02.08.2013 Views

The Zero Range Process Condensation in non-equilibrium systems

The Zero Range Process Condensation in non-equilibrium systems

The Zero Range Process Condensation in non-equilibrium systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong><br />

<strong>Condensation</strong> <strong>in</strong> <strong>non</strong>-<strong>equilibrium</strong> <strong>systems</strong><br />

Yoni Schwarzkopf<br />

Department of Physics of Complex Systems<br />

Weizmann Institute of Science<br />

February 10, 2006<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong>


Yoni Schwarzkopf February 10, 2006<br />

Introduction<br />

• Phase transitions <strong>in</strong> <strong>equilibrium</strong> <strong>systems</strong> are well studied:<br />

BEC (Bose-E<strong>in</strong>ste<strong>in</strong> Condensates)<br />

Liquid Gas Transitions<br />

.<br />

• 1d <strong>equilibrium</strong> <strong>systems</strong> have no phase transitions (Only for strong long range<br />

<strong>in</strong>teractions)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 1


Yoni Schwarzkopf February 10, 2006<br />

Introduction (2)<br />

• Non <strong>equilibrium</strong> <strong>systems</strong> offer rich phenomena even <strong>in</strong> 1d:<br />

TAESP totally asymmetrical exclusion process<br />

• Need a simple coarse gra<strong>in</strong>ed model to offer universal <strong>in</strong>sights<br />

TAESP → <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong><br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 2


Yoni Schwarzkopf February 10, 2006<br />

Non-Equilibrium: General properties<br />

• Let C be a configuration of a system<br />

• Def<strong>in</strong>e P(C,t): the probability to be <strong>in</strong> a configuration of a system at time t.<br />

• W(C → C ′ ): transition rate between configurations<br />

• Master Equation 1 :<br />

∂P(C,t)<br />

∂t<br />

= <br />

W(C ′ → C)P(C ′ , t) − <br />

W(C → C ′ )P(C,t) (1)<br />

C ′<br />

1 Phase Transitions <strong>in</strong> Non<strong>equilibrium</strong> Systems. D. Mukamel (2000)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 3<br />

C


Yoni Schwarzkopf February 10, 2006<br />

Non-Equilibrium: General properties (2)<br />

• In thermal <strong>equilibrium</strong> we have hamiltonian H<br />

• P(C) ∼ e −E(C)/K BT<br />

• Equilibrium ⇒ detailed balance<br />

W(C ′ → C)P(C ′ ,t) = W(C → C ′ )P(C,t) ∀C, C ′<br />

• Non-Equilibrium ⇒ NO detailed balance<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 4<br />

(2)


Yoni Schwarzkopf February 10, 2006<br />

<strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> (ZRP)<br />

<strong>The</strong> ZRP is a <strong>non</strong>-l<strong>in</strong>ear stochastic model of <strong>in</strong>teract<strong>in</strong>g particles on a Lattice,<br />

hopp<strong>in</strong>g from site to site with a rate that depends solely on the occupation of the<br />

departure site.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 5


Yoni Schwarzkopf February 10, 2006<br />

<strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> (ZRP) (2)<br />

• <strong>The</strong> hopp<strong>in</strong>g rate from a lattice site ℓ with nℓ particles occupy<strong>in</strong>g it is denoted<br />

as uℓ(nℓ).<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 6


Yoni Schwarzkopf February 10, 2006<br />

<strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> (ZRP) (3)<br />

• Homogenous case - u(nℓ) <strong>in</strong>dependent of position .<br />

• R<strong>in</strong>g Topology: 1D lattice with periodic boundaries of length L and N particles.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 7


Yoni Schwarzkopf February 10, 2006<br />

<strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> (ZRP) (4)<br />

• A configuration of the lattice is def<strong>in</strong>ed by the occupation of each site<br />

C ≡ {n1, n2, ...,nL}<br />

• Def<strong>in</strong>e the probability to f<strong>in</strong>d the lattice <strong>in</strong> configuration C at time t<br />

P(C,t) ≡ P(n1,n2,...,nL,t)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 8


Yoni Schwarzkopf February 10, 2006<br />

<strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> (5)<br />

• <strong>The</strong> master equation<br />

∂P({nℓ},t)<br />

∂t<br />

=<br />

L<br />

[u(nℓ−1)P(...,nℓ−1 + 1,nℓ − 1,...) − u(nℓ)P({nℓ})]Θ(nℓ)<br />

ℓ=1<br />

• exam<strong>in</strong>e steady state configurations<br />

∂P({nℓ},t)<br />

∂t<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 9<br />

= 0


Yoni Schwarzkopf February 10, 2006<br />

Steady State <strong>in</strong> the Ca<strong>non</strong>ical Ensemble<br />

• In the ca<strong>non</strong>ical ensemble the probability distribution can be written us<strong>in</strong>g<br />

steady state s<strong>in</strong>gle site weights-f<br />

P({nℓ}) = Z −1<br />

L,N<br />

L<br />

f(nℓ)δ(<br />

ℓ=1<br />

L<br />

nℓ = N) (3)<br />

ℓ=1<br />

• <strong>The</strong> ca<strong>non</strong>ical partition function is def<strong>in</strong>ed as follows<br />

ZL,N ≡ <br />

{n ℓ}<br />

L<br />

f(nℓ)δ(<br />

ℓ=1<br />

L<br />

nℓ = N) (4)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 10<br />

ℓ=1


Yoni Schwarzkopf February 10, 2006<br />

Steady State <strong>in</strong> the Ca<strong>non</strong>ical Ensemble (2)<br />

• From the master equation<br />

f(n) =<br />

• <strong>The</strong> probability factorizes as follows<br />

P({nℓ}) =<br />

L<br />

m=1<br />

1<br />

u(m)<br />

(5)<br />

L<br />

p(nℓ) (6)<br />

• We will ma<strong>in</strong>ly be <strong>in</strong>terested <strong>in</strong> the s<strong>in</strong>gle site distribution function<br />

ℓ=1<br />

p(n) = f(n) ZL−1,N−n<br />

ZL,N<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 11<br />

(7)


Yoni Schwarzkopf February 10, 2006<br />

Grand Ca<strong>non</strong>ical Ensemble<br />

• <strong>The</strong> grand ca<strong>non</strong>ical partition function is def<strong>in</strong>ed as follows<br />

with F(λ) and f(m) def<strong>in</strong>ed as<br />

ZL(λ) = [F(λ)] L<br />

F(λ) =<br />

f(m) =<br />

∞<br />

m=0<br />

λ m f(m)<br />

m<br />

u(i) −1<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 12<br />

i=1<br />

(8)


Yoni Schwarzkopf February 10, 2006<br />

Grand Ca<strong>non</strong>ical Ensemble (2)<br />

• <strong>The</strong> fugacity λ corresponds to the steady state current < u(n) >= λ and is<br />

determ<strong>in</strong>ed through the density<br />

ρ = λ F ′ (λ)<br />

F(λ)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 13<br />

(9)


Yoni Schwarzkopf February 10, 2006<br />

Grand Ca<strong>non</strong>ical Ensemble (3)<br />

•<strong>The</strong> s<strong>in</strong>gle site probability<br />

p(n) = λ n f(n) ZL−1(λ)<br />

ZL(λ)<br />

plugg<strong>in</strong>g <strong>in</strong> the def<strong>in</strong>ition of ZL yields<br />

p(n) = λn f(n)<br />

F(λ)<br />

(10)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 14


Yoni Schwarzkopf February 10, 2006<br />

TASEP ⇒ ZRP<br />

a)<br />

b)<br />

Site:<br />

Particle:<br />

u(3)<br />

u(1)<br />

1 2 3 4<br />

u(2)<br />

u(3) u(1)<br />

u(2)<br />

1 2 3 4<br />

• In the TASEP hopp<strong>in</strong>g rates depend on <strong>in</strong>ter-particle distance<br />

5<br />

• Phase separation <strong>in</strong> the driven model (TASEP) corresponds to a macroscopic<br />

occupation <strong>in</strong> the ZRP model.<br />

2 Non<strong>equilibrium</strong> Statistical Mechanics of the <strong>Zero</strong>-<strong>Range</strong> <strong>Process</strong> and Related Models. Evans et al (2005).<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 15<br />

5<br />

2


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong> the ZRP<br />

• <strong>The</strong> density (given <strong>in</strong> eq. 9) is clearly an <strong>in</strong>creas<strong>in</strong>g function of the fugacity z.<br />

ρ = z F ′ (z)<br />

F(z) =<br />

∞<br />

m=0 m zm f(m)<br />

∞<br />

m=0 zm f(m)<br />

• <strong>The</strong> maximum density is given by tak<strong>in</strong>g z → 1<br />

ρmax = F ′ (1)<br />

F(1) =<br />

∞<br />

m=0 mf(m)<br />

∞<br />

m=0 f(m)<br />

(11)<br />

(12)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 16


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong> the ZRP (2)<br />

• A system with a f<strong>in</strong>ite maximum density (critical density) ρc has three phases:<br />

1. ρ < ρc low density phase:<br />

A fluid obey<strong>in</strong>g the steady state distribution.<br />

2. ρ = ρc critical phase:<br />

A critical fluid with diverg<strong>in</strong>g correlation lengths .<br />

3. ρ > ρc condensed phase:<br />

A condensate <strong>in</strong> coexistence with the critical fluid.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 17


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case<br />

• TASEP: the particle current out of a doma<strong>in</strong> of length n decays as 3<br />

• Consider ZRP with hopp<strong>in</strong>g rate<br />

j(n) ∼ β(1 + b/n)<br />

u(n) = 1 + b/n (13)<br />

• Interested <strong>in</strong> condensation ⇒ <strong>in</strong>vestigate large n behavior<br />

3 Novel phase-separation transition <strong>in</strong> one-dimensianal driven models.<br />

Y.Kafri, E.Lev<strong>in</strong>e, D.mukamel, G.M.Schutz and R.D.Willmann. (2002)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 18


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (2)<br />

• <strong>The</strong> steady state probability can be calculated numerically us<strong>in</strong>g a recursion<br />

relation for the partition function<br />

ZL,N =<br />

N<br />

n=0<br />

• <strong>The</strong> s<strong>in</strong>gle site probability distribution is<br />

f(n)ZL−1,N−n<br />

p(n) = f(n) ZL−1,N−n<br />

ZL,N<br />

(14)<br />

(15)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 19


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (3)<br />

ln p(n)<br />

0.001<br />

1e-06<br />

1e-09<br />

1e-12<br />

1 10 100 1000 10000<br />

ln n<br />

Figure 1: Probability distribution calculated us<strong>in</strong>g the recursion relation. For<br />

L = 1000, b = 5 and ◦, ⋄ for ρ = 1/4, 4 respectively<br />

4<br />

4 Non<strong>equilibrium</strong> Statistical Mechanics of the <strong>Zero</strong>-<strong>Range</strong> <strong>Process</strong> and Related Models. Evans et al (2005).<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 20


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (4)<br />

• large n analysis:<br />

f(n) =<br />

ln (f(n)) = −<br />

≈ −<br />

n<br />

m=1<br />

the s<strong>in</strong>gle site weight is approximately<br />

[1 + b/m] −1<br />

n<br />

m=1<br />

n<br />

m=1<br />

ln (1 + b/m)<br />

b<br />

m<br />

f(n) ≈ n −b<br />

≈ −b ln(n)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 21


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (5)<br />

• <strong>The</strong> large n probability<br />

• <strong>The</strong> density is given by<br />

ρ =<br />

p(n) ≈ λn<br />

n bp(0)<br />

N<br />

np(n) ≈<br />

n=1<br />

• <strong>The</strong> maximum density (λ → 1) behaves as<br />

ρmax ∼<br />

N<br />

n=1<br />

N<br />

n=1<br />

λ n<br />

n b−1p(0)<br />

1<br />

n b−1<br />

(16)<br />

(17)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 22


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (6)<br />

• <strong>The</strong> condensation criterion (<strong>in</strong> the L → ∞ thermodynamic limit)<br />

• <strong>The</strong> critical density is given by 5<br />

b ≤ 2 ρmax → ∞<br />

b > 2 ρmax → ρc<br />

ρc = 1<br />

b − 2<br />

5 Non<strong>equilibrium</strong> Statistical Mechanics of the <strong>Zero</strong>-<strong>Range</strong> <strong>Process</strong> and Related Models. Evans et al (2005).<br />

(18)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 23


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (7)<br />

For b > 2 the system has three phases<br />

1. low density phase:<br />

p(n) ∼ 1<br />

n<br />

where the correlation length ξ is def<strong>in</strong>ed as<br />

b exp−n/ξ<br />

ξ = 1<br />

|ln(λ)|<br />

(19)<br />

(20)<br />

For b < 2 one can easily see that ρ ≡< n > diverges hence no condensation<br />

will appear.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 24


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (8)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 2: Probability distribution for L = 1000, b = 5 and ρ = 0.25.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 25


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (9)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 3: Lattice occupation for L = 1000, b = 5 and ρ = 0.25.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 26


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (10)<br />

2 critical phase:<br />

p(n) ∼ 1<br />

nb (21)<br />

S<strong>in</strong>ce the correlation length ξ diverges for λ → ∞ the critical fluid obeys a<br />

power distribution.<br />

Such a power distribution is called a scale free distribution<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 27


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (11)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 4: Probability distribution for L = 1000, b = 5 and ρ = ρc = 1/3.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 28


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (12)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 5: Lattice occupation for L = 1000, b = 5 and ρ = ρc = 1/3.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 29


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (13)<br />

3 condensed phase:<br />

p(n) ∼ 1<br />

nb (22)<br />

A scale free distribution with a s<strong>in</strong>gle peak <strong>in</strong> the distribution centered<br />

around n = L(ρ − ρc) correspond<strong>in</strong>g to a s<strong>in</strong>gle condensate <strong>in</strong> the L → ∞<br />

thermodynamic limit.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 30


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (14)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 6: Probability distribution for L = 1000 , b = 5 and ρ = 2/3. <strong>The</strong><br />

condensate is expected to be centered at ∆ = L(ρ − ρc) = 333.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 31


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (15)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 7: Lattice occupation for L = 1000, b = 5 and ρ = 2/3. <strong>The</strong> condensate<br />

is expected to be centered at ∆ = L(ρ − ρc) = 333.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 32


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (16)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 8: <strong>The</strong> effect of the probability distribution for L = 1000 , b = 5 for<br />

different densities .<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 33


Yoni Schwarzkopf February 10, 2006<br />

Analytically solvable case (17)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 9: <strong>The</strong> effect of the probability distribution for L = 1000, b = 2.6 for<br />

different densities .<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 34


Yoni Schwarzkopf February 10, 2006<br />

Dynamics Of <strong>The</strong> Condensate<br />

• We have studied the steady state distribution for these processes<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 10: <strong>The</strong> probability distribution for L = 1000, b = 2.6 and ρ = 4.<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 35


Yoni Schwarzkopf February 10, 2006<br />

Dynamics Of <strong>The</strong> Condensate (2)<br />

• <strong>The</strong>se states are not static but dynamic<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

• Investigate the dynamical behavior of the condensate<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 36


Yoni Schwarzkopf February 10, 2006<br />

Dynamics Of <strong>The</strong> Condensate (3)<br />

• <strong>The</strong> population of the condensate is constant on average.<br />

while the fluctuations<br />

can be separated to two regimes<br />

< n >= <br />

np(n) ∼ <br />

n 1−b<br />

n<br />

< n 2 >= <br />

n 2 p(n) ∼ <br />

n 2−b<br />

2 < b ≤ 3 Anomalously large fluctuations<br />

3 < b gaussian condensate<br />

n<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 37<br />

n<br />

n


Yoni Schwarzkopf February 10, 2006<br />

• <strong>The</strong>se states are not static but dynamic<br />

• Let us look at the behavior of the condensate<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 38


Yoni Schwarzkopf February 10, 2006<br />

Dynamics Of <strong>The</strong> Condensate (4)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 11: <strong>The</strong> occupation and position of the condensate as a function of time.<br />

Simulated for L = 100, b = 4 and ρ = 2<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 39


Yoni Schwarzkopf February 10, 2006<br />

Dynamics Of <strong>The</strong> Condensate (5)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 12: <strong>The</strong> occupation and position of the condensate as a function of time.<br />

Simulated for L = 100, b = 2.6 and ρ = 4<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 40


Yoni Schwarzkopf February 10, 2006<br />

Dynamics Of <strong>The</strong> Condensate (6)<br />

• Model the condensate occupation to a random walk 6 on the segment<br />

[0,∆ = L(ρ − ρc)] us<strong>in</strong>f MF dynamics<br />

- <strong>The</strong> walker steps to the right with a rate<br />

λ =< u(n) >= <br />

u(n)p(n)<br />

In the supercritical phase the fugacity approaches 1<br />

- To the left with a rate of u(n)<br />

6 C. Godrèche and J.M.Luck Dynamics of the condensate <strong>in</strong> zero-range processes cond-mat/0505640<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 41<br />

n


Yoni Schwarzkopf February 10, 2006<br />

Dynamics Of <strong>The</strong> Condensate (7)<br />

• Evaporation and Creation times of the condensate are mapped to walk<strong>in</strong>g back<br />

and forth the <strong>in</strong>terval [0,∆].<br />

• <strong>The</strong> evaporation time scales with the system size as follows<br />

τ ∼ (ρ − ρc) b+1 L b ∼ ∆b+1<br />

L<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 42


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong>to more than one site<br />

• We would like to consider the possibility to condense <strong>in</strong>to more than one site<br />

• Restrict the accumulation of particles <strong>in</strong> a site<br />

• Such a macroscopic restriction can be achieved by add<strong>in</strong>g the term<br />

<br />

n<br />

k L<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 43


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong>to more than one site (2)<br />

• <strong>The</strong> hopp<strong>in</strong>g rate is no longer monotonically decreas<strong>in</strong>g but has a m<strong>in</strong>imum at<br />

n ∼ L k/(k+1)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 44


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong>to more than one site (3)<br />

• <strong>The</strong> new hopp<strong>in</strong>g rate is approximately unchanged for small n.<br />

<br />

<br />

<br />

u(n) = 1 + b/n + c (n/L) k<br />

<br />

<br />

<br />

<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 45


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong>to more than one site (4)<br />

• <strong>The</strong> fluid will not feel the added term and all the properties are un changed,<br />

<strong>in</strong>clud<strong>in</strong>g the critical density ρc.<br />

• This is true <strong>in</strong> the L → ∞ limit and there are f<strong>in</strong>ite size effects such as a<br />

critical fluid for b = 1.9 < 2 and L = 1000.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 46


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong>to more than one site (5)<br />

• In the super critical phase <strong>The</strong> fluid corresponds to a scale free distribution<br />

with a peak correspond<strong>in</strong>g to the condensates.<br />

• <strong>The</strong> peak is weaker than the s<strong>in</strong>gle condensate case and is algebraic.<br />

As can be seen <strong>in</strong> the figure for L = 1000, b = 2.6, c = 1, k = 5 and ρ = 4.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 47


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong>to more than one site (6)<br />

• In order to understand the dynamics we wish to analyze the scal<strong>in</strong>g of the<br />

probability distribution.<br />

• <strong>The</strong> lead<strong>in</strong>g behavior <strong>in</strong> the system size L is as follows<br />

n ∗ ∼ L k/(k+1) ln(L) 1/(k+1)<br />

p(n ∗ ) ∼ L −2k/(k+1)<br />

∆n ∗ ∼ L k/(k+1) ln(L) 1/(k+1)<br />

w ∼<br />

1/(k+1) ln(L)<br />

L k<br />

(23)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 48


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong>to more than one site (7)<br />

• <strong>The</strong> dip <strong>in</strong> the probability scales as follows<br />

nm<strong>in</strong> ∼<br />

p(nm<strong>in</strong>) ∼<br />

k/(k+1) L<br />

ln(L)<br />

− bk<br />

L k+1<br />

ln(L)<br />

(24)<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 49


Yoni Schwarzkopf February 10, 2006<br />

<strong>Condensation</strong> <strong>in</strong>to more than one site (8)<br />

• One conclusion is that these are not condensates but meso-condensates sice<br />

they scale sub-l<strong>in</strong>early with the system size.<br />

• Another conclusion the number of meso-condensates Ncon ∼ w L ∼ L 1/(k+1)<br />

• <strong>The</strong> number of meso-condensates diverges with the system size<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 50


Yoni Schwarzkopf February 10, 2006<br />

Conclusions<br />

• We discussed the general properties of the ZRP and condensation.<br />

• We solved for the case of condensation for an analytical hopp<strong>in</strong>g rate<br />

• We discussed the possibility of condensation <strong>in</strong>to more than one site<br />

• Thank you for your time....<br />

<strong>The</strong> <strong>Zero</strong> <strong>Range</strong> <strong>Process</strong> 51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!