02.08.2013 Views

Intermittency and Anomalous scaling in turbulence - Victor S. L'vov ...

Intermittency and Anomalous scaling in turbulence - Victor S. L'vov ...

Intermittency and Anomalous scaling in turbulence - Victor S. L'vov ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

• Lectures 13 <strong>Intermittency</strong> <strong>and</strong> <strong>Anomalous</strong> Scal<strong>in</strong>g<br />

• Velocity structure functions <strong>and</strong> experimental evidence<br />

for <strong>in</strong>termittency & multi<strong>scal<strong>in</strong>g</strong><br />

• Dissipative <strong>scal<strong>in</strong>g</strong> exponents µn <strong>and</strong> “Dissipative” bridge<br />

• Phenomenological models of multi-<strong>scal<strong>in</strong>g</strong>: from K62 Log-normal<br />

model to β− <strong>and</strong> multifractal model<br />

• Dynamical “shell models” of multi<strong>scal<strong>in</strong>g</strong>: GOY, Sabra <strong>and</strong> others<br />

• Toward analytical theory of multi<strong>scal<strong>in</strong>g</strong><br />

1


Log E(R)<br />

Re =<br />

ν<br />

~ u L 1 1<br />

1<br />

Energy<br />

Conta<strong>in</strong><strong>in</strong>g<br />

Interval<br />

K41: Richardson-Kolmogorov cascade picture of <strong>turbulence</strong>:<br />

u 2<br />

10 7<br />

L 2<br />

u 1<br />

Re =<br />

Re > Re > Re > .... >Re > Re ~ 100<br />

1 2 3 n cr<br />

Inertial <strong>in</strong>terval<br />

Energy Flux<br />

R 2/3<br />

Log(1/R)<br />

u n L n<br />

ν<br />

n 3<br />

L<br />

1<br />

u 3<br />

L<br />

Dissipative<br />

<strong>in</strong>terval<br />

R 2<br />

Energy<br />

Dissipation<br />

I. Universality of small scale statis-<br />

tics, isotropy, homogeneity;<br />

II. Scale-by-scale “locality” of the<br />

energy transfer;<br />

III. In the <strong>in</strong>ertial <strong>in</strong>terval of scales<br />

the only relevant parameter is the<br />

mean energy flux ε .<br />

Dimensional reason<strong>in</strong>g ⇒ V ℓ (εℓ) 1/3<br />

1. Turbulent energy of scale ℓ <strong>in</strong><br />

<strong>in</strong>ertial <strong>in</strong>terval E ℓ ρ ε 2/3 ℓ 2/3 ,<br />

2. Turnover <strong>and</strong> life time of<br />

ℓ-eddies: τ ℓ ε −1/3 ℓ 2/3<br />

3. Viscous crossover scale<br />

η ε −1/4 ν 3/4 , N ∼ Re 3/4 . . .<br />

2


Structure functions <strong>and</strong> experimental evidence for <strong>in</strong>termittency<br />

– Velocity difference across<br />

separation r gives velocity<br />

of ”r-eddies:”<br />

Longitud<strong>in</strong>al velocity structure functions S ℓ <br />

n (r) = W ℓ n r<br />

Wr = v(r, t) − v(0, t) ,<br />

– Longitud<strong>in</strong>al velocity:<br />

W ℓ r = Wr · r<br />

r<br />

∝ r ζn.<br />

In particular: S2(r) – Energy of r-eddies,<br />

S3(r) = − 4<br />

ε r (Kolmogorov-41) – Energy flux on scale r,<br />

5<br />

. S4(r) − 3 S 2 2 (r) – Deviation from the Gaussian statistics,<br />

...<br />

S2n(r)/S n 2 (r) – Statistics of very rare events<br />

S ℓ <br />

n (r) = Cn εr n/3 r ζn−n/3 , L − renormalization length .<br />

L<br />

3


Scal<strong>in</strong>g exponents µn for the energy dissipation field ε(r) = ν|∇v(r)| 2<br />

Knε(Rij) = 〈ε 11 ′ε 22 ′ . . . ε nn ′〉 ∝ R −µn , εij ≡ ε(ri) − ε(rj) , Rij ≡ ri − rj .<br />

Straightforward K41 phenomenology predicts µ2 = 8<br />

3 .<br />

Experiment: µ2 0.3 ? ⇒ Viscous anomaly:<br />

S ℓ 2 (R) =<br />

〈ε(r)〉 <br />

⇒<br />

<br />

v α kvβ k ′<br />

<br />

<br />

= (2π) 3 δ(k + k ′ )F αβ<br />

2 (k) , ⇒ K41 ⇒ F2(k) ε2/3<br />

k<br />

dk<br />

(2π) 3|1 − exp(ik · R)|2F ℓℓ<br />

2 (k) ε2/3<br />

(ε R) 2/3<br />

<br />

ν dk<br />

(2π) 3k2 F2(k) ν ε 2/3<br />

<br />

η ε −1/4 ν 4/3<br />

∞<br />

0<br />

k 2 d k<br />

1<br />

<br />

k11/3 −1<br />

11/3 .<br />

d x<br />

π2 s<strong>in</strong>2 k R x<br />

2<br />

due to UV & IR convergence of the <strong>in</strong>tegral .<br />

1/η <br />

0<br />

k 4 d k<br />

k<br />

11/3 νε2/3<br />

1/η<br />

<br />

0<br />

k 1/3 dk νε2/3<br />

⇒<br />

η4/3 ⇒ ε , ν − <strong>in</strong>dependent ⇒ the viscous anomaly!<br />

ε(r) is the viscous scale object <strong>and</strong> Knε(Rij) cannot be evaluated <strong>in</strong> the<br />

K41 manner via <strong>in</strong>ertial-<strong>in</strong>terval parameters!<br />

4


• Exact “Dissipative-bridge” relationships, (L’vov-Procaccia-96)<br />

NSE:<br />

∂v<br />

+ (v · ∇)v + ∇p = ν ∆v<br />

∂t<br />

⇒<br />

∂v<br />

∂t + P <br />

(v · ∇)v <br />

= ν ∆v<br />

P: transversal projector, Wr: r-separated velocity <strong>in</strong>crement.<br />

NSE for Wr schematically :<br />

Wr ∂Wr<br />

∂t + Wr P <br />

<br />

(Wr · ∇)Wr<br />

∂Wr<br />

∂t + P <br />

<br />

(Wr · ∇)Wr<br />

= ν ∆Wr ⇒<br />

= Wrν ∆Wr ⇒ −ν(∇Wr) ·(∇Wr) −ε(r) .<br />

Thus, <strong>in</strong>side of the average operator, 〈. . .〉, the viscous range object ε(r)<br />

can be evaluated as the <strong>in</strong>ertial range object Wr P <br />

<br />

(Wr · ∇)Wr<br />

ε(r) ⇒ W3 r<br />

r<br />

W 3 r /r:<br />

⇒ µn = n − ζ3n ⇒ µ2 = 2 − ζ6 0.3 ÷ 0.4<br />

Exact “dissipative-bridge” relations µn = n − ζ3n<br />

are known <strong>in</strong> liter-<br />

ature as a consequence of Kolmogorov “Ref<strong>in</strong>ed Similarity” hypothesis.<br />

5


• Phenomenological models of multi-<strong>scal<strong>in</strong>g</strong><br />

– Kolmogorov-62 log-normal model: ⇒ K62 conjecture by analogy of<br />

r<strong>and</strong>om break<strong>in</strong>g of stones with that of eddies: ln ε(r) is normally<br />

distributed (i.e. Gaussian statistics). This gives:<br />

<br />

<br />

µn = n − ζ3n<br />

µn = µ2<br />

2 n(n − 1) , ζn = n µ2<br />

− n(n − 3) ,<br />

3 18<br />

Experimentally reasonable for n ≤ 6 ÷ 8 ⇒ “small n” expansion.<br />

For large n: wrong, <strong>in</strong> particular, contradicts to exact statement dζn<br />

dn<br />

. (K62)<br />

≥ 0 .<br />

– β-model of anomalous <strong>scal<strong>in</strong>g</strong>: Frisch-Sulem-Nelk<strong>in</strong>-78 conjecture:<br />

Volume fraction Vr, occupied by r-eddies scales: Vr r β .<br />

Energy flux (at r-scale) εr v2 r<br />

τr<br />

Vr v3 r<br />

r<br />

r<br />

L<br />

β = ε ⇒ vr (ε r) 1/3 L<br />

L<br />

r<br />

Structure functions: Sn(r) v n r Vr = (ε r) n/3 r β(1−n/3) ⇒<br />

L<br />

ζn = n<br />

3<br />

β<br />

+ (n − 3) β − co-dimension (β − model)<br />

3<br />

β/3 .


– Multifractal model (Parisi-Frisch-85)<br />

The Euler equation:<br />

∂v<br />

∂t + P <br />

(v · ∇)v <br />

= 0 has the re<strong>scal<strong>in</strong>g</strong> symmetry<br />

R(λ, h)r = λr , R(λ, h)t = λ 1−h t , R(λ, h)v = λ h v , h – <strong>scal<strong>in</strong>g</strong> of velocity:<br />

Let “ℓ-eddy” v ℓ(r, t) be a solution of EE with characteristic scale ℓ. Then<br />

v λℓ(r, t) ≡ R(λ, h)v ℓ(r, t) = λ h v ℓ(λr, λ 1−h t)<br />

is “ λ ℓ- eddy”, an EE solution with scale λℓ. Denote as P(ℓ) the proba-<br />

bility to meet ℓ-eddy <strong>in</strong> the turbulent ensemble. One expects, that<br />

P(ℓ) is scale <strong>in</strong>variant: R(λ, h)P(ℓ) ≡ P(λℓ) = P(ℓ)λ β(h)<br />

with β(h) be<strong>in</strong>g the “probability <strong>scal<strong>in</strong>g</strong> <strong>in</strong>dex”, that depends on h. Now<br />

Sn(r) V n<br />

L<br />

hmax <br />

h m<strong>in</strong><br />

dh r<br />

L<br />

nh+β(h) ⇒ <br />

steepest decent <br />

V n<br />

r ζn L L<br />

ζn = m<strong>in</strong><br />

h [n h + β(h)]. Geometrically: β(h) ⇒ 3−D(h), D(h) - co-dimension<br />

of the “fractal support” of “h-turbulent cascade”.<br />

6


Dynamical “shell models” of multi<strong>scal<strong>in</strong>g</strong>:<br />

GOY model (Gledzer-73, Ohk<strong>in</strong>ani-Yamada-89), <strong>and</strong> (born <strong>in</strong> Israel)<br />

Sabra model (L’vov-Podivilov-Pomyalov-Procaccia-V<strong>and</strong>embroucq-98)<br />

. <strong>and</strong> many others<br />

The model equation of motion mimics<br />

NSE nonl<strong>in</strong>earity & “<strong>in</strong>teraction locality”:<br />

dun<br />

dt = i(ak n+1u ∗ n+2 u∗ n+1 + bknu ∗ n+1 u∗ n−1<br />

+ − ckn−1u ∗ n−1 u∗ n−2) − νk 2 n un + fn ,<br />

Conservation of energy E = <br />

|un| 2<br />

requires a + b + c = 0 ⇒<br />

conservation of“helicity”H = a c<br />

n<br />

n<br />

7<br />

n|un| 2 .


Kolmogorov-41 fixed po<strong>in</strong>t<br />

¯vn =<br />

1<br />

[2(a − c)] 1/3 λ n/3<br />

is unstable, giv<strong>in</strong>g<br />

a r<strong>and</strong>om evolution<br />

of the “shell velocities” ⇒<br />

ζ p<br />

<strong>Anomalous</strong> exponents <strong>in</strong><br />

2.5<br />

⇓ Sabra shell model ⇓<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Shell model<br />

p/3<br />

0 1 2 3 4 5 6 7<br />

p<br />

|u 11 |/ <br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

0.0e+00 2.0e+06 4.0e+06 6.0e+06 8.0e+06 1.0e+07<br />

timesteps<br />

<br />

<br />

Let S3(kn) ≡ Im un−1unun+1∗ . Exact:<br />

S3(kn) =<br />

1<br />

2kn(a − c)<br />

S2p(kn) ≡ <br />

|un| 2p<br />

<br />

− ɛ + δ( c<br />

a )n , ζ3 = 1 .<br />

∝ k −ζ2p<br />

n<br />

.<br />

8


“Euler” re<strong>scal<strong>in</strong>g</strong> symmetry <strong>and</strong> “self-similar” propagation of “solitons”:<br />

| u n (t)|<br />

0.015<br />

un(t) ≈ vλ −hn f <br />

(t − tn)vk0λ (1−h)n<br />

0.01<br />

0.005<br />

0<br />

2.6 2.62 2.64 2.66 2.68<br />

time<br />

shell 15<br />

shell 16<br />

shell 17<br />

shell 18<br />

shell 19<br />

shell 20<br />

, h is free. Multi<strong>scal<strong>in</strong>g</strong>!?<br />

| u n (t)|/K am (n)<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

shell 15<br />

shell 16<br />

shell 17<br />

shell 18<br />

shell 19<br />

shell 20<br />

-0.03 -0.02 -0.01 0 0.01<br />

(t-t max n )/K w (n)<br />

L’vov-02: Stability of solitons @ [h mix, hmax] & asymptotical multi<strong>scal<strong>in</strong>g</strong><br />

9


• Toward analytical theory of multi<strong>scal<strong>in</strong>g</strong>:<br />

Kraichnan-59 DIA: Direct Interaction Approximation ζ2 = 2 3 + 1 6<br />

Kraichnan-62 “Lagrangian-History” DIA: ζ2 = 2 3 < ζ2,exp 0.701<br />

0.83<br />

Bel<strong>in</strong>icher-L’vov-87 sweep<strong>in</strong>g-free approach: K41 is an “order-by-order”<br />

perturbation solution <strong>and</strong> <strong>in</strong>termittency is not perturbation phenomenon.<br />

Lebedev-L’vov-94 Telescopic Multi-Step Eddy-Interaction: non-perturbation<br />

mechanism of multi<strong>scal<strong>in</strong>g</strong> ⇒ <strong>in</strong>f<strong>in</strong>ite re-summation of ladder diagrams.<br />

Yakhot-Orszag-86-90 Straightforward Renormalization Group (RG)<br />

approach (for car design, etc.) reproduces K41 <strong>scal<strong>in</strong>g</strong><br />

Anjemyan-Antonov-Vasil’ev-89-now: modern RG ⇒ pr<strong>in</strong>cipal possibility<br />

of anomalous <strong>scal<strong>in</strong>g</strong><br />

10


Bel<strong>in</strong>icher-L’vov-Pomyalov-Procaccia-98: St<strong>and</strong>ard Gaussian decomposi-<br />

tion, like F4 ⇒ F 2 2 , destroys Euler re<strong>scal<strong>in</strong>g</strong> symmetry <strong>and</strong> fixes h = 1 3 ,<br />

(K41). Suggested h-<strong>in</strong>variant decompositions, like F4 ⇒ F 2 3 /F2, preserve<br />

the re<strong>scal<strong>in</strong>g</strong> symmetry, leave h free, <strong>and</strong> demonstrate multi<strong>scal<strong>in</strong>g</strong> <strong>in</strong> an<br />

analytical, NS based theory (<strong>in</strong> the BL-87 sweep<strong>in</strong>g-free representation)<br />

L’vov-Procaccia-2000 Analytic calculation of anomalous exps. ζn <strong>in</strong> NS<br />

<strong>turbulence</strong>: Us<strong>in</strong>g the (LP-96) fus<strong>in</strong>g rules to flush out a small parameter<br />

δ = ζ2− 2 3 0.03 <strong>in</strong> “4–eddy <strong>in</strong>teraction amplitude” <strong>in</strong> the ladder diagrams<br />

for exps. ⇒ ζn = n − 3) <br />

− δn(n 1 + 2 δ b(n − 2)<br />

3 2<br />

<br />

, δ n < 1 , n ≤ 12 .<br />

Benzi-Bifferale-Sbragaglia-Toschi-03: <strong>Anomalous</strong> <strong>scal<strong>in</strong>g</strong> <strong>in</strong> shell models:<br />

Us<strong>in</strong>g Fusion Rules <strong>and</strong> “time-dependent r<strong>and</strong>om multiplicative process”<br />

for closure of correlation function ⇒ calculation (without free parameters)<br />

of the anomalous <strong>scal<strong>in</strong>g</strong> exps. <strong>in</strong> shell models.<br />

T O BE CON T IN UED

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!