29.07.2013 Views

Microstructure-Properties: I Lecture 5A The Effect of Grain Size on ...

Microstructure-Properties: I Lecture 5A The Effect of Grain Size on ...

Microstructure-Properties: I Lecture 5A The Effect of Grain Size on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

<str<strong>on</strong>g>Microstructure</str<strong>on</strong>g>-<str<strong>on</strong>g>Properties</str<strong>on</strong>g>: I<br />

<str<strong>on</strong>g>Lecture</str<strong>on</strong>g> <str<strong>on</strong>g>5A</str<strong>on</strong>g><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Grain</str<strong>on</strong>g> <str<strong>on</strong>g>Size</str<strong>on</strong>g> <strong>on</strong><br />

Strength and Toughness<br />

27-301<br />

Fall, 2007<br />

A. D. Rollett


2<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Bibliography<br />

• Mechanical Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials (1966), F. McClintock and<br />

A. S. Arg<strong>on</strong>, Addis<strong>on</strong> Wesley.<br />

• Mechanical Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials, T.H. Courtney, McGraw-<br />

Hill, ISBN 0-07-013265-8, 620.11292,C86M<br />

• <str<strong>on</strong>g>Microstructure</str<strong>on</strong>g> and <str<strong>on</strong>g>Properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials, J.C.M. Li, editor,<br />

World Scientific, ISBN 981-02-2403-6<br />

• Leslie, WC, <str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Metallurgy <str<strong>on</strong>g>of</str<strong>on</strong>g> Steels, Hemisphere<br />

Press, McGraw-Hill<br />

• Llewellyn, DT & Hudd, RC, Steels, Metallurgy and<br />

Applicati<strong>on</strong>s, Butterworths-Heinemann<br />

• http://www.steeluniversity.org/c<strong>on</strong>tent/html


3<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Objective<br />

• This lecture is c<strong>on</strong>cerned with the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> grain<br />

size <strong>on</strong> properties.<br />

• Two examples will be given:<br />

• (4A) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> grain size <strong>on</strong> mechanical<br />

properties (Hall-Petch effect, Nabarro-Herring<br />

creep).<br />

• (4B) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> grain size <strong>on</strong> resistance in<br />

ceramics used for varistors (e.g. in surge<br />

protectors).<br />

• If time permits, the discussi<strong>on</strong> will be extended to<br />

magnetic hardness also.


4<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Key C<strong>on</strong>cepts<br />

• <str<strong>on</strong>g>Grain</str<strong>on</strong>g> boundaries (effectively) have properties that differ from<br />

the matrix.<br />

• <str<strong>on</strong>g>Properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> polycrystal depend <strong>on</strong> the c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> planar<br />

defects, i.e. grain boundaries, i.e. grain size.<br />

• <str<strong>on</strong>g>Grain</str<strong>on</strong>g> boundaries in semic<strong>on</strong>ductors used to make varistors<br />

have a <strong>on</strong>e-way voltage barrier.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> Hall-Petch effect quantifies the trend <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing<br />

strength and toughness with decreasing grain size. That is to<br />

say, fine grain size strengthens the material.<br />

• Creep rates (Coble creep) increase with increasing grain<br />

boundary area (per unit volume), hence decreasing grain size.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore grain size has the opposite effect at high<br />

temperatures where fine grain size weakens the material.<br />

• Low temperature service optimized by fine grain size, but high<br />

temperature service optimized by use <str<strong>on</strong>g>of</str<strong>on</strong>g> single crystals.


5<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

• σ y : yield strength<br />

• σ 0 : fricti<strong>on</strong> stress<br />

• K : Hall-Petch coefficient<br />

• d : grain size<br />

Notati<strong>on</strong><br />

• n : number <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s in<br />

a pile-up<br />

• ν : Poiss<strong>on</strong>’s ratio<br />

• G : shear modulus<br />

• τ : shear stress<br />

• J : vacancy flux<br />

• D : diffusi<strong>on</strong> coefficient<br />

• T : temperature<br />

• T m : melt T<br />

• Ω : atomic volume<br />

• σ : stress<br />

• N : c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vacancies<br />

• Q m : Activati<strong>on</strong> energy for<br />

migrati<strong>on</strong><br />

• Q Vacancy : Activati<strong>on</strong> energy<br />

for vacancy formati<strong>on</strong><br />

• kT : Boltzmann’s c<strong>on</strong>stant<br />

multiplied by temperature


6<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Hall-Petch <str<strong>on</strong>g>Effect</str<strong>on</strong>g><br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> Hall-Petch effect is<br />

remarkably simple to<br />

express but still difficult to<br />

explain in fundamental<br />

terms.<br />

• At ambient c<strong>on</strong>diti<strong>on</strong>s (no<br />

creep), yield strength<br />

rises as the grain size<br />

decreases.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> variati<strong>on</strong> in strength<br />

can be described by a<br />

power-law relati<strong>on</strong>ship:<br />

σ y = σ 0 + kd -1/2<br />

http://www.steeluniversity.org/c<strong>on</strong>tent/htmłeng/default.asp?catid=171&page<br />

id=2081271789 - after:<br />

“<str<strong>on</strong>g>The</str<strong>on</strong>g> yield stress-grain size relati<strong>on</strong> in ir<strong>on</strong> substituti<strong>on</strong>al alloys (<str<strong>on</strong>g>Grain</str<strong>on</strong>g> size<br />

effects <strong>on</strong> ir<strong>on</strong> substituti<strong>on</strong>al alloys yield stress, investigating Hall-Petch<br />

relati<strong>on</strong>)”, MORRISON, W B; LESLIE, W C<br />

Metallurgical Transacti<strong>on</strong>s. Vol. 4, pp. 379-381. Jan. 1973<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Hall-Petch effect is named for E.O. Hall and N.J. Petch<br />

from their papers <str<strong>on</strong>g>of</str<strong>on</strong>g> the early 1950’s, e.g. “<str<strong>on</strong>g>The</str<strong>on</strong>g> Cleavage<br />

Strength <str<strong>on</strong>g>of</str<strong>on</strong>g> Crystals” N.J. Petch, J. Ir<strong>on</strong> & Steel Inst., 174,<br />

25-28.


7<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Dislocati<strong>on</strong> Pile-ups<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> central idea is that dislocati<strong>on</strong>s are forced to<br />

pile up at grain boundaries, either because there is<br />

a barrier to crossing over into the next grain, or<br />

because a source must be activated in the next<br />

grain.<br />

[Courtney]


8<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Dislocati<strong>on</strong> Pile-up at a Boundary<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> classical explanati<strong>on</strong> for the<br />

Hall-Petch effect is that some<br />

stress c<strong>on</strong>centrati<strong>on</strong> in a given<br />

grain is required to initiate slip in<br />

its neighboring grain. That stress<br />

c<strong>on</strong>centrati<strong>on</strong> is most plausibly<br />

obtained through a dislocati<strong>on</strong><br />

pile-up, see figure 5.5. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

essence <str<strong>on</strong>g>of</str<strong>on</strong>g> the argument is that<br />

stress is higher as the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dislocati<strong>on</strong>s increases. Thus the<br />

larger the grain size, the more<br />

quickly (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic<br />

strain) is the critical stress reached<br />

at which slip is initiated in the<br />

neighboring grain. <str<strong>on</strong>g>The</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

equati<strong>on</strong> describing the pile-up<br />

stress c<strong>on</strong>tains a term in √(d/r)<br />

where d is the grain diameter and<br />

r is the (average) distance to the<br />

source in the neighboring grain<br />

from the boundary.<br />

!<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> (edge) dislocati<strong>on</strong>s in pile - up :<br />

n = (1"#)$%d<br />

4Gb<br />

Stress at the head <str<strong>on</strong>g>of</str<strong>on</strong>g> the pile - up :<br />

% c = n% = (1"#)$% 2 d<br />

4Gb<br />

Now invert the relati<strong>on</strong>ship to find<br />

the shear stress to overcome the critical<br />

breaking stress <str<strong>on</strong>g>of</str<strong>on</strong>g> the grain boundary<br />

and insert a fricti<strong>on</strong> stress (e.g. solutes):<br />

% applied = % i + 4Gb% c<br />

$d<br />

"1/ 2<br />

= % i + kd


9<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Stress c<strong>on</strong>centrati<strong>on</strong><br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> square root term is analogous to the stress c<strong>on</strong>centrati<strong>on</strong> at the<br />

tip <str<strong>on</strong>g>of</str<strong>on</strong>g> a penny-shaped crack (in fracture mechanics). Thus,<br />

(τ applied - τ i ) √(d/4r) = τ*,<br />

where τ* is the critical stress for dislocati<strong>on</strong> source activati<strong>on</strong>, τ i is<br />

the resistance to dislocati<strong>on</strong> moti<strong>on</strong> in each grain, r is the tip radius,<br />

and τ applied is the applied shear stress. Again, the larger the diameter<br />

(<str<strong>on</strong>g>of</str<strong>on</strong>g> the crack, or, in this case, grain), d, the more dislocati<strong>on</strong>s in the<br />

pile-up for a given applied stress (minus the resistance).<br />

Rearranging, we get {Courtney - Eq. 5.8}.<br />

τ applied = τ i + 2 τ* √r d -1/2 = τ i + kd -1/2 .


10<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Material Dependence<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> Hall-Petch c<strong>on</strong>stant, k in the equati<strong>on</strong>, varies<br />

c<strong>on</strong>siderably am<strong>on</strong>gst materials. This in itself<br />

raises some questi<strong>on</strong>s about the mechanism(s)<br />

underlying the effect. <str<strong>on</strong>g>The</str<strong>on</strong>g> explanati<strong>on</strong> given is<br />

purely geometrical and although the material<br />

dependence could be explained through the ratio<br />

d/r, it is not clear why this should be so!<br />

• Solutes tend to<br />

enhance the<br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hall-<br />

Petch effect.<br />

[Courtney]


11<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g> <str<strong>on</strong>g>Size</str<strong>on</strong>g> and Fracture<br />

• <str<strong>on</strong>g>Grain</str<strong>on</strong>g> size also has a marked effect <strong>on</strong> fracture,<br />

which was, in fact, part <str<strong>on</strong>g>of</str<strong>on</strong>g> Petch’s original<br />

c<strong>on</strong>tributi<strong>on</strong>.<br />

McClintock & Arg<strong>on</strong>


12<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Nanocrystalline materials<br />

• All this suggests that remarkably str<strong>on</strong>g materials can be generated if<br />

very small grain sizes can be achieved. This, <str<strong>on</strong>g>of</str<strong>on</strong>g> course, is <strong>on</strong>e aim <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nanocrystalline materials in which grain sizes are obtained that are<br />

well less than <strong>on</strong>e micr<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> processing (in metals) relies <strong>on</strong> either<br />

compacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fine powders (which requires sec<strong>on</strong>d phase particles in<br />

order to maintain the small grain sizes at sintering temperatures) or<br />

heavy deformati<strong>on</strong>s allied with recrystallizati<strong>on</strong>. This is an exciting<br />

area and is a lively area <str<strong>on</strong>g>of</str<strong>on</strong>g> research and development.<br />

• How to make nanocrystalline material? Powders, ball milling, equalangle<br />

channel extrusi<strong>on</strong>, thin film depositi<strong>on</strong> (chemical vapor<br />

depositi<strong>on</strong>, physical vapor depositi<strong>on</strong>, laser ablati<strong>on</strong>).<br />

• Questi<strong>on</strong>: what limit <strong>on</strong> strength exists for nanocrystalline materials?<br />

Does the Hall-Petch equati<strong>on</strong> apply all the way down to 1nm grain<br />

size, for example?


13<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Inverse Hall-Petch<br />

• It has l<strong>on</strong>g been theorized<br />

that there is a lower limit to<br />

the grain size for the Hall-<br />

Petch effect. Below this<br />

grain size, dislocati<strong>on</strong>s<br />

cannot bow out between<br />

obstacles without touching a<br />

boundary, and there is not<br />

enough space for pile-ups to<br />

form.<br />

• This lower limit is almost<br />

found in plots where the flow<br />

stress no l<strong>on</strong>ger increases<br />

<strong>on</strong>ce very small grain sizes<br />

are reached.<br />

K.S. Kumar et al. / Acta Materialia 51 (2003) 5743–5774<br />

Spaepen, Yu, Scripta mater.<br />

50, 729 (2004): copper, various


14<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g> refinement<br />

• A crucial engineering c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hall-Petch effect is<br />

that there is a large industry around grain refinement.<br />

• Many metals are used as castings, i.e. in the as-solidified<br />

state, so their grain size is important for their strength and<br />

toughness.<br />

• <str<strong>on</strong>g>Grain</str<strong>on</strong>g> refiners are known for most systems, but are almost<br />

invariably used in casting aluminum alloys (typically TiB 2<br />

which remains solid during casting because <str<strong>on</strong>g>of</str<strong>on</strong>g> its high melting<br />

point relative to Al).<br />

http://www.afsinc.org/Research/Chapter02.html<br />

Macro-structures <str<strong>on</strong>g>of</str<strong>on</strong>g> Base<br />

Alloy and Bor<strong>on</strong> <str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

Refined Yellow Brass,<br />

5x.


15<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Creep<br />

• An important property <str<strong>on</strong>g>of</str<strong>on</strong>g> materials is their<br />

resistance to creep.<br />

• Creep is irreversible (plastic) flow at low rates under<br />

low stresses.<br />

• We will return to this issue in later lectures because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its importance.<br />

• Creep is highly sensitive to temperature because<br />

thermal activati<strong>on</strong> makes the largest c<strong>on</strong>tributi<strong>on</strong> to<br />

plastic flow when the stress is too small to<br />

overcome mechanical barriers to dislocati<strong>on</strong><br />

moti<strong>on</strong>.


16<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Homologous Temperature<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g>refore it is comm<strong>on</strong> to use homologous<br />

temperature as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> relative temperature:<br />

T’ = T/T melt<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g>refore we expect materials tested at the same<br />

homologous temperature to show similar behavior.<br />

• Materials will tend to creep at high homologous<br />

temperatures because diffusi<strong>on</strong> allows changes in<br />

shape.


17<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Creep: general characteristics<br />

• Low temperature<br />

deformati<strong>on</strong> is<br />

characterized by<br />

work hardening:<br />

high temperature by<br />

a short transient<br />

hardening, followed<br />

by steady-state<br />

flow.<br />

• Similarly, c<strong>on</strong>stant<br />

load leads to<br />

steady-state flow at<br />

high T, but<br />

cessati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flow at<br />

low T (after a<br />

transient strain).


18<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Creep Resistance: Superalloys<br />

• Nickel-based “superalloys” originated with the Ni-Cr alloys used for<br />

heating elements in furnaces. In these, and the subsequent<br />

superalloys, their oxidati<strong>on</strong> resistance is critical. Very few materials<br />

possess ductility, oxidati<strong>on</strong> resistance and strength at high<br />

temperatures.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> term superalloy refers - loosely - to the use <str<strong>on</strong>g>of</str<strong>on</strong>g> this alloy class at<br />

unusually high homologous temperatures.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g>y are based <strong>on</strong> the Ni-Cr-Al ternary system but have many other<br />

alloy additi<strong>on</strong>s.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> key to their success is the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a sec<strong>on</strong>d phase, close to<br />

Ni 3 Al (“gamma-prime”) that is coherent with the matrix (more <strong>on</strong> this<br />

in 302!) and whose strength increases with temperature.


19<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Refractory Materials (Engines)<br />

• Carb<strong>on</strong><br />

Tmelt 3800 oxidizes<br />

Tungsten 3650 oxidizes<br />

MgO 3100 brittle (room T)<br />

SiC 3000 brittle (room T)<br />

Mo 2880 oxidizes<br />

Nb 2740 oxidizes<br />

Al2O3 2290 brittle (room T)<br />

Cr 2160 brittle<br />

Zr 2125 expensive<br />

(nuclear fuel elements)<br />

Pt 2042 expensive (crucibles)<br />

Fe 1808 oxidizes<br />

Ni 1726 √


20<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Superalloys: Temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> Use<br />

<str<strong>on</strong>g>Microstructure</str<strong>on</strong>g> and<br />

<str<strong>on</strong>g>Properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials:<br />

Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Why is temperature important? <str<strong>on</strong>g>The</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the engine is very<br />

sensitive to hot z<strong>on</strong>e temperature. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore even small increases in<br />

the temperature to which turbine blades can be exposed produces<br />

significant gains in engine efficiency


21<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g> <str<strong>on</strong>g>Size</str<strong>on</strong>g> effect <strong>on</strong> creep rate<br />

[<str<strong>on</strong>g>Microstructure</str<strong>on</strong>g> and <str<strong>on</strong>g>Properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials: Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f]<br />

Decreasing strength


22<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Ni-Al phase<br />

diagram Note the use <str<strong>on</strong>g>of</str<strong>on</strong>g> high Al<br />

c<strong>on</strong>tents in order to obtain<br />

very high volume fracti<strong>on</strong>s<br />

>50%) <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ni 3 Al phase<br />

(gamma-prime) that exhibits<br />

INCREASING<br />

hardness/strength with<br />

increasing temperature<br />

(alloy d, right). <str<strong>on</strong>g>The</str<strong>on</strong>g> ordered<br />

crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the γ’)<br />

provides some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

enhanced strength.<br />

<str<strong>on</strong>g>Microstructure</str<strong>on</strong>g> and <str<strong>on</strong>g>Properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials: Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f


23<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Superalloy<br />

strengthening<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> coherent<br />

interface<br />

between<br />

the γ’ and the<br />

matrix is<br />

important<br />

because it<br />

<str<strong>on</strong>g>Microstructure</str<strong>on</strong>g> and <str<strong>on</strong>g>Properties</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials: Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

means that the<br />

precipitate does not coarsen (again, more <strong>on</strong> this in 302).<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> increasing strength with temperature (<str<strong>on</strong>g>of</str<strong>on</strong>g> the γ’) is critical: most<br />

materials s<str<strong>on</strong>g>of</str<strong>on</strong>g>ten with temperature. This effect is not completely<br />

understood and is likely the result <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>-dislocati<strong>on</strong><br />

interacti<strong>on</strong>s.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> phase relati<strong>on</strong>ships allow a very large volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cuboidal γ’ to be precipitated in the matrix: this is a very effective<br />

barrier to dislocati<strong>on</strong> creep.


24<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

C<strong>on</strong>temporary Issues<br />

• An example <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>temporary issue is the effort being made<br />

by the manufacturers <str<strong>on</strong>g>of</str<strong>on</strong>g> gas turbine engines to transfer the<br />

technology for single crystal turbine blades from aircraft<br />

engines over to land-based gas turbines (for power<br />

generati<strong>on</strong>).<br />

• What’s the issue? Hot stage turbine blades for an aircraft<br />

engine are comparatively small - a few centimeters l<strong>on</strong>g. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

equivalent comp<strong>on</strong>ent for a land-based turbine is an order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude large - 30-70 cm l<strong>on</strong>g! Making these depends <strong>on</strong><br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong>al solidificati<strong>on</strong>: faults give rise to new<br />

orientati<strong>on</strong>s and grain boundaries which weaken the material.<br />

• Soluti<strong>on</strong>? Either much improved furnaces for directi<strong>on</strong>al<br />

solidificati<strong>on</strong> (very expensive and perhaps not feasible) or<br />

fabricate the single crystal from smaller pieces.


25<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

B<strong>on</strong>ded “Single” Crystals<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> approach adopted by <strong>on</strong>e manufacturer is to grow thin single crystal<br />

pieces (slabs) <str<strong>on</strong>g>of</str<strong>on</strong>g> the nickel superalloy using standard directi<strong>on</strong>al solidificati<strong>on</strong>.<br />

C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal solidificati<strong>on</strong> directi<strong>on</strong> is still feasible because <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

thinness. <str<strong>on</strong>g>The</str<strong>on</strong>g>n two pieces, chosen for similar orientati<strong>on</strong>, are b<strong>on</strong>ded<br />

together.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> b<strong>on</strong>ding process relies <strong>on</strong> a bor<strong>on</strong>-rich b<strong>on</strong>ding alloy (braze) that<br />

produces transient melting.<br />

• See, for example: Canadian Patents Database Patent 2307230 :<br />

Turbine Blades Made From Multiple Single Crystal Cast Superalloy Segments<br />

Xtal A + b<strong>on</strong>d + Xtal B B<strong>on</strong>ded Xtal


26<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Creep Mechanisms<br />

• Dislocati<strong>on</strong> Glide. This is self-explanatory: dislocati<strong>on</strong>s move (c<strong>on</strong>servatively) in resp<strong>on</strong>se to<br />

shear stresses.<br />

• Nabarro-Herring Creep. Creep can occur by mass transport, i.e. diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms from regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lower (algebraically) stress to regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> higher (more tensile) stress. This is equally effective<br />

in amorphous materials as in crystalline.<br />

• Coble Creep. Mass transport can occur either in the bulk (leading to N-H Creep) or al<strong>on</strong>g<br />

interfaces such as grain boundaries. In the latter case it is known as Coble creep. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

mechanisms result in a significant grain size dependence.<br />

• Solute Drag Creep. For dislocati<strong>on</strong>s gliding at high T, not <strong>on</strong>ly do the solute atoms interact with<br />

the dislocati<strong>on</strong>s but they can also move sufficiently rapidly for the drag effect to be significant.<br />

• Dislocati<strong>on</strong> Climb-Glide Creep. In between the (low) temperatures at which <strong>on</strong>ly dislocati<strong>on</strong><br />

glide is important, and the (high) temperatures at which diffusi<strong>on</strong> dominates (at low stresses), a<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glide and climb c<strong>on</strong>trols creep. That is to say, dislocati<strong>on</strong> moti<strong>on</strong> carries most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strain but the dislocati<strong>on</strong>s circumvent obstacles by climb.<br />

• <str<strong>on</strong>g>Grain</str<strong>on</strong>g> Boundary Sliding accommodated by diffusi<strong>on</strong>al flow. In superplasticity especially, sliding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e grain relative to another is very important.<br />

• <str<strong>on</strong>g>Grain</str<strong>on</strong>g> Boundary Sliding accommodated by Dislocati<strong>on</strong> Flow. This is the same mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> g.b.<br />

sliding but the accommodati<strong>on</strong> is achieved by dislocati<strong>on</strong> glide. Clearly <strong>on</strong>e expects this to<br />

dominate over diffusi<strong>on</strong> at lower temperatures.


27<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Deformati<strong>on</strong> Mechanism Maps<br />

Deformati<strong>on</strong> maps<br />

provide a<br />

c<strong>on</strong>venient<br />

graphical view <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the different<br />

regimes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

deformati<strong>on</strong><br />

behavior as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature and<br />

stress.


28<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g> <str<strong>on</strong>g>Size</str<strong>on</strong>g> and NH Creep<br />

• Smaller grain sizes expand<br />

the range over which<br />

Nabarro-Herring (and<br />

Coble) creep are observed.<br />

• Alternatively, the map can<br />

be drawn in the space <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stress (normalized by<br />

modulus) and grain size<br />

(normalized by Burgers<br />

vector). In this map, the<br />

temperature is fixed.


29<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Creep Mechanisms: diffusi<strong>on</strong><br />

• For the purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this lecture, we will c<strong>on</strong>sider<br />

just <strong>on</strong>e creep mechanism: self-diffusi<strong>on</strong> between<br />

grain boundaries (Nabarro-Herring Creep).<br />

• Assumpti<strong>on</strong>: grain boundaries are perfect sources<br />

and sinks <str<strong>on</strong>g>of</str<strong>on</strong>g> vacancies.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g>refore a tensile stress (for example) <strong>on</strong> a<br />

polycrystalline body sets up a driving force for<br />

vacancy moti<strong>on</strong>.<br />

[Courtney 7.5]


30<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Nabarro-Herring Creep<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> creep mechanism involving diffusi<strong>on</strong> to/from grain<br />

boundaries through the bulk lattice is known as Nabarro-<br />

Herring creep for the scientists who identified it.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for the grain size dependence is simple: the<br />

diffusi<strong>on</strong> path length is proporti<strong>on</strong>al to the grain size:<br />

- since the vacancy c<strong>on</strong>centrati<strong>on</strong> at the boundaries is fixed by<br />

the stress and the path length is proporti<strong>on</strong>al to the grain size,<br />

the c<strong>on</strong>centrati<strong>on</strong> gradient is inversely proporti<strong>on</strong>al to the grain<br />

size.<br />

- the creep rate (i.e. the strain rate) is proporti<strong>on</strong>al to the<br />

vacancy flux and is thus inversely proporti<strong>on</strong>al to the grain<br />

size.


31<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Nabarro-Herring Creep:<br />

grain size dependence<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> creep rate in Nabarro-Herring creep is<br />

inversely proporti<strong>on</strong>al to the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the grain<br />

size.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> quadratic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> creep rate <strong>on</strong> grain<br />

size arises from distributing the vacancy flux over<br />

the (average) area <str<strong>on</strong>g>of</str<strong>on</strong>g> a grain facet.<br />

• Bottom line: small grain size lowers creep<br />

resistance, and large grain size increases creep<br />

resistance.<br />

• Ideal microstructure (w.r.t. grain structure) is a<br />

single crystal.


32<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

N-H Creep: derivati<strong>on</strong>: 1<br />

• Difference in vacancy c<strong>on</strong>centrati<strong>on</strong>, N v , (which<br />

provides the driving force). <str<strong>on</strong>g>The</str<strong>on</strong>g> activati<strong>on</strong> energies<br />

are modified from the unstressed values by exp{+/stress*atomic<br />

volume}=exp-{σΩ/kT}. Compressi<strong>on</strong><br />

decreases the c<strong>on</strong>centrati<strong>on</strong> (slightly) and tensi<strong>on</strong><br />

raises it.<br />

tensi<strong>on</strong><br />

Nvacancy ! exp" Q # & vacancy<br />

$ '<br />

% kT ( exp )* + .<br />

- 0<br />

, kT /<br />

compressi<strong>on</strong><br />

Nvacancy ! exp" Q # & vacancy<br />

$ '<br />

% kT ( exp" )* + .<br />

- 0<br />

, kT /<br />

• Given small stresses (1-50 MPa), Ω~10 -29 m 3 ,<br />

kT~1.4.10 -20 J, σΩ/kT~0.02 «1. This permits us to<br />

linearize the driving force.


33<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

N-H Creep: derivati<strong>on</strong>: 2<br />

• Given small stresses (1-50 MPa), Ω~10 -29 m 3 ,<br />

kT~1.4.10 -20 J, σΩ/kT~0.02 «1. This permits us to<br />

linearize the driving force.<br />

∆N V ~ σΩ/kT exp-{Q vacancy /kT}.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> vacancy flux is given by Fick’s first law:<br />

J V = D V (dN V /dx)<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> distance over which the diffusi<strong>on</strong> occurs is<br />

approximated by the grain diameter, d:<br />

J V = D V (σΩ/kT) exp-{Q vacancy /kT} (1/d).


34<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

N-H Creep: derivati<strong>on</strong>: 3<br />

• If we multiply the flux by the area over which<br />

diffusi<strong>on</strong> takes place, which we approximate by the<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> a grain boundary facet, d 2 , we obtain the<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> volume. We can also include the<br />

diffusi<strong>on</strong> coefficient in the expressi<strong>on</strong>, where Q m is<br />

the activati<strong>on</strong> energy for vacancy moti<strong>on</strong>;<br />

D V =D 0V exp-{Q m /kT}.<br />

δV/δt = J V d 2<br />

δV/δt = d 2 D 0V exp-{Q m +Q Vacancy /kT} (σΩ/kT)(1/d).


35<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

N-H Creep: derivati<strong>on</strong>: 4<br />

• Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change in length = volume rate (δV/δt) /<br />

area; area ~ d 2 .<br />

δd/δt = D 0V exp-{Q m +Q Vacancy /kT} (σΩ/kT)(1/d).<br />

• Strain = Change in length / length = δd/d.<br />

δd/δt = D 0V exp-{Q m +Q Vacancy /kT} (σΩ/kT)(1/d 2 ).<br />

• Collecting terms:<br />

"<br />

˙ ! = A $ NH#<br />

Note the grain size dependence!<br />

Dbulk d 2<br />

%<br />

'<br />

&<br />

() " %<br />

$ '<br />

# kT &


36<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Diffusi<strong>on</strong><br />

• Creep is therefore a phenomen<strong>on</strong> associated with high<br />

temperatures.<br />

• High temperature is a relative term: <strong>on</strong>e c<strong>on</strong>tributi<strong>on</strong> that<br />

thermal activati<strong>on</strong> makes is by increasing diffusi<strong>on</strong> rates.<br />

• Diffusi<strong>on</strong> coefficients (D = D 0 exp-{Q/RT}) are str<strong>on</strong>gly<br />

(exp<strong>on</strong>entially!) dependent <strong>on</strong> temperature.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> activati<strong>on</strong> energy (enthalpy, strictly speaking) is<br />

approximately proporti<strong>on</strong>al to the melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> the material.<br />

• At the same temperature, a higher melting point material will<br />

exhibit slower diffusi<strong>on</strong> than a lower melting point material.


37<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Diffusivity,<br />

Activati<strong>on</strong><br />

Energy<br />

Porter & Easterling:<br />

diffusivity at the melting<br />

point is c<strong>on</strong>stant<br />

for a given class <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

material.<br />

Similarly,<br />

the activati<strong>on</strong> energy<br />

normalized by RT m<br />

is c<strong>on</strong>stant for a<br />

given class <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

material.


38<br />

Objective<br />

<str<strong>on</strong>g>Grain</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

Varistors<br />

Hall-<br />

Petch<br />

Creep<br />

Summary<br />

• <str<strong>on</strong>g>Grain</str<strong>on</strong>g> size is a critically important aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> polycrystalline<br />

materials.<br />

• In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hall-Petch effect, in most materials, both the<br />

strength and the toughness increase as the grain size is<br />

reduced. This effect can be explained by the resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

boundaries to plastic flow (in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> strength) and/or the<br />

decreased microcrack size in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> fracture.<br />

• <str<strong>on</strong>g>Grain</str<strong>on</strong>g> size can play a major role in c<strong>on</strong>trolling creep<br />

resistance. <str<strong>on</strong>g>Grain</str<strong>on</strong>g> size has the opposite effect at high<br />

temperatures than at ambient c<strong>on</strong>diti<strong>on</strong>s. Larger grain size<br />

increases creep resistance - hence the use <str<strong>on</strong>g>of</str<strong>on</strong>g> single crystals<br />

where feasible, especially for superalloys.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!