03.08.2013 Views

ITU-T G.719: A New Low-Complexity Full-Band (20KHZ ... - Polycom

ITU-T G.719: A New Low-Complexity Full-Band (20KHZ ... - Polycom

ITU-T G.719: A New Low-Complexity Full-Band (20KHZ ... - Polycom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 18-21, 2009, <strong>New</strong> Paltz, NY<br />

was that the <strong>G.719</strong> candidate codec at 32, 48, and 64kbps be<br />

proven “Not Worse Than” the reference codec at 40, 56, and 64<br />

kbps, respectively, with a 95% statistical confidence level. In<br />

addition, the <strong>G.719</strong> candidate codec at 64 kbps was also tested<br />

against the G.722.1C codecs at 48 kbps for Experiment 2.<br />

The subjective test results for the <strong>G.719</strong> codec are shown in<br />

Figures 3-6. Statistical analysis of the results showed that the<br />

<strong>G.719</strong> codec met all performance requirements specified for the<br />

subjective Optimization/Characterization test. For experiment 1<br />

the <strong>G.719</strong> codec was better than the reference codec at all bit<br />

rates in both languages. For experiment 2 the <strong>G.719</strong> codec is<br />

better than the reference codec at the lowest bit rate for all the<br />

items and at the two other bitrates for most of the items.<br />

An additional subjective listening test for the <strong>G.719</strong> codec<br />

was conducted later to evaluate the quality of the codec at rates<br />

higher than those described in the <strong>ITU</strong>-T test plan. Because the<br />

quality expectation of the codec at these high rates is high, a<br />

pre-selection of critical items, for which the quality at the lower<br />

bitrate range was most degraded, was conducted prior to testing.<br />

The test results are shown in Figure 7. It has been proven that<br />

transparency was reached for critical material at 128 kbps.<br />

DMOS<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Ref 40kbps<br />

<strong>G.719</strong> 32kbps<br />

Ref 56kbps<br />

<strong>G.719</strong> 48kbps<br />

Ref 64kbps<br />

Speech (North American English)<br />

<strong>G.719</strong> 64kbps<br />

Ref 40kbps<br />

<strong>G.719</strong> 32kbps<br />

Ref 56kbps<br />

<strong>G.719</strong> 48kbps<br />

Ref 64kbps<br />

Clean Reverberant Reverberant and Noisy<br />

Figure 3: Subjective test results – Experiment 1 (English).<br />

DMOS<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Ref 40kbps<br />

<strong>G.719</strong> 32kbps<br />

Ref 56kbps<br />

<strong>G.719</strong> 48kbps<br />

Ref 64kbps<br />

<strong>G.719</strong> 64kbps<br />

Speech (French)<br />

Ref 40kbps<br />

<strong>G.719</strong> 32kbps<br />

Ref 56kbps<br />

<strong>G.719</strong> 48kbps<br />

Ref 64kbps<br />

Clean Reverberant Reverberant and Noisy<br />

Figure 4: Subjective test results – Experiment 1 (French).<br />

DMOS<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Ref<br />

40kbps<br />

<strong>G.719</strong> 64kbps<br />

<strong>G.719</strong> 64kbps<br />

Ref 40kbps<br />

Ref 40kbps<br />

Mixed-content and Music (North American English)<br />

<strong>G.719</strong><br />

32kbps<br />

Ref<br />

56kbps<br />

<strong>G.719</strong><br />

48kbps<br />

Ref<br />

64kbps<br />

<strong>G.719</strong><br />

64kbps<br />

<strong>G.719</strong> 32kbps<br />

<strong>G.719</strong> 32kbps<br />

Ref 56kbps<br />

Ref 56kbps<br />

<strong>G.719</strong> 48kbps<br />

<strong>G.719</strong> 48kbps<br />

G.722.1C<br />

48kbps<br />

Ref 64kbps<br />

Ref 64kbps<br />

<strong>G.719</strong> 64kbps<br />

<strong>G.719</strong> 64kbps<br />

<strong>G.719</strong><br />

64kbps<br />

Figure 5: Subjective test results – Experiment 2 (English).<br />

268<br />

DMOS<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Ref<br />

40kbps<br />

<strong>G.719</strong><br />

32kbps<br />

Mixed-content and Music (Spanish)<br />

Ref<br />

56kbps<br />

<strong>G.719</strong><br />

48kbps<br />

Ref<br />

64kbps<br />

<strong>G.719</strong><br />

64kbps<br />

G.722.1C<br />

48kbps<br />

<strong>G.719</strong><br />

64kbps<br />

Figure 6: Subjective test results – Experiment 2 (Spanish).<br />

5.5<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Source<br />

<strong>G.719</strong><br />

32kbps<br />

Source<br />

Additional Subjective Test Results (DMOS)<br />

<strong>G.719</strong><br />

48kbps<br />

Source<br />

<strong>G.719</strong><br />

64kbps<br />

Source<br />

<strong>G.719</strong><br />

80kbps<br />

Source<br />

<strong>G.719</strong><br />

96kbps<br />

Source<br />

<strong>G.719</strong><br />

112kbps<br />

Figure 7: Additional subjective test results.<br />

7. CONCLUSION<br />

This paper has presented the 20 kHz full-band audio coding<br />

algorithm and subjective Optimization/Characterization test<br />

results of <strong>ITU</strong>-T Recommendation <strong>G.719</strong>. The <strong>G.719</strong> codec<br />

features very high audio quality, extremely low computational<br />

complexity, and low algorithmic delay compared to other stateof-the-art<br />

audio coding codecs. Subjective test results show that<br />

the <strong>G.719</strong> codec achieves transparent audio quality at 128 kbps.<br />

The main intended applications for this codec are<br />

videoconferencing and teleconferencing, as well as Internet<br />

streaming.<br />

8. REFERENCES<br />

[1] <strong>ITU</strong>-T Recommendation <strong>G.719</strong>, “<strong>Low</strong>-complexity fullband<br />

audio coding for high-quality conversational<br />

applications,” June 2008.<br />

[2] H. S. Malvar, Signal Processing with Lapped Transforms.<br />

Norwood, MA: Artech House, 1992.<br />

[3] M. Xie, “Lattice Vector Quantization and its Applications<br />

in Speech and Audio Coding,” in Speech Processing in<br />

Modern Communication: Challenges and Perspectives.<br />

Springer, To appear.<br />

[4] J. H. Conway and N. J. A. Sloane, Sphere Packings,<br />

Lattices and Groups. Springer-Verlag, <strong>New</strong> York, 1988.<br />

[5] C. Lamblin and J.-P. Adoul, “Algorithme de quantification<br />

vectorielle sphérique à partir du réseau de Gosset d’ordre<br />

8,” Annales des Télécommunications, pp. 172-186, 1988.<br />

[6] <strong>ITU</strong>-T Recommendation G.191, “Software tools for speech<br />

and audio coding standardization,” Sept. 2005.<br />

[7] http://sourceforge.net/project/showfiles.php?group_id=290<br />

&package_id=309.<br />

Source<br />

<strong>G.719</strong><br />

128kbps

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!