01.08.2013 Views

Propagation Low-Frequency

Propagation Low-Frequency

Propagation Low-Frequency

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

414 PROCEEDINGS OF THE IRE<br />

.1 pril<br />

Vg 1505<br />

12001<br />

E 8° 0'°<br />

o 4(101<br />

2101<br />

e<br />

0<br />

0e<br />

-49<br />

-2(169)<br />

U)4)<br />

'0 10 20 30 40 50 60 70 80 90 100<br />

|1<br />

0. ___ _<br />

-20A<br />

04<br />

z 02 -<br />

-04 .0 5 15 20 25 30 35 40<br />

Time. t Microseconds<br />

Fig. 10-Instanltaneous signlal atod correspondliiog damped LF sinle<br />

wave soulrce currenlt of a1 propalgated groulnd ssave pullse.<br />

aid of the convenient Laplace tranisform<br />

E(s) =1 (v= 0)<br />

where s =iw. The inverse Laplace tranisform £-C is<br />

E(t', d) = £''E(s) =<br />

(t)<br />

where the Dirac impulse funlctioln 6(t') can be definied in<br />

relation to the step funictioin u(t); thus,<br />

where<br />

rt b()dt =(t),<br />

,,j<br />

u(t)=1, I>0<br />

(52)<br />

u(t) =O t < 0. (53)<br />

The impulse is, of course, finiite in the danmped cosine<br />

wave (amplitude and durationi finlite) as a result of the<br />

finite conductivity of the ground, the displacement currents<br />

in the ground and the effect of the earth's curvature.<br />

The transient response of the ground wave at<br />

great distances illustrates (Figs. 12-14, pp. 415-416) the<br />

stretching of such pulses in the time domain.<br />

'E<br />

uT E<br />

V)<br />

3C<br />

.1<br />

-a<br />

lT<br />

-0<br />

-3E<br />

2 0)<br />

c<br />

el<br />

I0<br />

400-1<br />

2(10-I)<br />

O -2, If0 0 20<br />

_ _ 40<br />

VERTICAL ELECTRIC DIPOLE SOURCE<br />

1of= ampere-meter; f=I-Okc<br />

c, =2.5(io5); o0=0.005 mhos/meter<br />

If2= 5<br />

60 80 100 120 140 160 180 20',<br />

T<br />

IXtt ^1> 1f1^ IAX $1vX 1nt 4tir~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~<br />

~~~ \-<br />

\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~<br />

.S<br />

i 4 i . I~~~~~~~~~~~~~~~~~~~~~~~~~~<br />

"I -ti<br />

- O 5 iO 15 20 25 30 35 40<br />

Time, t Microseconds<br />

Fig. 11- Instanitanieous sigInal anid correspoindinig daniped LF cosinie<br />

xs ave souirce (current of a1 propagated gronioid wave ptulse.<br />

The finiite bandwidth of a radio receiver or filter,<br />

(50°) fr(°) #;£ 1, cani be introduced by a mutilation of the Fourier<br />

transform with onie or more frequency selective nietworks.<br />

Perhaps the simplest nietwork is the followinig<br />

f ,1\series network:<br />

(-51)<br />

fr(co)<br />

R<br />

I<br />

(ico)<br />

- R I<br />

-co2 +- (iw) + -<br />

L C'L<br />

(54)<br />

where R is a resistive elemnenit (ohms) L is an iniductive<br />

element (henry) and C is a capacitive element (farads).<br />

The n1odificationi of the pulse by the finite bandwidth<br />

so described (54) for particular values of R, L anid C is<br />

illustrated in Figs. 15 anid 16, p. 416). The ringinig of the<br />

circuit becomes evident (Fig. 16) as the constants R, L<br />

and C are changed so that the bandwidth becomes quite<br />

narrow, i.e., the Fourier spectrumii wave, fJ0(w, d) is approached<br />

asymptotically.<br />

The damped sine-squared pulse, of which the enivelope<br />

shape, defined by sinil w, can serve as a useful nmodel<br />

for the type pulse employed in radio navigation systems.<br />

Such a pulse can be syiothesized quite simiply by<br />

redefining the source funiction F,(t), (41), (42),<br />

__

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!