23.07.2013 Views

cubic b-spline interpolation method for singular integral equations ...

cubic b-spline interpolation method for singular integral equations ...

cubic b-spline interpolation method for singular integral equations ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CUBIC B-SPLINE INTERPOLATION<br />

METHOD FOR SINGULAR INTEGRAL<br />

EQUATIONS WITH LOGARITHMIC<br />

SIGULARITIES<br />

Moin Uddin 1 , Sheo Kumar 2 and A. L. Sangal 3<br />

1,3 Department of Computer Science & Engineering<br />

2 Department of Applied Mathematics<br />

Dr. B. R. Ambedkar National Institute of Technology<br />

Jalandhar-144011, (Punjab) India.<br />

Abstract- A <strong>method</strong> <strong>for</strong> numerical solution<br />

<strong>singular</strong> <strong>integral</strong> equation of the first kind with<br />

logarithmic <strong>singular</strong>ities in their kernels along<br />

the integration interval using <strong>cubic</strong> B-Spline<br />

<strong>interpolation</strong>s has been developed.<br />

Keywords: Singular Integral Equations;<br />

Logarithmic Sigularities; Cubic B-Spline<br />

1. Introduction<br />

We consider the following <strong>singular</strong> <strong>integral</strong><br />

equation of the first kind with a logarithmic<br />

<strong>singular</strong>ity in its kernel.<br />

1<br />

∫<br />

−1<br />

w(<br />

t)<br />

[ ln t − x + k(<br />

t,<br />

x)<br />

]<br />

g(<br />

t)<br />

dt = f ( x),<br />

−1<br />

≤ x ≤1,<br />

(1)<br />

where the kernel k( t,<br />

x)<br />

and the right hand side<br />

function f (x)<br />

are regular functions on<br />

−1, 1 and w (t)<br />

is the weight function<br />

[ ]<br />

2 − 1<br />

2<br />

w ( t)<br />

= ( 1−<br />

t )<br />

(2)<br />

Singular <strong>integral</strong> equation of the first kind with<br />

kernels presenting logarithmic <strong>singular</strong>ities<br />

appear frequently. Some problems where these<br />

<strong>equations</strong> are encountered are mentioned by<br />

Morland (1970) and Christiansen (1971).<br />

Morland (1970) found closed-<strong>for</strong>m solutions <strong>for</strong><br />

these <strong>equations</strong> in the special case of difference<br />

kernels, whereas Christiansen (1971) proposed<br />

two <strong>method</strong>s <strong>for</strong> their numerical solution.<br />

Ordinary Cauchy-type <strong>integral</strong>s and <strong>integral</strong>s<br />

with a logarithmic kernel result from each other<br />

by a simple differentiation or integration. For<br />

example, by differentiating (1) with respect to<br />

x we obtain<br />

1<br />

∫<br />

−1<br />

1<br />

w (t)<br />

[ − + K ′ ( t,<br />

x)<br />

] g ( t)<br />

dt<br />

t − x<br />

= ′ ( x),<br />

−1<br />

≤ x ≤ 1.<br />

f (3)<br />

The solution in the <strong>for</strong>m of (3) of (1) has been<br />

proposed in Ioakimidis (1981). Gakhov (1966)<br />

considered in some detail complex potentials<br />

expressed not only as Cauchy-type <strong>integral</strong>s, but<br />

also as <strong>integral</strong>s with logarithmic kernels, which<br />

give rise to analogous <strong>singular</strong> <strong>integral</strong><br />

<strong>equations</strong>. The appearance of <strong>singular</strong> <strong>integral</strong><br />

<strong>equations</strong> with logarithmic <strong>singular</strong>ities in their<br />

kernels in problems of potential theory and<br />

elasticity is also reported in Delves & Walsh<br />

(1974, p.255).<br />

For the numerical solution of <strong>singular</strong> <strong>integral</strong><br />

<strong>equations</strong> with logarithmic <strong>singular</strong>ities in their<br />

kernels, several <strong>method</strong>s are available,<br />

particularly <strong>for</strong> such <strong>equations</strong> of the second<br />

kind. These <strong>method</strong>s are reported in the books<br />

by Delves and Walsh (1974), Atkinson (1976)<br />

and Baker (1977) and are based on the removal<br />

of the diagonal term in the system of linear<br />

algebraic <strong>equations</strong> approximating the <strong>singular</strong><br />

<strong>integral</strong> equation, the use of <strong>method</strong>s based on<br />

approximate integration and particularly on<br />

product integration rules, the use of special<br />

quadrature <strong>for</strong>mulae or the use of expansion<br />

<strong>method</strong>s. Similar <strong>method</strong>s and particularly the<br />

modified quadrature <strong>method</strong> and the <strong>method</strong>s<br />

based on product integration rules are also<br />

applicable to <strong>singular</strong> <strong>integral</strong> <strong>equations</strong> of the<br />

first kind with logarithmic <strong>singular</strong>ities Baker<br />

(1977).


The <strong>method</strong> described here uses Langrange<br />

<strong>interpolation</strong> on “practical” abscissas<br />

xk = cos( kπ<br />

/ n),<br />

k = 0(<br />

1)<br />

n.<br />

The related results are given below:<br />

Let Ln ( f ; x)<br />

denote the Lagrange polynomial<br />

of degree n interpolating f (x)<br />

at<br />

= kπ<br />

n k = We may write<br />

x k<br />

cos( / ), 0(<br />

1)<br />

n.<br />

n<br />

n<br />

∑ k<br />

k = 0<br />

L ( f ; x)<br />

= l ( x)<br />

f ( x ), (4)<br />

where the Langrange fundamental polynomials<br />

lk (x)<br />

are given by<br />

n<br />

lk ( x)<br />

( 2bk<br />

/ n)<br />

b jT<br />

j ( xk<br />

) T j ( x),<br />

= ∑<br />

j=<br />

0<br />

k<br />

k = 0(<br />

1)<br />

n,<br />

1 b =<br />

where 0 = n 2<br />

(5)<br />

b and<br />

bk = 1, k = 1(<br />

1)<br />

n −1.<br />

(x)<br />

T j are<br />

Chebyshev polynomials of the first kind. That<br />

lk ( x j ) = δ kj follows from the discrete<br />

orthogonality of the Chebyshev polynomials at<br />

the practical abscissas. For details, please see<br />

Chawla & Kumar (1979).<br />

For latest works on B-Spline, please see, Liu<br />

(1997), Prautzsch (2004) and Reif (2000).<br />

In past <strong>method</strong>s <strong>for</strong> solution of <strong>singular</strong> <strong>integral</strong><br />

<strong>equations</strong> with logarithmic <strong>singular</strong>ities have<br />

been also discussed in Alaylioglu & Lubinsky<br />

(1984), Atkinson & Sloan (1991), Atkinson<br />

(1988), Chakrabarti & Manam (2003), Saranen<br />

& Sloan (1992), Saranen (1991), Sloan & Burn<br />

(1992), Kress & Sloan (1993) and Manam<br />

(2003).<br />

2. The Numerical Method<br />

we consider the <strong>singular</strong> <strong>integral</strong> equation of the<br />

first kind with a logarithmic <strong>singular</strong>ity in its<br />

kernel.<br />

1<br />

∫<br />

−1<br />

w(<br />

t)<br />

[ ln t − x + k(<br />

t,<br />

x)<br />

]<br />

g(<br />

t)<br />

dt = f ( x),<br />

−1<br />

≤ x ≤ 1,<br />

where the kernel k( t,<br />

x)<br />

and the right hand side<br />

function f (x)<br />

are regular functions on<br />

−1, 1 and w(t) is the weight function<br />

[ ]<br />

2 − 1<br />

2<br />

w ( t)<br />

= ( 1−<br />

t )<br />

(7)<br />

In past a <strong>method</strong> <strong>for</strong> the <strong>integral</strong> equation (6)<br />

have been discussed in Ioakimidis (1981). In<br />

this chapter, we have described a <strong>cubic</strong> B-<strong>spline</strong><br />

approximation <strong>method</strong> <strong>for</strong> the numerical solution<br />

of (6), using uniqueness condition of the <strong>for</strong>m<br />

1<br />

∫<br />

−1<br />

w ( t)<br />

g(<br />

t)<br />

dt = C<br />

(8)<br />

where C is a known constant . Here, we have<br />

evaluated the <strong>integral</strong>s<br />

1<br />

( 4)<br />

( 4)<br />

L( Bn,<br />

j ; x)<br />

w(<br />

t)<br />

Bn,<br />

j ( t)<br />

ln t − x dt,<br />

= ∫<br />

−1<br />

m = 1(<br />

1)<br />

4,<br />

j = 1(<br />

1)<br />

n<br />

( 4)<br />

using the representation of Bn , j ( t)<br />

given<br />

below:<br />

(6)<br />

(9)


B<br />

( 4)<br />

n,<br />

j<br />

3<br />

⎧ ( t − t j )<br />

⎪<br />

,<br />

t j ≤ t ≤ t j+<br />

1,<br />

⎪(<br />

t j+<br />

3 − t j )( t j+<br />

1 − t j )( t j+<br />

2 − t j )<br />

⎪<br />

⎪ ( t − t j ) ⎡ ( t − t j )( t j+<br />

2 − t)<br />

( t j+<br />

3 − t)(<br />

t − t j+<br />

1)<br />

⎤<br />

⎪<br />

⎢<br />

+<br />

⎥<br />

( t j+<br />

3 − t j ) ⎢(<br />

2 )( 2 1)<br />

( 3 1)(<br />

2 1)<br />

⎪ ⎣ t j+<br />

− t j t j+<br />

− t j+<br />

t j+<br />

− t j+<br />

t j+<br />

− t j+<br />

⎥⎦<br />

⎪<br />

2<br />

(t j+<br />

4 − t)(<br />

t − t j+<br />

1)<br />

⎪ +<br />

, t j+<br />

1 ≤ t ≤ t j+<br />

2 ,<br />

⎪ ( t j+<br />

4 − t j+<br />

1)(<br />

t j+<br />

2 − t j+<br />

1)(<br />

t j+<br />

3 − t j+<br />

1)<br />

⎪<br />

⎪ ( t j+<br />

4 − t)<br />

⎡ ( t − t j+<br />

1)(<br />

t j+<br />

3 − t)<br />

( t j+<br />

4 − t)(<br />

t − t j+<br />

2 ) ⎤<br />

( t)<br />

= ⎨ ⎢<br />

+<br />

⎥<br />

⎪(<br />

t j+<br />

4 − t j+<br />

1)<br />

⎢⎣<br />

( t j+<br />

3 − t j+<br />

1)(<br />

t j+<br />

3 − t j+<br />

2 ) ( t j+<br />

4 − t j+<br />

2 )( t j+<br />

3 − t j+<br />

2 ) ⎥⎦<br />

⎪<br />

2<br />

⎪<br />

( t − t j )( t j+<br />

3 − t)<br />

+<br />

, t j+<br />

2 ≤ t ≤ t j+<br />

3,<br />

⎪ ( t j+<br />

3 − t j )( t j+<br />

3 − t j+<br />

1)(<br />

t j+<br />

3 − t j+<br />

2 )<br />

⎪<br />

3<br />

⎪ ( t j+<br />

4 − t)<br />

⎪<br />

,<br />

t j+<br />

3 ≤ t ≤ t j+<br />

4 ,<br />

⎪(<br />

t j+<br />

4 − t j+<br />

1)(<br />

t j+<br />

4 − t j+<br />

2 )( t j+<br />

4 − t j+<br />

3 )<br />

⎪<br />

0,<br />

otherwise.<br />

⎪<br />

⎪<br />

⎩<br />

(10)<br />

≤ t ≤ t ≤ t ≤ ⋅⋅<br />

⋅ ≤ t ≤ 1.<br />

Thus<br />

( 4)<br />

and replacing Bn , j ( t)<br />

by Lagrange<br />

<strong>interpolation</strong> at the “practical” abscissas<br />

xk = cos( kπ<br />

/ n),<br />

k = 0(<br />

1)<br />

n described in<br />

Chawla & Kumar (1979) and described here by<br />

<strong>equations</strong> (4) and (5). For derivation of (10),<br />

please see Prautzsch, Boehm & Paluszny [2002,<br />

pp. 61] & Phillips [2003, pp. 224]. The<br />

following results also have been used in the<br />

evaluation of <strong>singular</strong> <strong>integral</strong>s in (9):<br />

1<br />

∫ ( 0<br />

−1<br />

2 − 1<br />

2 1−<br />

t ) ln t − xT<br />

( t)<br />

dt = −π<br />

ln 2 , (11)<br />

− 1 0 1 2<br />

n+<br />

4<br />

( 4)<br />

{ Bn, j ( t)<br />

}<br />

{ } 4 n+<br />

( 4)<br />

t j and further B ( )<br />

j=<br />

0<br />

n,<br />

j t<br />

over interval ( j , t j+<br />

4 )<br />

is a <strong>cubic</strong> B-<strong>spline</strong> basis with knots<br />

is a <strong>cubic</strong> B-<strong>spline</strong><br />

t . Now, we have<br />

approximated unknown function g (t)<br />

as:<br />

n<br />

g ∑ j n,<br />

j<br />

j=<br />

0<br />

( 4)<br />

( t)<br />

≈ α B ( t)<br />

. (14)<br />

We get n <strong>equations</strong> from (6) using (14)<br />

n 1<br />

∑ ∫<br />

−<br />

[ ]<br />

α j w(<br />

t)<br />

ln t − xi<br />

( 4)<br />

+ k(<br />

t,<br />

xi<br />

) Bn,<br />

j ( t)<br />

dt<br />

1<br />

2 − 1<br />

π<br />

2<br />

∫ ( 1−<br />

t ) ln t − xT<br />

j ( t)<br />

dt = − T j ( x),<br />

j<br />

−1<br />

j=<br />

0<br />

j ≥ 1,<br />

(12)<br />

by<br />

1<br />

choosing<br />

= f ( xi<br />

),<br />

n collocation<br />

(15)<br />

points<br />

T j + 1(<br />

x)<br />

= 2xT<br />

j ( x)<br />

− T j−1<br />

( x);<br />

T0<br />

= 1,<br />

T1<br />

( x)<br />

= x.<br />

where T j (x)<br />

are Chebyshev polynomials of the<br />

first kind.<br />

(13) −1 < x 0 < x1<br />

< x2<br />

< ⋅⋅<br />

⋅ < xn−1<br />

< 1.<br />

Equation ( n + 1)<br />

th given below is obtained<br />

from <strong>equations</strong> (8) replacing g(t) by (14).<br />

Here, we have described a product integration<br />

<strong>method</strong> using <strong>cubic</strong> B-<strong>spline</strong> approximations <strong>for</strong><br />

unknown function g(t). Here, we have taken<br />

n + 5 knots<br />

n 1<br />

( 4)<br />

∑α j ∫ w( t)<br />

Bn,<br />

j ( t)<br />

dt = C . (16)<br />

j=<br />

0 −1


The values of α j , j = 0(<br />

1)<br />

n is obtained from<br />

the solution of above n + 1<strong>equations</strong><br />

using<br />

matrix inversion by partition <strong>method</strong>.<br />

3. Numerical Examples<br />

To illustrate the above <strong>method</strong> computationally,<br />

we consider the following two examples of<br />

<strong>singular</strong> <strong>integral</strong> <strong>equations</strong> with logarithmic<br />

<strong>singular</strong>ities:<br />

Example 1<br />

Consider the <strong>singular</strong> <strong>integral</strong> equation<br />

1<br />

2 − 1 ⎡<br />

1 ⎤<br />

2<br />

∫ ( 1−<br />

t ) ⎢ln<br />

t − x +<br />

( )<br />

( 10)<br />

⎥ g t dt<br />

1 ⎣ t + x +<br />

−<br />

⎦<br />

= f ( x),<br />

−1<br />

≤ x ≤ 1 (17)<br />

where the exact solution is given by<br />

t<br />

g ( t)<br />

= e<br />

and the values of f (x)<br />

have been computed.<br />

numerically at the various points of<br />

discretisations under the unique condition:<br />

1<br />

∫<br />

−1<br />

2 − 1<br />

2 ( 1−<br />

t ) g(<br />

t)<br />

dt = 2.<br />

493524565689<br />

.<br />

We solved the <strong>singular</strong> <strong>integral</strong> equation (17) by<br />

the present <strong>method</strong> <strong>for</strong> n = 20 and 40 <strong>for</strong> equally<br />

spaced mesh and choosing the collocation points<br />

sk = (tk + tk+1)/2, k = 0(1)n; we have solved linear<br />

algebraic system of <strong>equations</strong> using partition<br />

<strong>method</strong> <strong>for</strong> matrix inversion. The corresponding<br />

errors ek = | exact value (xk) − approximate<br />

value (xk) |<br />

<strong>for</strong> few points are listed in Table 1.<br />

Example 2<br />

Consider the <strong>singular</strong> <strong>integral</strong> equation<br />

1<br />

∫<br />

−1<br />

( 1−<br />

t<br />

2<br />

)<br />

−<br />

1<br />

2<br />

t+<br />

x<br />

[ ln t − x + e ]<br />

−1<br />

≤ x ≤ 1,<br />

g(<br />

t)<br />

dt = f ( x),<br />

where the exact solution is given by<br />

2 1<br />

2<br />

g( t)<br />

= ( 1−<br />

t )<br />

and the values of f (x)<br />

have been computed<br />

numerically at the various points of<br />

discretisations under the unique condition:<br />

1<br />

2 − 1<br />

2 ( 1−<br />

t ) g(<br />

t)<br />

dt = 2.<br />

00 .<br />

∫<br />

−1<br />

( 18)<br />

We solved the <strong>singular</strong> <strong>integral</strong> equation (18) by<br />

the present <strong>method</strong> <strong>for</strong> n = 20 and 40, <strong>for</strong> equally<br />

spaced mesh and choosing the collocation points<br />

sk = (tk + tk+1)/2, k = 0(1)n;<br />

We have solved linear algebraic system of<br />

<strong>equations</strong> using partition <strong>method</strong> <strong>for</strong> matrix<br />

inversion. The corresponding errors ek = |<br />

exact value (xk) − approximate value (xk) |<br />

<strong>for</strong> few points are listed in Table 2.<br />

Table 1<br />

Integral equation (17)<br />

n = 20 n = 40<br />

x h = 1/<br />

10 h = 1/<br />

20<br />

-1.00 9.16 E−05 1.52 E−06<br />

-.800 3.46 E−05 6.45 E−07<br />

-.600 3.29 E−05 2.99 E−06<br />

-.400 5.08 E−06 5.12 E−07.<br />

-.200 7.58 E−06 8.92 E−07<br />

0.00 6.13 E−05 5.56 E−07<br />

0.20 7.39 E−05 1.79 E−06<br />

0.40 8.15 E−06 8.54 E−07<br />

0.60 9.85 E−05 8.77 E−07<br />

0.80 1.36 E−05 5.37 E−06<br />

1.00 3.48 E−06 6.59 E−07<br />

Table 2<br />

Integral equation (18)<br />

n = 20 n = 40<br />

x h = 1/<br />

10 h = 1/<br />

20<br />

-1.00 1.16 E−03 4.78 E−04<br />

-.800 2.93 E−03 9.28 E−05<br />

-.600 4.72 E−03 8.54E−04<br />

-.400 6.09 E−04 1.19 E−05.<br />

-.200 7.27 E−04 2.12 E−05<br />

0.00 8.15 E−04 4.85 E−05<br />

0.20 9.46 E−04 6.81 E−04<br />

0.40 1.24 E−04 6.75 E−05<br />

0.60 2.54 E−04 4.93 E−06<br />

0.80 3.19 E−04 3..46 E−06<br />

1.00 8.45 E−04 8.49E−06


References<br />

[1] A. Alaylioglu and D. S. Lubinsky,<br />

“Product integration of logarithmic<br />

<strong>singular</strong> integrands based on <strong>cubic</strong><br />

<strong>spline</strong>”; Journal of Computational and<br />

Applied Mathematics 11, 353-366<br />

(1984).<br />

[2] K. E. Atkinson and I. H. Sloan, “The<br />

numerical solution of first kind<br />

logarithmic-kernal <strong>integral</strong> <strong>equations</strong><br />

on smooth open arcs” ; Math.<br />

Comput., 56, 119-139, (1991).<br />

[3] K. E. Atkinson, “A Survey of<br />

Numerical Methods <strong>for</strong> the Solution of<br />

Fredholm Integral Equations of the<br />

second kind”; Society <strong>for</strong> Industrial<br />

and Applied Mathematics (SIAM),<br />

Philadelphia, Pensylvania, 1976.<br />

[4] K. E. Atkinson, “A discrete Galerkin<br />

<strong>method</strong> <strong>for</strong> first kind <strong>integral</strong> <strong>equations</strong><br />

with logarithmic kernel”; J. Integral<br />

Eqns. Applics. 1, 343-363, (1988).<br />

[5] C. T. H. Baker, “The Numerical<br />

Treatment of Integral Equations”;<br />

Clarendon Press, 1977.<br />

[6] A. Chakrabarti, and S. R. Manam,<br />

“Solution of a logarithmic <strong>singular</strong><br />

<strong>integral</strong> equation”; Applied<br />

Mathematics Letters, 16, 369-373,<br />

(2003).<br />

[7] M. M. Chawla , and S. Kumar,<br />

“Convergence of quadratures <strong>for</strong><br />

Cauchy principal value <strong>integral</strong>s”;<br />

Computing, 23, 67-72, (1979).<br />

[8] S. Christiansen , “Numerical solution<br />

of an <strong>integral</strong> <strong>equations</strong> with a<br />

logarithmic kernel”; BIT, 11, 276-<br />

287, (1971).<br />

[9] L.M. Delves, and J. Walsh, (Eds),<br />

“Numerical Solution of Integral<br />

Equations”; Ox<strong>for</strong>d University Press,<br />

London, 1974.<br />

[10] F. D. Gakhov, “Boundary value<br />

problems”; Pergamen Press and<br />

Addison- Wesley, Ox<strong>for</strong>d, 1966.<br />

[11] N. I. Ioakimidis, “A <strong>method</strong> <strong>for</strong><br />

numerical solution of <strong>singular</strong> <strong>integral</strong><br />

<strong>equations</strong> with logarithm<br />

<strong>singular</strong>ities”; Iternational J.<br />

Computer Math., 9, 363-372, (1981).<br />

[12] R. Kress, and I. H. Sloan, “On the<br />

numerical solution of a logarithmic<br />

<strong>integral</strong> equation of the first kind <strong>for</strong><br />

the Helmholtz equation”; Numer.<br />

Math., 66, 199-214, (1993).<br />

[13] W. Liu, “A simple, efficient degree<br />

raising algorithm <strong>for</strong> B-Spline curves”;<br />

Computer Aided Geometric Design,<br />

14, 693-698, (1997).<br />

[14] S. R. Manam, “A logarithmic <strong>singular</strong><br />

<strong>integral</strong> equation over multiple<br />

intervals”; Applied Mathematics<br />

Letters, 16, 1031-1037, (2003).<br />

[15] L. W. Morland, “Singular <strong>integral</strong><br />

<strong>equations</strong> with logarithmic kernels”;<br />

Mathematika, 17, (1970), 47−56,<br />

(1970).<br />

[16] G. M. Phillips, “Interpolations and<br />

Approximations by Polynomials”;<br />

Springer-Verlag, New York, 2003.<br />

[17] H. Prautzsch, W. Boehm, and M.<br />

Paluszny, “Bézier and B-<strong>spline</strong><br />

Techniques”; Springer-Verlag, Berlin,<br />

2002.<br />

[18] H. Prautzsch, “B-<strong>spline</strong>s with arbitrary<br />

connection matrices”; Constructive<br />

Approximation, 20, 191-205, (2004).<br />

[19] U. Reif, “Best bounds on the<br />

approximation of polynomials and<br />

<strong>spline</strong>s by their control structure”;<br />

Computer Aided Geometric Design,<br />

17, 579-589, (2000).<br />

[20] J. Saranen, and I. H. Sloan,<br />

“Quadrature <strong>method</strong>s <strong>for</strong> logarithmic-<br />

kernel <strong>integral</strong> <strong>equations</strong> on closed<br />

curves”; IMA Journal of Numerical<br />

Analysis, 12, 167- 187, (1992).<br />

[21] J. Saranen, “The modified quadrature<br />

<strong>method</strong> <strong>for</strong> logarithmic-kernel <strong>integral</strong><br />

<strong>equations</strong> on closed curves”; J.<br />

Integral Equations Appl., 3, 575-600<br />

(1991).<br />

[22] I. H. Sloan, and B. J. Burn, “An<br />

unconventional quadrature <strong>method</strong> <strong>for</strong><br />

logarithmic-kernel <strong>integral</strong> <strong>equations</strong><br />

of closed curves”; J. Integral<br />

Equations Appl., 4, 117-151 (1992).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!