excellence <strong>MANHAZ</strong>


Natural Rivers – Plan View<br />

• Straight<br />

• S<strong>in</strong>uous<br />

• Meander<strong>in</strong>g<br />

•Braided<br />

• Anabranch<strong>in</strong>g<br />

• Anastomos<strong>in</strong>g<br />

Morphology


River<strong>in</strong>e wetlands<br />

• River<strong>in</strong>e wetlands form as l<strong>in</strong>ear strips,<br />

generally parallel<strong>in</strong>g river & stream<br />

channels.<br />

• They are found at lower elevations <strong>in</strong> a<br />

floodpla<strong>in</strong> and tend to be more frequently<br />

<strong>in</strong>undated and for a longer duration than<br />

areas at slightly higher elevation.


Clean<strong>in</strong>g or<br />

Filter<strong>in</strong>g pollutants<br />

From surface waters<br />

River<strong>in</strong>e Wetlands<br />

Accumulation of harmful substances<br />

May become disastrous<br />

Habitat for wildlife &<br />

plants<br />

e.g. wildlife<br />

mortality!


AIMS<br />

• understand<strong>in</strong>g of the mechanisms govern<strong>in</strong>g<br />

pollution transport <strong>in</strong> the river wander<strong>in</strong>g<br />

through a wetland area.<br />

• creation of respective mathematical models<br />

of the pollution transport <strong>in</strong> the stream as a<br />

start<strong>in</strong>g po<strong>in</strong>t


AIMS -CONTINUATION<br />

CONTINUATION<br />

• Evaluation of the threats by an accidental<br />

<strong>release</strong> of the pollutants at the downstream<br />

locations <strong>in</strong> a complex multi-channel river<br />

system.<br />

• Particular aim: determ<strong>in</strong>ation of<br />

concentration pattern of accidental <strong>in</strong>puts of<br />

toxic materials with<strong>in</strong> the Narew National<br />

Park.


The Upper Narew River<br />

with<strong>in</strong><br />

the Narew National Park<br />

Legend<br />

Kurowo<br />

Radule<br />

Waniewo<br />

Kruszewo<br />

Łupianka Stara<br />

boundary of NNP protective zone<br />

river<br />

boundary of Narew National Park<br />

0 2 050 4 100 8 200<br />

Meters<br />

Rzędziany<br />

Izbiszcze<br />

Łapy<br />

Bok<strong>in</strong>y<br />

Uhowo<br />

Topilec<br />

Choroszcz<br />

Baciuty<br />

Suraż


Narew – anastomos<strong>in</strong>g river<br />

In case of the Upper Narew we<br />

deal with the multi-channel system<br />

on a flood pla<strong>in</strong> but <strong>in</strong> contrast to<br />

the typical braided <strong>rivers</strong>, they are<br />

represented by relatively small<br />

slopes.<br />

Anastomos<strong>in</strong>g multichannel streams<br />

evelop when vegetation has stabilized the<br />

ream banks and the channel.


There are islands between<br />

various channels seen at normal<br />

stages of water but from time<br />

to time they are flooded for<br />

the period of days and weeks.


Methods<br />

• Tracer study <strong>in</strong> which a known mass of a<br />

conservative solute (Rhodam<strong>in</strong>e WT) is <strong>release</strong>d<br />

<strong>in</strong>to the stream.<br />

• Study consists <strong>in</strong> the exam<strong>in</strong>ation of the<br />

concentration versus time of the artificially<br />

<strong>release</strong>d dye at downstream stations and fitt<strong>in</strong>g<br />

appropriate models.<br />

• DEVELOPMENT OF MATHEMATICAL<br />

MODEL


Hydrological Survey<br />

• A precondition for a proper understand<strong>in</strong>g<br />

of the physical processes that occur <strong>in</strong> a<br />

river (and among them the processes<br />

govern<strong>in</strong>g the transport of pollutants) is a<br />

detailed recognition of hydrological and<br />

morphometric state with<strong>in</strong> the river channel<br />

and possibly on the floodpla<strong>in</strong>s.


Hydrological Survey urvey (NNP)<br />

• Description of channel network<br />

• Streamwise velocity field<br />

• Discharges at selected cross-sections<br />

• Water surface slopes (along whole river<br />

reach and local) and bed slope<br />

• Hydraulic and topographic characteristics


GPS SURVEY<br />

RESULTS


Geodesy


Terra<strong>in</strong> diversity


Velocity measurements


Example of velocity distribution


x 1<br />

Hydraulics computations<br />

h 1<br />

z v 1 (x,y)<br />

x<br />

y<br />

Q<br />

z<br />

x 2<br />

x<br />

h 2<br />

v 2 (x,y)<br />

y<br />

x


Cross-section Cross section survey layout<br />

LEGEND<br />

HG44<br />

G43<br />

HG42<br />

HG41<br />

0 330 660 1 320<br />

Meters<br />

HG40<br />

Floodpla<strong>in</strong> limits<br />

HG39<br />

HG38<br />

HG37<br />

Cross-section


elevation [m a.sl.]<br />

124<br />

123<br />

122<br />

121<br />

120<br />

119<br />

118<br />

117<br />

116<br />

115<br />

The generated, obta<strong>in</strong>ed from a field survey,<br />

and simplified G5 cross-section<br />

cross section<br />

G6<br />

generated<br />

measured<br />

simplified<br />

0 200 400 600 800 1000 1200 140<br />

distance [m]


Flood wave rout<strong>in</strong>g through the<br />

Narew river - computations


Unsteady flow rout<strong>in</strong>g<br />

through the ma<strong>in</strong> channel


Dynamic wave model for synthetic hydrograph<br />

Qt ( ) = Q + Qexp( −( t−T) /( T −T))(<br />

t/ T)<br />

discharge [m3/s]<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

b 0<br />

p g p p<br />

HG0<br />

HG18<br />

HG27<br />

G33<br />

HG37<br />

HG44<br />

0 100 200 300 400 500 600 700 800 900 1000 1100 1200<br />

( T /( T −T<br />

))<br />

p g p


discharge [m3/s]<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Flood wave – spr<strong>in</strong>g 2004<br />

HG0<br />

HG18<br />

HG27<br />

G33<br />

HG37<br />

HG44<br />

0 100 200 300 400 500 600 700 800 900 1000


Unsteady flow rout<strong>in</strong>g of<br />

overbank flows


water level [m a.s.l.]<br />

117<br />

116.5<br />

116<br />

115.5<br />

115<br />

114.5<br />

114<br />

113.5<br />

Recorded and simulated water elevations<br />

at Bok<strong>in</strong>y village cross-section<br />

cross section<br />

measured<br />

simulated<br />

0 1000 2000 3000 4000 5000<br />

time [h]


Maximum water levels at the cross-sections cross sections HG18<br />

120<br />

118<br />

116<br />

Elevation [m above sea level]<br />

maximum water level<br />

1980a<br />

1978<br />

1980b<br />

1981<br />

1979<br />

114<br />

0.00 206.75 413.50 620.25 827.00<br />

HG18<br />

Distance [m]


looded area maps for<br />

e typical<br />

lood ood wave recorded <strong>in</strong> 1978<br />

LEGEND<br />

1978<br />

0 500 1 000 2 000<br />

!<br />

HG27<br />

!<br />

G24<br />

!<br />

!<br />

G28<br />

G23<br />

!<br />

HG44<br />

HG22<br />

!<br />

!<br />

G21<br />

!<br />

!<br />

G43 HG41<br />

!<br />

!<br />

!<br />

!<br />

!<br />

HG42 HG40<br />

HG42<br />

!<br />

HG38<br />

! HG31<br />

G29 G30<br />

HG18<br />

!<br />

!<br />

!<br />

!<br />

HG16<br />

!<br />

G15<br />

G14<br />

HG11<br />

!<br />

G10<br />

!<br />

!<br />

!<br />

G9<br />

G8<br />

G33<br />

!<br />

G7<br />

!<br />

!<br />

!<br />

G6<br />

HG5<br />

HG36<br />

HG34<br />

!<br />

!<br />

HG37<br />

G3 !<br />

G2<br />

!


Dye tracer test<br />

• The method of <strong>in</strong>stantaneous <strong>in</strong>jection of the<br />

tracer was applied<br />

• The dye <strong>release</strong> consisted of 20 liters of 20%<br />

solution of Rhodam<strong>in</strong>e WT at the cross-section<br />

just downstream of the bridge at Suraż.<br />

• Concentrations were measured at six transects<br />

(3.62 km, 8.34 km, 9.01 km, 9.23 km, 13.58 km,<br />

and 16.83 km). First cross-section was established<br />

at a distance at which 1D conditions were<br />

supposed to be achieved.


o ga<strong>in</strong> more understand<strong>in</strong>g<br />

recognition of hydraulics<br />

conditions is needed<br />

Tracer test


Spread<strong>in</strong>g of Rhodam<strong>in</strong>e WT at the early stage<br />

where lateral mix<strong>in</strong>g occurs


The stage where the tracer is mixed across


Variation of concentration with time at the<br />

cross-sections cross sections downstream of the <strong>in</strong>jection<br />

c(t)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

2-N<br />

3-N<br />

5-N<br />

6-N<br />

7-N<br />

0 5 10 15 20 25 30 35 40<br />

time [hours]


Why the mathematical<br />

treatment of pollution transport<br />

offers so many difficulties?


50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

U [cm/s]<br />

Vertical 13 y = 4 cm<br />

Firstly:<br />

River flow turbulence<br />

Test 2 U = 19.4 cm/s<br />

Test 3 U = 6.1 cm/s<br />

Test 1 U = 38.5 cm/s<br />

0 20 40 60 80 100 120 140 160 180<br />

t [s]


Secondly:<br />

Extremely complex geometry<br />

especially <strong>in</strong> wetland areas


Model<strong>in</strong>g concept


Flow Q<br />

Lateral<br />

<strong>in</strong>flow<br />

Ma<strong>in</strong> channel<br />

Exchange due to<br />

transient storage<br />

Transient<br />

storage<br />

Small <strong>rivers</strong><br />

Ma<strong>in</strong> channel<br />

wetlands<br />

Transient storage<br />

Side pockets,<br />

hyporheis stratum,<br />

bed irregularities<br />

Downstream<br />

transport<br />

Advection and<br />

dispersion<br />

Outflow


Storage zone


Models of pollution transport<br />

Steady and uniform flow conditions<br />

2<br />

∂C ∂C ∂ C ε<br />

+ U − D = C 2<br />

D −C<br />

∂t ∂x ∂x<br />

T<br />

Steady but non-uniform flow conditions<br />

Transient storage<br />

zones<br />

Ma<strong>in</strong> channel<br />

∂C ∂C<br />

1 ∂ ⎛ ∂C<br />

⎞ ε<br />

+ u − ⎜ DA ⎟ =<br />

∂t<br />

∂x<br />

A ∂x<br />

⎝ ∂x<br />

⎠ T<br />

∂C 1<br />

=<br />

∂t<br />

T<br />

( C − )<br />

D CD<br />

( )<br />

( C C)<br />

D −


Schematic representation of the solution<br />

method – splitt<strong>in</strong>g technique<br />

TRANSPORT<br />

<strong>in</strong>put output<br />

<strong>in</strong>put<br />

advection<br />

output<br />

advection dispersion storage zone<br />

advection<br />

advection -<br />

dispersion<br />

output<br />

upw<strong>in</strong>d<br />

scheme<br />

dispersion<br />

Crank - Nicholson<br />

scheme<br />

storage<br />

zones<br />

Runge – Kutta<br />

method<br />

output


Identification of model<br />

parameters


Optimization Procedure 1 – based on frequency<br />

response function<br />

⎡ 2 2 3<br />

U x 2 4DεTω 4 D( T ω + ω+ εω)<br />

⎤<br />

H( x, iω) = exp⎢ x− U + + i<br />

2 2 2 2 ⎥<br />

⎢⎣ 2D 2D T ω + 1 T ω + 1 ⎥⎦<br />

Optimization procedure on the reach by reach basis<br />

with specially designed objective function compar<strong>in</strong>g<br />

the reverse of Fourier transformation of function H and<br />

the measured concentrations.


Another formulation of optimization problem<br />

Criterion for parameters derivation<br />

[ ] ( ) ( ) 2<br />

TH<br />

⎧ K<br />

⎪ ⎫⎪<br />

m<strong>in</strong> ⎨FuD , , ε,<br />

T = ∑ ∫ ⎡⎣Cx, t −Cx,<br />

t⎤⎦ dt⎬<br />

⎩ ⎭<br />

m k k<br />

uD , , ε , T<br />

⎪ k = 2 0<br />

⎪<br />

Constra<strong>in</strong>ts for the<br />

problem<br />

Water cont<strong>in</strong>uity equation<br />

( )<br />

X ≤ X x ≤ X<br />

m<strong>in</strong> max<br />

Q= uA


Control Random Search<br />

Start of computations – set of po<strong>in</strong>ts<br />

Determ<strong>in</strong>ation of the best xL and<br />

the worst xH from the given set<br />

Formation of a simplex conta<strong>in</strong><strong>in</strong>g x L<br />

xn+1 - result: new po<strong>in</strong>t xW Reflection of the last po<strong>in</strong>t from simplex<br />

Replacement of x H by x W<br />

Stop criterion<br />

F − F x<br />

sr<br />

( L ) < ε<br />

x 1<br />

constant values of objective function<br />

optimum<br />

simplex 3<br />

simplex 2<br />

simplex 1<br />

The search<strong>in</strong>g rule for the doma<strong>in</strong><br />

of the objective function by means<br />

of simplex method<br />

x 2


Dead-zone Dead zone model parameters –<br />

E L [km 2 /h]<br />

ε<br />

T[h]<br />

U a [km/h]<br />

Parameters<br />

[0-N,2-N]<br />

0.0027<br />

0.0920<br />

0.4530<br />

0.5200<br />

Upper Narew<br />

[2-N,3-N]<br />

0.0220<br />

0.0120<br />

0.6550<br />

1.8400<br />

[3-N,5-N]<br />

0.0051<br />

0.7920<br />

11.2570<br />

0.4880<br />

Sections<br />

[5-N,6-N]<br />

0.0338<br />

0.3690<br />

7.0706<br />

1.6200<br />

[6-N,7-N]<br />

0.0034<br />

0.2260<br />

0.9030<br />

0.7800<br />

[0-N,7-N]<br />

0.0120<br />

0.1020<br />

1.440<br />

0.9190


Examples of measured and dead-zone dead zone<br />

model results<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

Dimensionless concentration<br />

10 15 20 25 30 35 40<br />

time [hours]<br />

experimental data<br />

model


Cont<strong>in</strong>uation of studies<br />

• Computations under flood conditions, also<br />

when the entire floodpla<strong>in</strong> is <strong>in</strong>undated.<br />

• The above requires a very good recognition<br />

of the topography of the entire valley<br />

• Flow computations based on CCHE models<br />

– currently conducted


Conclud<strong>in</strong>g remarks<br />

• It is shown that because of the asymmetric nature<br />

of all the observed breakthrough curves, the<br />

temporary storage of the admixture plays a crucial<br />

role <strong>in</strong> the analyses of the pattern of its spread <strong>in</strong><br />

the multi-thread river system. This reflects the<br />

<strong>in</strong>teractions with the adjacent wetland areas (high<br />

values of ε<br />

<strong>in</strong> the model)


Conclud<strong>in</strong>g remarks -cont cont<br />

• A tracer test def<strong>in</strong>itely facilitates the analyses and<br />

quantification of the hydrodynamic and also<br />

chemical processes <strong>in</strong> surface waters, particularly<br />

<strong>in</strong> such complex environment as the Upper Narew.<br />

Because of its complete safeness for the<br />

environment such method is recommended as a<br />

tool for the recognition of the system behavior.


THANK YOU FOR<br />

YOUR ATTENTION

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!