05.08.2013 Views

A Novel Defect Inspection Method for the TFT-LCD Image Based on ...

A Novel Defect Inspection Method for the TFT-LCD Image Based on ...

A Novel Defect Inspection Method for the TFT-LCD Image Based on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <str<strong>on</strong>g>Novel</str<strong>on</strong>g> <str<strong>on</strong>g>Defect</str<strong>on</strong>g> <str<strong>on</strong>g>Inspecti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Method</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Image</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> Human Visual System<br />

Tae-Eun S<strong>on</strong>g 1 , Se-Yun Kim 2 , J<strong>on</strong>g-Hwan Kim 3 , and Kil-Houm Park 4<br />

1 Department Name, University Name, City, State, Country<br />

2 Department Name, Company / Instituti<strong>on</strong> Name, City, State, Country<br />

Abstract - The <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image has n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

brightness that is <str<strong>on</strong>g>the</str<strong>on</strong>g> major difficulty of finding <str<strong>on</strong>g>the</str<strong>on</strong>g> defect<br />

regi<strong>on</strong> called Mura. In order to facilitate Mura detecti<strong>on</strong>,<br />

globally large-varying background signal has to be leveled<br />

and also Mura signal has to be enlarged. In this paper,<br />

Mura signal magnificati<strong>on</strong> and background signal<br />

flattening methods by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of adapted c<strong>on</strong>trast sensitivity<br />

functi<strong>on</strong>(ACSF) in DCT domain and polynomial<br />

regressi<strong>on</strong>(PR) are proposed. In <str<strong>on</strong>g>the</str<strong>on</strong>g> enhanced image, Trimodal<br />

thresholding segmentati<strong>on</strong> technique is used <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

finding both Dark and White Mura at <strong>on</strong>ce. To leave out<br />

reliable defect, false regi<strong>on</strong> eliminati<strong>on</strong> algorithms based<br />

<strong>on</strong> HVS (Human Visual System) are also proposed. The<br />

experimental results prove that <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed algorithm is<br />

novel enhancement method and it can be applicable to real<br />

automated inspecti<strong>on</strong> system.<br />

Keywords: <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> (Thin Film Transistor-Liquid Crystal<br />

Display), Polynomial Regressi<strong>on</strong>, Discrete Cosine<br />

Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m, Human Visual System, C<strong>on</strong>trast Sensitivity<br />

Functi<strong>on</strong>.<br />

1 Introducti<strong>on</strong><br />

Recently, <str<strong>on</strong>g>the</str<strong>on</strong>g> thin film transistor liquid crystal displays<br />

(<str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g>s) has become <str<strong>on</strong>g>the</str<strong>on</strong>g> major flat panel displays<br />

(FPDs) <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir volume and versatile usage [1]. The more<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> market grows <str<strong>on</strong>g>the</str<strong>on</strong>g> more need <str<strong>on</strong>g>for</str<strong>on</strong>g> automated<br />

inspecti<strong>on</strong> systems exist. However most of <str<strong>on</strong>g>the</str<strong>on</strong>g> final<br />

inspecti<strong>on</strong>s of <str<strong>on</strong>g>LCD</str<strong>on</strong>g> panels have been d<strong>on</strong>e by human<br />

observers. Human visi<strong>on</strong>-based inspecti<strong>on</strong> [2] systems have<br />

some disadvantages that each observer tends to have<br />

subjective defect decisi<strong>on</strong> levels which can vary according<br />

to time and physical c<strong>on</strong>diti<strong>on</strong>s. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, in order to<br />

increase <str<strong>on</strong>g>the</str<strong>on</strong>g> productivity and reliability of products<br />

automated inspecti<strong>on</strong> systems are highly required.<br />

The <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> panel images have n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m illuminati<strong>on</strong><br />

variati<strong>on</strong>s due to imperfecti<strong>on</strong> of light source and unequal<br />

liquid crystal distributi<strong>on</strong> and so <strong>on</strong>. The <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> panels<br />

do not have a light source, <str<strong>on</strong>g>the</str<strong>on</strong>g>y need an external light source<br />

called back light unit (BLU). Despite every ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t to make<br />

BLU as an ideal plane light source, BLU still allow<br />

illuminati<strong>on</strong> variati<strong>on</strong>s measured by luminance uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mity<br />

(LU) as more than 80% [3]. The LU is expressed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following equati<strong>on</strong>:<br />

Luminance<br />

L min<br />

Uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mity (LU) 100<br />

(1)<br />

L<br />

where L and max L are <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum and minimum<br />

min<br />

luminance values under <str<strong>on</strong>g>the</str<strong>on</strong>g> predefined positi<strong>on</strong>s of a <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<br />

<str<strong>on</strong>g>LCD</str<strong>on</strong>g> panel.<br />

Generally, <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> signal is composed of slowly varying<br />

background signal, noise signal and defect called as Mura<br />

signal as shown in Fig.1. The background signal and noise<br />

signal make it difficult to find Muras in <str<strong>on</strong>g>the</str<strong>on</strong>g> observed signal<br />

(Seen). So, in order to help detecting Muras, we should<br />

flatten background signal, reduce noise and enlarge Mura<br />

signal.<br />

max<br />

Fig. 1. The line profiles of <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image<br />

The most effective and useful approach to facilitate Mura<br />

segmentati<strong>on</strong> is background signal flattening by using<br />

polynomial approximati<strong>on</strong> (PA)[4] or B-spline[5]. PA or Bspline<br />

seeks <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> best fitting surface or plane which best<br />

describes <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> signal in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense of minimizing<br />

mean square error. But PA or B-spline has a tendency to<br />

reduce somewhat of <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> background<br />

signal and Mura signal. That makes it difficult to find Muras<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> Muras get fainter.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r approach to easy Mura segmentati<strong>on</strong> is random<br />

noise eliminati<strong>on</strong>. Denoising method such as various


Wavelet Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m domain research has <str<strong>on</strong>g>the</str<strong>on</strong>g> best results in<br />

case of precise noise modeling [6][7]. There is a problem in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> random noise modeling because <str<strong>on</strong>g>the</str<strong>on</strong>g> random noise is<br />

expressed by camera noise, camera distorti<strong>on</strong> and random<br />

noise, etc.<br />

And <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r method to help Mura segmentati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

enlargement of Mura signal. If <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency band of Mura<br />

signal could be found exactly, we could emphasize it by<br />

magnifying this band. Generally, because <str<strong>on</strong>g>the</str<strong>on</strong>g> signal affects<br />

all frequency spectrums, finding precise cut-off frequency of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Mura signal is impossible. But from <str<strong>on</strong>g>the</str<strong>on</strong>g> human visual<br />

system point of view, we can emphasize more visible<br />

frequency given by <str<strong>on</strong>g>the</str<strong>on</strong>g> CSF experiment [8-10]. One of<br />

major HVS characteristics is that <str<strong>on</strong>g>the</str<strong>on</strong>g> HVS has different<br />

frequency sensitivity. Adapted CSF is proposed to visualize<br />

more salient object such as Muras.<br />

In this paper, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image defect detecti<strong>on</strong><br />

algorithm based <strong>on</strong> HVS is proposed. The PR is used <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

background signal flattening while <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed ACSF are<br />

used to enlarge Mura signal. Then tri-modal thresholding,<br />

which determines defect candidate as out of mean value, is<br />

employed <str<strong>on</strong>g>for</str<strong>on</strong>g> Mura segmentati<strong>on</strong>. Finally, false positive<br />

defects are eliminated based <strong>on</strong> HVS.<br />

2 The Characteristics of <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> <str<strong>on</strong>g>Image</str<strong>on</strong>g><br />

Inherently <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> panel is n<strong>on</strong>-light emitting<br />

display devices, thus <str<strong>on</strong>g>the</str<strong>on</strong>g>y need an external light source<br />

called BLU. There have been many ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts to make BLU as<br />

ideal plane light sources so that <str<strong>on</strong>g>the</str<strong>on</strong>g> illuminati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fr<strong>on</strong>tal panel can be uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m [7]. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> BLU is placed<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> panel border, <str<strong>on</strong>g>the</str<strong>on</strong>g> light from <str<strong>on</strong>g>the</str<strong>on</strong>g> source would decrease<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> distance. To make <str<strong>on</strong>g>the</str<strong>on</strong>g> light more uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly<br />

distributed several additi<strong>on</strong>al sheets such as diffuser sheet,<br />

horiz<strong>on</strong>tal and vertical prism sheets are required. Through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se sheets a light can be diffused and be c<strong>on</strong>centrated.<br />

Examples of a BLU structure and highlighted n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

light transmissi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> source are shown in Fig. 2.<br />

(a)<br />

Gray Level<br />

(b)<br />

Fig. 2. The structure of a BLU and light transmissi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> light source<br />

(a) The BLU structure (b) light emitting from a light source.<br />

(a)<br />

(b)<br />

Line Profiles<br />

200 Line<br />

183 Line<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

0 50 100 150 200 250<br />

Positi<strong>on</strong><br />

(c)<br />

Fig.3. Sample <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image with Mura defects and its characteristics.<br />

(a) The <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image with Mura defects, (b) signal generated <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g><br />

image having Muras of various size and strength and (c) line profiles of<br />

dotted circle and arrow.


The light is diffused and c<strong>on</strong>centrated through <str<strong>on</strong>g>the</str<strong>on</strong>g>se sheets.<br />

But <str<strong>on</strong>g>the</str<strong>on</strong>g>re still exist some illuminati<strong>on</strong> variati<strong>on</strong>s measured<br />

by LU of more than 80%. Above 80% LU is c<strong>on</strong>sidered<br />

acceptable in industry. The luminance values <str<strong>on</strong>g>for</str<strong>on</strong>g> calculating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> LU are acquired from <str<strong>on</strong>g>the</str<strong>on</strong>g> predetermined positi<strong>on</strong>s.<br />

Mura defects are darker or brighter than <str<strong>on</strong>g>the</str<strong>on</strong>g>ir neighboring<br />

normal regi<strong>on</strong>s in <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> images. They have various<br />

shapes and strengths according to <str<strong>on</strong>g>the</str<strong>on</strong>g> cause of generati<strong>on</strong>.<br />

Some of <str<strong>on</strong>g>the</str<strong>on</strong>g>m occur when unexpected <str<strong>on</strong>g>for</str<strong>on</strong>g>eign materials are<br />

inserted into <str<strong>on</strong>g>the</str<strong>on</strong>g> layers in a display panel and <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be<br />

generated due to n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m liquid crystal distributi<strong>on</strong>, air<br />

inserti<strong>on</strong>, and partial press by external <str<strong>on</strong>g>for</str<strong>on</strong>g>ces, etc [8].<br />

Because of <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m illuminati<strong>on</strong> characteristic of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

background signal, dark Mura can be brighter than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

normal background regi<strong>on</strong>. Two of our experimental <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<br />

<str<strong>on</strong>g>LCD</str<strong>on</strong>g> panel images are shown in Fig. 3(a), (b). Fig. 3(a)<br />

includes 4 White and Dark Mura defects and Fig. 3(b) has<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> signal generated Muras with various size and strength.<br />

The positi<strong>on</strong> of Muras are encircled or marked with arrows.<br />

The line profile of dotted circle and arrow is shown in Fig.3<br />

(c). From <str<strong>on</strong>g>the</str<strong>on</strong>g>se figures, <str<strong>on</strong>g>the</str<strong>on</strong>g> illuminati<strong>on</strong> of <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image<br />

shows local and global variati<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time.<br />

3 Proposed <str<strong>on</strong>g>Defect</str<strong>on</strong>g> Detecti<strong>on</strong> Algorithm<br />

No<br />

Not Mura<br />

Input <str<strong>on</strong>g>Image</str<strong>on</strong>g><br />

Discrete Cosine Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

Adapted CSF Filtering<br />

Inverse<br />

Discrete Cosine Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

Polynomial Regressi<strong>on</strong> Analysis<br />

Tri-modal Thresholding<br />

Labeling<br />

L<br />

if C<br />

L<br />

Result <str<strong>on</strong>g>Image</str<strong>on</strong>g><br />

Mura<br />

Fig.4. The proposed block diagram <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image defect detecti<strong>on</strong><br />

Yes<br />

The flow chart of <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed algorithm is seen in Fig.<br />

4. First, <str<strong>on</strong>g>the</str<strong>on</strong>g> input image is DCT trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med and <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

proposed ACSF filter is applied to enlarge <str<strong>on</strong>g>the</str<strong>on</strong>g> Mura signal.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> signal is inverse Discrete Cosine Trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med,<br />

polynomial regressi<strong>on</strong> (PR) process is employed <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

flattening. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> enhanced image is segmented by trimodal<br />

thresholding to find White and Dark Mura at <strong>on</strong>ce.<br />

To leave out reliable defects, false defects are eliminated if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mean gray level of a defect does not have much<br />

difference from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir background.<br />

3.1 Adapted CSF in DCT Domain<br />

The human visual system(HVS) has different<br />

frequency sensitivity and that is ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matically represented<br />

as CSF given by <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment[8][9][10]. The HVS can<br />

detect more easily <str<strong>on</strong>g>the</str<strong>on</strong>g> difference varying in low frequency<br />

than high frequency. The CSF can be expressed by a<br />

functi<strong>on</strong> and CSF graph is shown in Fig. 5.<br />

Where,<br />

1.<br />

1<br />

H( f ) 2.<br />

6(<br />

0.<br />

192 0.<br />

114 f ) exp( (<br />

0.<br />

114 f ) ) (2)<br />

f f f is <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency having unit of<br />

2<br />

x<br />

2<br />

y<br />

cycle/degree. HVS have best sensitivity around<br />

8[cycles/degree] and above 40[cycles/degree] its value<br />

become smaller and smaller.<br />

CSF Value<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

CSF Graph<br />

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60<br />

Frequency[Cycle/Degree]<br />

Fig.5. The c<strong>on</strong>trast sensitivity functi<strong>on</strong> graph.<br />

There have been many ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts to use CSF to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

applicati<strong>on</strong>s, especially in compressi<strong>on</strong>. In order to use <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

CSF in real applicati<strong>on</strong> relative sensitivity value is<br />

important[10]. Without loss of generality, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum<br />

CSF frequency can be normalized as 2 in DCT domain.<br />

The DCT has good energy compacti<strong>on</strong> property and it has<br />

also fast algorithm. The DCT has no phase in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, it<br />

<strong>on</strong>ly c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude of trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med data. The CSF<br />

has <strong>on</strong>ly magnitude, so it will be enough to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

proposed ACSF in DCT domain. The proposed adapted CSF<br />

in DCT is ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matically expressed by <str<strong>on</strong>g>the</str<strong>on</strong>g> followings.


H(<br />

f / 64<br />

2<br />

)<br />

ACSF( f Nor ) <br />

H(<br />

0)<br />

Where, H ( 0)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant value having 0.4992 and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

adapted 1-d and 3-d CSF are shown in Fig. 6.<br />

Value<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0<br />

Proposed Adapted CSF in DCT Domain<br />

<br />

Frequency<br />

(a)<br />

(b)<br />

Fig. 6. The adapted CSF in DCT domain. (a) 1-d ACSF, (b) 3-d ACSF.<br />

The proposed ACSF is low frequency boost and high<br />

frequency reducti<strong>on</strong> filter shape. This filter enlarge Mura<br />

signal regi<strong>on</strong> approximately 2 times and it also enlarge<br />

background signal fluctuati<strong>on</strong> a little. As <str<strong>on</strong>g>the</str<strong>on</strong>g> LU is<br />

decreased, <str<strong>on</strong>g>the</str<strong>on</strong>g> background signal is more magnified so level<br />

adjustment process must be needed. The following secti<strong>on</strong><br />

describes how to flat <str<strong>on</strong>g>the</str<strong>on</strong>g> emphasized signal.<br />

3.2 Polynomial Regressi<strong>on</strong><br />

In general, regressi<strong>on</strong> method is used to trace general<br />

tendency of <str<strong>on</strong>g>the</str<strong>on</strong>g> signal. This method represents its target<br />

signal with best fitting functi<strong>on</strong> in mean square error (MSE)<br />

point. Out of trace signal such as Mura signal in <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g><br />

image does not much affect to find degenerated signal. Each<br />

line of <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image can be degenerated by<br />

2<br />

(3)<br />

f<br />

B<br />

R<br />

M<br />

<br />

<br />

f ( x,<br />

y)<br />

x<br />

1or<br />

y 1<br />

( x,<br />

y)<br />

<br />

M<br />

( fˆ<br />

m<br />

R ( x,<br />

y)<br />

f ( x,<br />

y))<br />

(4)<br />

Where, f ( x,<br />

y)<br />

B is biased PR functi<strong>on</strong>, R f ( x,<br />

y)<br />

is original<br />

signal, fˆ ( x,<br />

y)<br />

m is m th order estimated PR functi<strong>on</strong> and<br />

R<br />

M is <str<strong>on</strong>g>the</str<strong>on</strong>g> number of pixels.<br />

The PR in horiz<strong>on</strong>tal directi<strong>on</strong> is expressed as<br />

m<br />

m<br />

i<br />

fˆ<br />

( x,<br />

y)<br />

a x <br />

(5)<br />

R<br />

<br />

i0<br />

Where, a is i th order weight value, m is PR estimated<br />

i<br />

order and is <str<strong>on</strong>g>the</str<strong>on</strong>g> error.<br />

MSE is used to find <str<strong>on</strong>g>the</str<strong>on</strong>g> best fitting line. One horiz<strong>on</strong>tal- line<br />

MSE, E, is expressed to <str<strong>on</strong>g>the</str<strong>on</strong>g> following Eq. (6)<br />

E <br />

n<br />

<br />

i0<br />

2<br />

n<br />

m<br />

m<br />

<br />

f x,<br />

y)<br />

fˆ<br />

R ( x,<br />

y)<br />

f ( x,<br />

y)<br />

<br />

i<br />

k <br />

( ak<br />

xi<br />

<br />

(6)<br />

i0<br />

<br />

k0<br />

<br />

In order to find minimizing E , partial differentiati<strong>on</strong><br />

employed given by<br />

E<br />

a<br />

j<br />

<br />

<br />

n<br />

<br />

i0<br />

n<br />

<br />

i0<br />

<br />

2<br />

f ( x,<br />

y)<br />

<br />

<br />

f ( x ) x<br />

i<br />

j<br />

i i<br />

The equati<strong>on</strong> is expressed as<br />

n<br />

j<br />

f ( xi<br />

) x i i<br />

i0<br />

<br />

a<br />

n<br />

<br />

a<br />

m<br />

m<br />

<br />

k0<br />

n<br />

a <br />

k<br />

k0<br />

i0<br />

jk<br />

xi<br />

a<br />

m<br />

k j<br />

ak<br />

xi<br />

(<br />

xi<br />

)<br />

<br />

x<br />

jk<br />

i<br />

j<br />

xi<br />

a1<br />

0<br />

i0<br />

i0<br />

k<br />

i0<br />

i0<br />

Matrix representati<strong>on</strong> is given by<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

n<br />

<br />

x<br />

x<br />

i<br />

m<br />

i<br />

<br />

<br />

<br />

<br />

x<br />

x<br />

x<br />

i<br />

2<br />

i<br />

m1<br />

i<br />

<br />

<br />

<br />

<br />

n<br />

<br />

<br />

<br />

x<br />

<br />

x<br />

m<br />

i<br />

m1<br />

i<br />

x<br />

2m<br />

i<br />

n<br />

x<br />

n<br />

jm<br />

i<br />

0<br />

x<br />

j1<br />

i<br />

0<br />

a<br />

0 <br />

<br />

<br />

<br />

a1<br />

<br />

<br />

<br />

<br />

<br />

<br />

am<br />

<br />

<br />

<br />

<br />

<br />

2<br />

E is<br />

a<br />

i<br />

(7)<br />

(8)<br />

f ( xi<br />

) <br />

<br />

f ( xi<br />

) xi<br />

(9)<br />

<br />

m <br />

f ( xi<br />

) xi<br />

<br />

Gauss-Jordan eliminati<strong>on</strong> is used to find <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial<br />

coefficient a . i<br />

3.3 Tri-modal Thresholding<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image is enhanced, tri-modal<br />

Thresholding [3] is used to segment Dark and Bright Mura


at <strong>on</strong>ce. The tri-modal thresholding functi<strong>on</strong> fT ( x,<br />

y)<br />

is<br />

given by<br />

f T<br />

255<br />

if ( f ( x,<br />

y)<br />

m k<br />

)<br />

<br />

( x,<br />

y)<br />

128<br />

else if ( f ( x,<br />

y)<br />

m k<br />

)<br />

<br />

0<br />

else<br />

(10)<br />

Where, f ( x,<br />

y)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> gray level at positi<strong>on</strong> at ( x , y)<br />

, m , <br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> mean and standard deviati<strong>on</strong> respectively and k is<br />

c<strong>on</strong>trolled c<strong>on</strong>stant to access <str<strong>on</strong>g>the</str<strong>on</strong>g> amounts of abnormal gray<br />

level. After tri-modal thresholding <str<strong>on</strong>g>the</str<strong>on</strong>g> Bright Muras have<br />

value of 255, <str<strong>on</strong>g>the</str<strong>on</strong>g> Dark Muras have 128 and background<br />

regi<strong>on</strong> have value of 0.<br />

3.4 <str<strong>on</strong>g>Defect</str<strong>on</strong>g> Analysis<br />

The segmented result can have false defects such noise,<br />

neglectful small regi<strong>on</strong>, etc. So reliable defect c<strong>on</strong>firmati<strong>on</strong>,<br />

defect analysis process is needed. In this paper, HVS based<br />

false regi<strong>on</strong> eliminati<strong>on</strong> method is proposed. The noticeable<br />

Luminance difference is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> Weber C<strong>on</strong>stant C Weber<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> Weber regi<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> following Equati<strong>on</strong> (11) [11].<br />

C W eber<br />

L<br />

(11)<br />

L<br />

Where, L, L<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> background regi<strong>on</strong> luminance and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

luminance differences between <str<strong>on</strong>g>the</str<strong>on</strong>g> background regi<strong>on</strong> and<br />

defect regi<strong>on</strong>. We use C value as 0.02 in this paper.<br />

Weber<br />

4 Experimental Results<br />

The proposed method is tested by using <str<strong>on</strong>g>the</str<strong>on</strong>g> 160 real<br />

Muras and 40 generated <strong>on</strong>es. The acquired <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g><br />

images have 400 m spatial resoluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> each pixel and an<br />

8-bit brightness resoluti<strong>on</strong>. To evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of<br />

proposed algorithm, <strong>on</strong>e dimensi<strong>on</strong>al line profile, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

enhanced result image and final segmented Muras al<strong>on</strong>g<br />

with detecti<strong>on</strong> accuracy table are shown in this paper.<br />

The proposed defect detecti<strong>on</strong> results are shown in Fig. 7.<br />

The test image Fig. 7(a) has artificially generated Muras<br />

with various strengths and sizes. In <str<strong>on</strong>g>the</str<strong>on</strong>g> enhanced result<br />

image, Fig. 7(b), <str<strong>on</strong>g>the</str<strong>on</strong>g> defect is more visible than original<br />

image and that are evident in Fig.7 (e),(h),(k) also. The<br />

original image of Fig. 7(g) has much background variati<strong>on</strong>,<br />

so <str<strong>on</strong>g>the</str<strong>on</strong>g> defects are rarely seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> original image. But <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

enhanced image has relatively flattening background and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

defects are more salient. In <str<strong>on</strong>g>the</str<strong>on</strong>g> test image Fig. 7(j), novel<br />

enhancement result is given and that helps final<br />

segmentati<strong>on</strong> result.<br />

(a) (b) (c)<br />

(d) (e) (f)<br />

(g) (h) (i)<br />

(j) (k) (l)<br />

Fig. 7 The results of proposed methods. (a),(d),(g),(j) are test images,<br />

(b),(e),(h),(k) are enhanced results and (c),(f),(i),(l) are final segmented<br />

results of original image (a),(d),(g),(j) respectively.<br />

The microscopic enhancement results by <str<strong>on</strong>g>the</str<strong>on</strong>g> line profiles are<br />

shown in Fig. 8. Fig. 8 is <str<strong>on</strong>g>the</str<strong>on</strong>g> enhancement results’ profiles<br />

of Fig. 7. By that, <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness of our algorithm is seen<br />

more clearly. In <str<strong>on</strong>g>the</str<strong>on</strong>g> filtered line profile results, our proposed<br />

enhancement method can flatten <str<strong>on</strong>g>the</str<strong>on</strong>g> background signal<br />

fluctuati<strong>on</strong> and emphasize <str<strong>on</strong>g>the</str<strong>on</strong>g> defect regi<strong>on</strong>.<br />

The final per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance results are summarized in Table 1.<br />

false-positive and false-negative measure are used to<br />

evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy of defect detecti<strong>on</strong> result. There are<br />

some problems to <str<strong>on</strong>g>the</str<strong>on</strong>g> eliminati<strong>on</strong> of defects existing at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

boundary regi<strong>on</strong> and very weak-small-size defects. Except<br />

such cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> false-positive rate and false-negative rate are<br />

quite acceptable.<br />

Table 1. Experimental results <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Muras.<br />

Number of<br />

<str<strong>on</strong>g>Defect</str<strong>on</strong>g>s<br />

False-positive Falsenegative<br />

Artificially<br />

Generated Mura<br />

160 0.04 0.03<br />

Real Mura 40 0.03 0.02


Gray Level<br />

Gray Level<br />

Gray Level<br />

Gray Level<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

Line Profiles<br />

Original 183 Line<br />

Enhanced 183 Line<br />

90<br />

0 50 100 150 200 250<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

Positi<strong>on</strong><br />

(a)<br />

Line Profiles<br />

Original 95 Line<br />

Enhanced 95 line<br />

80<br />

0 50 100 150 200 250<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

Positi<strong>on</strong><br />

(b)<br />

Line Profiles<br />

Original 200 Line<br />

Enhanced 200 Line<br />

120<br />

0 50 100 150 200 250<br />

200<br />

190<br />

180<br />

170<br />

160<br />

Positi<strong>on</strong><br />

(c)<br />

Line Profiles<br />

Original 128 Line<br />

Enhanced 128 Line<br />

150<br />

0 50 100 150 200 250<br />

Positi<strong>on</strong><br />

(d)<br />

Fig. 8 The line profiles of original image and enhanced result. (a),(b),(c),(d)<br />

are line profiles of Fig. 7(a),(d),(g),(j) and Fig. 7(b),(e),(h),(k) respectively.<br />

5 C<strong>on</strong>clusi<strong>on</strong>s<br />

In this paper, a novel defect detecti<strong>on</strong> algorithm in <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<br />

<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image with <str<strong>on</strong>g>the</str<strong>on</strong>g> guidance of enhanced image using<br />

ACSF and PR is proposed. The ACSF in DCT domain is<br />

used to emphasize defect regi<strong>on</strong> while PR is employed to<br />

level <str<strong>on</strong>g>the</str<strong>on</strong>g> background signal. Tri-modal thresholding<br />

segmentati<strong>on</strong> method is utilized in order to find White Mura<br />

and Dark Mura at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time. The defect candidates are<br />

given by <str<strong>on</strong>g>the</str<strong>on</strong>g> distant gray level from <str<strong>on</strong>g>the</str<strong>on</strong>g> mean. For reliable<br />

defect c<strong>on</strong>firmati<strong>on</strong>, Weber’s C<strong>on</strong>stant is used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

purpose of eliminating false detected defects.<br />

The effectiveness of our methods is tested by <str<strong>on</strong>g>the</str<strong>on</strong>g> two points.<br />

One is image enhancement and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r is final<br />

segmentati<strong>on</strong> result. Mura signal is clearly enlarged al<strong>on</strong>g<br />

with background signal flatten. The final defect detecti<strong>on</strong><br />

results are evaluated by false-positive and false-negative<br />

measure. By <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental results our proposed method<br />

has novel result in finding defects in <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> image and it<br />

can be applicable to similar FPD images.<br />

6 References<br />

[1] B. K. Noh, K. H. Kim, et al., <str<strong>on</strong>g>LCD</str<strong>on</strong>g> ENGINEERING,<br />

Sung An Dang, 2002.<br />

[2] VESA Flat Panel Display Measurements Standard Ver<br />

2.0, June 1,2001.<br />

[3] J.H. Oh, D.M. Kwak, K. B Lee, et al. "Line defect<br />

detecti<strong>on</strong> in <str<strong>on</strong>g>TFT</str<strong>on</strong>g>-<str<strong>on</strong>g>LCD</str<strong>on</strong>g> using directi<strong>on</strong>al filter bank and<br />

adaptive multilevel thresholding", Key Engineering<br />

Materials, vol..270-273, 233-238 2004.<br />

[4] Seung-Il Baek, Woo-Seob, Tak-mo Koo, Il Choi and<br />

Kil-Houm Park, "INSPECTION OF DEFECT ON <str<strong>on</strong>g>LCD</str<strong>on</strong>g><br />

PANEL USING POLYNOMIAL APPROXIMATION,"<br />

TENCON 2004.2004 IEEE Regi<strong>on</strong> 10 C<strong>on</strong>ference Volume<br />

A. 21-24 Nov. 2004 pp. 235~238.Vol. 2004.<br />

[5] Gyu-B<strong>on</strong>g Lee, Cho<strong>on</strong>g-Gun Lee, Se-Yun Kim, Kil-<br />

Houm Park, "Adative Surface Fitting <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Inspecti<strong>on</strong></str<strong>on</strong>g> of FPD<br />

Devicess Using Multilevel B-spline Approximati<strong>on</strong>," The<br />

21st Internati<strong>on</strong>al Technical C<strong>on</strong>ference <strong>on</strong> Circuits/Systems,<br />

Computers and Communicati<strong>on</strong>s vol. 2, pp. 205~208. 2006.<br />

[6] David L.D<strong>on</strong>oho, Iain M. Johnst<strong>on</strong>e, et al, "Adapting<br />

to Unknown Smoothness via Wavelet Shrinkage",<br />

[7] Imola K. Fodor, Chandrika Kamath, "Denoising<br />

Through Wavelet Shrinkage: An Empirical Study", Journal<br />

of Electr<strong>on</strong>ic Imaging, July 27, 2001<br />

[8] Xiao Liang, Wu Huizh<strong>on</strong>g, "Multiple Perceptual<br />

Watermarks Using Multiple-<str<strong>on</strong>g>Based</str<strong>on</strong>g> Number C<strong>on</strong>versi<strong>on</strong> in<br />

Wavelet Domain," Proceedings of ICCT2003, pp. 213 - 216,<br />

2003<br />

[9] Ajeetkumar Gaddipatti, Raghu Maciraju, R<strong>on</strong>i Yagel,<br />

"Steering <str<strong>on</strong>g>Image</str<strong>on</strong>g> Generati<strong>on</strong> with Wavelet <str<strong>on</strong>g>Based</str<strong>on</strong>g> Perceptual<br />

Metric",Gaddipati et al.<br />

[10] Garrett M.Johns<strong>on</strong> and Mark D.Fairchild Munsell<br />

Color Science Laboratory, Center <str<strong>on</strong>g>for</str<strong>on</strong>g> Imaging Science<br />

Rochester Institude of Technology, Rochester New York,<br />

"On C<strong>on</strong>trast Sensitivity in an <str<strong>on</strong>g>Image</str<strong>on</strong>g> Diffrence Model"<br />

[11] Hecht, "The visual discriminati<strong>on</strong> of intensity and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Weber-Fechner law", J. Gen. Phsiol., vol.7, pp.241, 1924.


[12] S. G. Mallat, "A <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of multiresoluti<strong>on</strong> signal<br />

decompositi<strong>on</strong> : <str<strong>on</strong>g>the</str<strong>on</strong>g> wavelet representati<strong>on</strong>," IEEE Trans.<br />

Patten Analysis Machine Intell. Vol. 11, pp. 674-493, 1989.<br />

[13] Leslie Lamport. “LaTeX: A Document Preparati<strong>on</strong><br />

System”. Addis<strong>on</strong>-Wesley Publishing Company, 1986.<br />

[14] Ree Source Pers<strong>on</strong>. “Title of Research Paper”; name of<br />

journal (name of publisher of <str<strong>on</strong>g>the</str<strong>on</strong>g> journal), Vol. No., Issue<br />

No., Page numbers (eg.728—736), M<strong>on</strong>th, and Year of<br />

publicati<strong>on</strong> (eg. Oct 2006).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!