06.08.2013 Views

A topological Maslov index for 3-graded Lie groups - ResearchGate

A topological Maslov index for 3-graded Lie groups - ResearchGate

A topological Maslov index for 3-graded Lie groups - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>topological</strong> <strong>Maslov</strong> <strong>index</strong> <strong>for</strong> 3-<strong>graded</strong> <strong>Lie</strong> <strong>groups</strong> 17<br />

<br />

1<br />

Since E :=<br />

0<br />

<br />

0<br />

is a grading element, the grading is inner. On the <strong>Lie</strong><br />

−1<br />

algebra level we have<br />

<br />

a<br />

τ<br />

c<br />

<br />

∗ b −a<br />

=<br />

d<br />

c∗ b∗ −d∗ <br />

,<br />

showing that τ reverses the grading. The corresponding Jordan triple product<br />

in A ∼ = g+ is given by<br />

On the group level we have<br />

GL2(A) + =<br />

Then<br />

1 A<br />

0 1<br />

{x, y, z} = 1<br />

2 (xy∗ z + zy ∗ x).<br />

<br />

, GL2(A) 0 =<br />

GL2(A) + GL2(A) 0 GL2(A) − =<br />

and any matrix in this set decomposes as<br />

<br />

−1<br />

a b 1 bd<br />

=<br />

c d 0 1<br />

we obtain<br />

<br />

× A 0<br />

0 A ×<br />

<br />

and GL2(A) − =<br />

<br />

a b<br />

∈ GL2(A): d ∈ A<br />

c d<br />

×<br />

<br />

,<br />

a − bd −1 c 0<br />

0 d<br />

<br />

1 0<br />

d−1 <br />

.<br />

c 1<br />

From <br />

1 0<br />

−w∗ <br />

1 z 1 z<br />

=<br />

1 0 1 −w∗ 1 − w∗ <br />

z<br />

BG(z, w) =<br />

<br />

1 0<br />

.<br />

A 1<br />

<br />

∗ −1 ∗ 1 − z(1 − w z) (−w ) 0<br />

0 1 − w∗ −1 <br />

∗ 1 − zw 0<br />

=<br />

z 0 (1 − w∗z) −1<br />

<br />

.<br />

Next we calculate dG on quasi-invertible unitary triples (s1, s2, s3). For<br />

unitary elements z, w ∈ S quasi-invertibility means that 1 − w ∗ z = 1 − w −1 z is<br />

invertible, which means that w −z is invertible. There<strong>for</strong>e all differences sj −sk ,<br />

j = k, are invertible. Since<br />

Lemma II.5 leads to<br />

(s1 − s2) + (s2 − s3) + (s3 − s1) = 0,<br />

(1 − s1s ∗ 2 )(1 − s3s ∗ 2 )−1 (1 − s3s ∗ 1 )(1 − s2s ∗ 1 )−1 (1 − s2s ∗ 3 )(1 − s1s ∗ 3 )−1<br />

= (1 − s1s −1<br />

−1<br />

2 )(1 − s3s2 )−1 (1 − s3s −1<br />

−1<br />

1 )(1 − s2s 3<br />

= (s2 − s1)(s2 − s3) −1 (s1 − s3)(s1 − s2) −1 (s3 − s2)(s3 − s1) −1<br />

1 )−1 (1 − s2s −1<br />

= −(s1 − s2)(s2 − s3) −1 (s3 − s1)(s1 − s2) −1 (s2 − s3)(s3 − s1) −1 = −1<br />

)(1 − s1s −1<br />

3 )−1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!