01.08.2013 Views

Propagation Low-Frequency

Propagation Low-Frequency

Propagation Low-Frequency

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1962<br />

ll<br />

((I2)I<br />

0<br />

Johler: <strong>Propagation</strong> of <strong>Low</strong>-<strong>Frequency</strong> Signal<br />

14(0-13)<br />

12 (10-13)<br />

to 0(i0-')<br />

1 8 (10 13)<br />

E 6 (10 13)<br />

0<br />

< 4(1003)<br />

-n iti" 12~ I]<br />

x 2(10 13)<br />

3(0) 0KO<br />

20<br />

E */\) - 0-13) II<br />

- 10<br />

0<br />

4(109° } 2(10- °<br />

tW 2(109) ~2(1°-!3 f\<br />

-(20-9) -((010)<br />

-E E 20Lo OO-p °<br />

0 0n<br />

0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0<br />

__9_<br />

A? E<br />

0<br />

to<br />

0.5<br />

0<br />

I<br />

60 80 100 120 40 160 10 200<br />

Time, t' Microseconds<br />

Fig. 12-IInstantaneous signal and correspondinig damped VLF sine<br />

wave source current of a propagated ground wave pulse.<br />

where<br />

-nhS<br />

0 20 40<br />

Re F0(t) = exp (-cit) sin2 o.,t sin w,t<br />

Re F,(t) = 1 exp (- cit) sincot<br />

-_ exp (-c1t) sin (w, + 2cow)t<br />

-4 exp (-cit) sin (wc - 2co)t.<br />

Fs(t) = - exp (-Pt)- -<br />

i i<br />

2 4<br />

exp (vpt)<br />

(55)<br />

(56)<br />

--exp (-V2t), (57)<br />

4<br />

= cl + iwc (as before)<br />

Vo = C1 + i(w, + 2wo)<br />

P2 =<br />

C1<br />

.I<br />

+ i(cw,- 2p).<br />

VERTICAL ELECTRIC DIPOLE SOURCE<br />

I I l-I aTr e-meter; fc - 17kc<br />

cl - 3(104);cr- 0,005 mhos/meter -<br />

P.215<br />

The typical radio navigation type pulse has a value<br />

for cl of the order of cop. It is quite obvious, however, that<br />

the amplitude time function E(t', d) for the damped<br />

sine-squared pulse is merely the sum of three waves<br />

calculated as previously described (45).<br />

E(t', d) = AI E,(t', d) + A2Ep,(t', d) + A 3E,,(t', d), (58)<br />

c<br />

0?<br />

0 1._<br />

, Lu<br />

n; E<br />

us -r<br />

w ,r<br />

a 4><br />

cE x<br />

R<br />

F-..<br />

7.<br />

.I<br />

V.Vi AAI<br />

20 0 40 60 s0 (00 120 140 0 U10 200<br />

Time, t. Microseconds<br />

415<br />

VERTICAL ELECTRIC DIPOLE SOURCE -<br />

10o = ampere-meter; fc- 17 kc<br />

cl=3(104). a- = 0005 mhos/meter<br />

E- /~. \ s2=15; E'=E-Ec<br />

E-6C,<br />

-\t=C2+iwc, C2=3(O3 -<br />

where-<br />

Re Fs (t) =[exp (-c1t) - exp (-c21)] cos wCt<br />

E<br />

----.qource E'<br />

Fig. 13-Instantaneous signal and corresponding damped VLF cosine<br />

wave source current of a propagated ground wave pulse illustrating<br />

the introduction of a less abrupt initial source current.<br />

where A i = i/2, A2 =-i/4, A3 =-i/4. A particular<br />

sine-squared pulse Re E(t', d) is illustrated in Fig. 17<br />

(p. 417) together with the amplitude envelope E(t', d) |.<br />

The source functions which represent natural phenomena,<br />

such as sferics (the electromagnetic radiation<br />

from thunderstorms), will not, in general, have the precise<br />

mathematical form of a damped sinusoid, impulse<br />

function or step function. Since the application of the<br />

superposition principle is not always practical, another<br />

approach to the general problem is appropriate [23],<br />

[25]. Indeed, it is quite possible to extend the theory to<br />

complicated waveforms. Consider an experiment in<br />

which the signal Re E(t', d) is observed and recorded<br />

at some distance d, from the source. The theory is then<br />

required to predict the form of the signal recorded at<br />

some other distance d2. The theory is also required to<br />

determine the form of the source F8(t).<br />

II

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!