02.08.2013 Views

Intermittency and Anomalous scaling in turbulence - Victor S. L'vov ...

Intermittency and Anomalous scaling in turbulence - Victor S. L'vov ...

Intermittency and Anomalous scaling in turbulence - Victor S. L'vov ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

• Lectures 13 <strong>Intermittency</strong> <strong>and</strong> <strong>Anomalous</strong> Scal<strong>in</strong>g<br />

• Velocity structure functions <strong>and</strong> experimental evidence<br />

for <strong>in</strong>termittency & multi<strong>scal<strong>in</strong>g</strong><br />

• Dissipative <strong>scal<strong>in</strong>g</strong> exponents µn <strong>and</strong> “Dissipative” bridge<br />

• Phenomenological models of multi-<strong>scal<strong>in</strong>g</strong>: from K62 Log-normal<br />

model to β− <strong>and</strong> multifractal model<br />

• Dynamical “shell models” of multi<strong>scal<strong>in</strong>g</strong>: GOY, Sabra <strong>and</strong> others<br />

• Toward analytical theory of multi<strong>scal<strong>in</strong>g</strong><br />

1


Log E(R)<br />

Re =<br />

ν<br />

~ u L 1 1<br />

1<br />

Energy<br />

Conta<strong>in</strong><strong>in</strong>g<br />

Interval<br />

K41: Richardson-Kolmogorov cascade picture of <strong>turbulence</strong>:<br />

u 2<br />

10 7<br />

L 2<br />

u 1<br />

Re =<br />

Re > Re > Re > .... >Re > Re ~ 100<br />

1 2 3 n cr<br />

Inertial <strong>in</strong>terval<br />

Energy Flux<br />

R 2/3<br />

Log(1/R)<br />

u n L n<br />

ν<br />

n 3<br />

L<br />

1<br />

u 3<br />

L<br />

Dissipative<br />

<strong>in</strong>terval<br />

R 2<br />

Energy<br />

Dissipation<br />

I. Universality of small scale statis-<br />

tics, isotropy, homogeneity;<br />

II. Scale-by-scale “locality” of the<br />

energy transfer;<br />

III. In the <strong>in</strong>ertial <strong>in</strong>terval of scales<br />

the only relevant parameter is the<br />

mean energy flux ε .<br />

Dimensional reason<strong>in</strong>g ⇒ V ℓ (εℓ) 1/3<br />

1. Turbulent energy of scale ℓ <strong>in</strong><br />

<strong>in</strong>ertial <strong>in</strong>terval E ℓ ρ ε 2/3 ℓ 2/3 ,<br />

2. Turnover <strong>and</strong> life time of<br />

ℓ-eddies: τ ℓ ε −1/3 ℓ 2/3<br />

3. Viscous crossover scale<br />

η ε −1/4 ν 3/4 , N ∼ Re 3/4 . . .<br />

2


Structure functions <strong>and</strong> experimental evidence for <strong>in</strong>termittency<br />

– Velocity difference across<br />

separation r gives velocity<br />

of ”r-eddies:”<br />

Longitud<strong>in</strong>al velocity structure functions S ℓ <br />

n (r) = W ℓ n r<br />

Wr = v(r, t) − v(0, t) ,<br />

– Longitud<strong>in</strong>al velocity:<br />

W ℓ r = Wr · r<br />

r<br />

∝ r ζn.<br />

In particular: S2(r) – Energy of r-eddies,<br />

S3(r) = − 4<br />

ε r (Kolmogorov-41) – Energy flux on scale r,<br />

5<br />

. S4(r) − 3 S 2 2 (r) – Deviation from the Gaussian statistics,<br />

...<br />

S2n(r)/S n 2 (r) – Statistics of very rare events<br />

S ℓ <br />

n (r) = Cn εr n/3 r ζn−n/3 , L − renormalization length .<br />

L<br />

3


Scal<strong>in</strong>g exponents µn for the energy dissipation field ε(r) = ν|∇v(r)| 2<br />

Knε(Rij) = 〈ε 11 ′ε 22 ′ . . . ε nn ′〉 ∝ R −µn , εij ≡ ε(ri) − ε(rj) , Rij ≡ ri − rj .<br />

Straightforward K41 phenomenology predicts µ2 = 8<br />

3 .<br />

Experiment: µ2 0.3 ? ⇒ Viscous anomaly:<br />

S ℓ 2 (R) =<br />

〈ε(r)〉 <br />

⇒<br />

<br />

v α kvβ k ′<br />

<br />

<br />

= (2π) 3 δ(k + k ′ )F αβ<br />

2 (k) , ⇒ K41 ⇒ F2(k) ε2/3<br />

k<br />

dk<br />

(2π) 3|1 − exp(ik · R)|2F ℓℓ<br />

2 (k) ε2/3<br />

(ε R) 2/3<br />

<br />

ν dk<br />

(2π) 3k2 F2(k) ν ε 2/3<br />

<br />

η ε −1/4 ν 4/3<br />

∞<br />

0<br />

k 2 d k<br />

1<br />

<br />

k11/3 −1<br />

11/3 .<br />

d x<br />

π2 s<strong>in</strong>2 k R x<br />

2<br />

due to UV & IR convergence of the <strong>in</strong>tegral .<br />

1/η <br />

0<br />

k 4 d k<br />

k<br />

11/3 νε2/3<br />

1/η<br />

<br />

0<br />

k 1/3 dk νε2/3<br />

⇒<br />

η4/3 ⇒ ε , ν − <strong>in</strong>dependent ⇒ the viscous anomaly!<br />

ε(r) is the viscous scale object <strong>and</strong> Knε(Rij) cannot be evaluated <strong>in</strong> the<br />

K41 manner via <strong>in</strong>ertial-<strong>in</strong>terval parameters!<br />

4


• Exact “Dissipative-bridge” relationships, (L’vov-Procaccia-96)<br />

NSE:<br />

∂v<br />

+ (v · ∇)v + ∇p = ν ∆v<br />

∂t<br />

⇒<br />

∂v<br />

∂t + P <br />

(v · ∇)v <br />

= ν ∆v<br />

P: transversal projector, Wr: r-separated velocity <strong>in</strong>crement.<br />

NSE for Wr schematically :<br />

Wr ∂Wr<br />

∂t + Wr P <br />

<br />

(Wr · ∇)Wr<br />

∂Wr<br />

∂t + P <br />

<br />

(Wr · ∇)Wr<br />

= ν ∆Wr ⇒<br />

= Wrν ∆Wr ⇒ −ν(∇Wr) ·(∇Wr) −ε(r) .<br />

Thus, <strong>in</strong>side of the average operator, 〈. . .〉, the viscous range object ε(r)<br />

can be evaluated as the <strong>in</strong>ertial range object Wr P <br />

<br />

(Wr · ∇)Wr<br />

ε(r) ⇒ W3 r<br />

r<br />

W 3 r /r:<br />

⇒ µn = n − ζ3n ⇒ µ2 = 2 − ζ6 0.3 ÷ 0.4<br />

Exact “dissipative-bridge” relations µn = n − ζ3n<br />

are known <strong>in</strong> liter-<br />

ature as a consequence of Kolmogorov “Ref<strong>in</strong>ed Similarity” hypothesis.<br />

5


• Phenomenological models of multi-<strong>scal<strong>in</strong>g</strong><br />

– Kolmogorov-62 log-normal model: ⇒ K62 conjecture by analogy of<br />

r<strong>and</strong>om break<strong>in</strong>g of stones with that of eddies: ln ε(r) is normally<br />

distributed (i.e. Gaussian statistics). This gives:<br />

<br />

<br />

µn = n − ζ3n<br />

µn = µ2<br />

2 n(n − 1) , ζn = n µ2<br />

− n(n − 3) ,<br />

3 18<br />

Experimentally reasonable for n ≤ 6 ÷ 8 ⇒ “small n” expansion.<br />

For large n: wrong, <strong>in</strong> particular, contradicts to exact statement dζn<br />

dn<br />

. (K62)<br />

≥ 0 .<br />

– β-model of anomalous <strong>scal<strong>in</strong>g</strong>: Frisch-Sulem-Nelk<strong>in</strong>-78 conjecture:<br />

Volume fraction Vr, occupied by r-eddies scales: Vr r β .<br />

Energy flux (at r-scale) εr v2 r<br />

τr<br />

Vr v3 r<br />

r<br />

r<br />

L<br />

β = ε ⇒ vr (ε r) 1/3 L<br />

L<br />

r<br />

Structure functions: Sn(r) v n r Vr = (ε r) n/3 r β(1−n/3) ⇒<br />

L<br />

ζn = n<br />

3<br />

β<br />

+ (n − 3) β − co-dimension (β − model)<br />

3<br />

β/3 .


– Multifractal model (Parisi-Frisch-85)<br />

The Euler equation:<br />

∂v<br />

∂t + P <br />

(v · ∇)v <br />

= 0 has the re<strong>scal<strong>in</strong>g</strong> symmetry<br />

R(λ, h)r = λr , R(λ, h)t = λ 1−h t , R(λ, h)v = λ h v , h – <strong>scal<strong>in</strong>g</strong> of velocity:<br />

Let “ℓ-eddy” v ℓ(r, t) be a solution of EE with characteristic scale ℓ. Then<br />

v λℓ(r, t) ≡ R(λ, h)v ℓ(r, t) = λ h v ℓ(λr, λ 1−h t)<br />

is “ λ ℓ- eddy”, an EE solution with scale λℓ. Denote as P(ℓ) the proba-<br />

bility to meet ℓ-eddy <strong>in</strong> the turbulent ensemble. One expects, that<br />

P(ℓ) is scale <strong>in</strong>variant: R(λ, h)P(ℓ) ≡ P(λℓ) = P(ℓ)λ β(h)<br />

with β(h) be<strong>in</strong>g the “probability <strong>scal<strong>in</strong>g</strong> <strong>in</strong>dex”, that depends on h. Now<br />

Sn(r) V n<br />

L<br />

hmax <br />

h m<strong>in</strong><br />

dh r<br />

L<br />

nh+β(h) ⇒ <br />

steepest decent <br />

V n<br />

r ζn L L<br />

ζn = m<strong>in</strong><br />

h [n h + β(h)]. Geometrically: β(h) ⇒ 3−D(h), D(h) - co-dimension<br />

of the “fractal support” of “h-turbulent cascade”.<br />

6


Dynamical “shell models” of multi<strong>scal<strong>in</strong>g</strong>:<br />

GOY model (Gledzer-73, Ohk<strong>in</strong>ani-Yamada-89), <strong>and</strong> (born <strong>in</strong> Israel)<br />

Sabra model (L’vov-Podivilov-Pomyalov-Procaccia-V<strong>and</strong>embroucq-98)<br />

. <strong>and</strong> many others<br />

The model equation of motion mimics<br />

NSE nonl<strong>in</strong>earity & “<strong>in</strong>teraction locality”:<br />

dun<br />

dt = i(ak n+1u ∗ n+2 u∗ n+1 + bknu ∗ n+1 u∗ n−1<br />

+ − ckn−1u ∗ n−1 u∗ n−2) − νk 2 n un + fn ,<br />

Conservation of energy E = <br />

|un| 2<br />

requires a + b + c = 0 ⇒<br />

conservation of“helicity”H = a c<br />

n<br />

n<br />

7<br />

n|un| 2 .


Kolmogorov-41 fixed po<strong>in</strong>t<br />

¯vn =<br />

1<br />

[2(a − c)] 1/3 λ n/3<br />

is unstable, giv<strong>in</strong>g<br />

a r<strong>and</strong>om evolution<br />

of the “shell velocities” ⇒<br />

ζ p<br />

<strong>Anomalous</strong> exponents <strong>in</strong><br />

2.5<br />

⇓ Sabra shell model ⇓<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Shell model<br />

p/3<br />

0 1 2 3 4 5 6 7<br />

p<br />

|u 11 |/ <br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

0.0e+00 2.0e+06 4.0e+06 6.0e+06 8.0e+06 1.0e+07<br />

timesteps<br />

<br />

<br />

Let S3(kn) ≡ Im un−1unun+1∗ . Exact:<br />

S3(kn) =<br />

1<br />

2kn(a − c)<br />

S2p(kn) ≡ <br />

|un| 2p<br />

<br />

− ɛ + δ( c<br />

a )n , ζ3 = 1 .<br />

∝ k −ζ2p<br />

n<br />

.<br />

8


“Euler” re<strong>scal<strong>in</strong>g</strong> symmetry <strong>and</strong> “self-similar” propagation of “solitons”:<br />

| u n (t)|<br />

0.015<br />

un(t) ≈ vλ −hn f <br />

(t − tn)vk0λ (1−h)n<br />

0.01<br />

0.005<br />

0<br />

2.6 2.62 2.64 2.66 2.68<br />

time<br />

shell 15<br />

shell 16<br />

shell 17<br />

shell 18<br />

shell 19<br />

shell 20<br />

, h is free. Multi<strong>scal<strong>in</strong>g</strong>!?<br />

| u n (t)|/K am (n)<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

shell 15<br />

shell 16<br />

shell 17<br />

shell 18<br />

shell 19<br />

shell 20<br />

-0.03 -0.02 -0.01 0 0.01<br />

(t-t max n )/K w (n)<br />

L’vov-02: Stability of solitons @ [h mix, hmax] & asymptotical multi<strong>scal<strong>in</strong>g</strong><br />

9


• Toward analytical theory of multi<strong>scal<strong>in</strong>g</strong>:<br />

Kraichnan-59 DIA: Direct Interaction Approximation ζ2 = 2 3 + 1 6<br />

Kraichnan-62 “Lagrangian-History” DIA: ζ2 = 2 3 < ζ2,exp 0.701<br />

0.83<br />

Bel<strong>in</strong>icher-L’vov-87 sweep<strong>in</strong>g-free approach: K41 is an “order-by-order”<br />

perturbation solution <strong>and</strong> <strong>in</strong>termittency is not perturbation phenomenon.<br />

Lebedev-L’vov-94 Telescopic Multi-Step Eddy-Interaction: non-perturbation<br />

mechanism of multi<strong>scal<strong>in</strong>g</strong> ⇒ <strong>in</strong>f<strong>in</strong>ite re-summation of ladder diagrams.<br />

Yakhot-Orszag-86-90 Straightforward Renormalization Group (RG)<br />

approach (for car design, etc.) reproduces K41 <strong>scal<strong>in</strong>g</strong><br />

Anjemyan-Antonov-Vasil’ev-89-now: modern RG ⇒ pr<strong>in</strong>cipal possibility<br />

of anomalous <strong>scal<strong>in</strong>g</strong><br />

10


Bel<strong>in</strong>icher-L’vov-Pomyalov-Procaccia-98: St<strong>and</strong>ard Gaussian decomposi-<br />

tion, like F4 ⇒ F 2 2 , destroys Euler re<strong>scal<strong>in</strong>g</strong> symmetry <strong>and</strong> fixes h = 1 3 ,<br />

(K41). Suggested h-<strong>in</strong>variant decompositions, like F4 ⇒ F 2 3 /F2, preserve<br />

the re<strong>scal<strong>in</strong>g</strong> symmetry, leave h free, <strong>and</strong> demonstrate multi<strong>scal<strong>in</strong>g</strong> <strong>in</strong> an<br />

analytical, NS based theory (<strong>in</strong> the BL-87 sweep<strong>in</strong>g-free representation)<br />

L’vov-Procaccia-2000 Analytic calculation of anomalous exps. ζn <strong>in</strong> NS<br />

<strong>turbulence</strong>: Us<strong>in</strong>g the (LP-96) fus<strong>in</strong>g rules to flush out a small parameter<br />

δ = ζ2− 2 3 0.03 <strong>in</strong> “4–eddy <strong>in</strong>teraction amplitude” <strong>in</strong> the ladder diagrams<br />

for exps. ⇒ ζn = n − 3) <br />

− δn(n 1 + 2 δ b(n − 2)<br />

3 2<br />

<br />

, δ n < 1 , n ≤ 12 .<br />

Benzi-Bifferale-Sbragaglia-Toschi-03: <strong>Anomalous</strong> <strong>scal<strong>in</strong>g</strong> <strong>in</strong> shell models:<br />

Us<strong>in</strong>g Fusion Rules <strong>and</strong> “time-dependent r<strong>and</strong>om multiplicative process”<br />

for closure of correlation function ⇒ calculation (without free parameters)<br />

of the anomalous <strong>scal<strong>in</strong>g</strong> exps. <strong>in</strong> shell models.<br />

T O BE CON T IN UED

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!