06.08.2013 Views

A topological Maslov index for 3-graded Lie groups - ResearchGate

A topological Maslov index for 3-graded Lie groups - ResearchGate

A topological Maslov index for 3-graded Lie groups - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>topological</strong> <strong>Maslov</strong> <strong>index</strong> <strong>for</strong> 3-<strong>graded</strong> <strong>Lie</strong> <strong>groups</strong> 29<br />

Definition IV.5. In the following we write η G σ : SL2(C)/{±1} → G <strong>for</strong> the<br />

unique morphism of 3-<strong>graded</strong> involutive <strong>Lie</strong> <strong>groups</strong> with L(η G σ ) = ηg σ whose<br />

existence follows from the simple connectedness of SL2(C) and Lemma IV.3.<br />

According to Remark IV.1, we have<br />

µG(e, −e, σ) = π1(η G σ )µ SL2(C)/{±1}(1, −1, i).<br />

There<strong>for</strong>e the calculation of the <strong>index</strong> map is essentially reduced to the calculation<br />

of the single case µ SL2(C)/{±1}(1, −1, i).<br />

The next proposition provides the <strong>index</strong> function <strong>for</strong> SL2(C)/{±1}.<br />

Proposition IV.6. We consider the 3-<strong>graded</strong> involutive <strong>Lie</strong> group G :=<br />

SL2(C)/{±1} which satisfies (A1-3) by Theorem II.7. We have an isomorphism<br />

ρ: G 0 <br />

= ±<br />

<br />

z 0<br />

0 z−1 <br />

: z ∈ C ×<br />

→ C × <br />

z 0<br />

, ±<br />

0 z−1 <br />

↦→ z 2<br />

and identify π1(G 0 ) accordingly with π1(C × ) ∼ = Z, where we use p C ×: C →<br />

C × , z ↦→ e 2πiz as the universal covering map. In these terms we have<br />

µG(1, −1, ±i) = ∓1.<br />

Proof. In the following we shall use the explicit <strong>for</strong>mulas from the discussion<br />

of hermitian Banach algebras in Example II.6. We have<br />

which leads to<br />

B SL2(C)(z, w) =<br />

<br />

1 − zw 0<br />

0 (1 − zw) −1<br />

<br />

,<br />

BG(z, w) = (1 − zw) 2<br />

in terms of our identification of G 0 with C × . From that we further obtain <strong>for</strong><br />

quasi-invertible triples (z1, z2, z3):<br />

dG(z1, z2, z3) = (1 − z1z2) 2 (1 − z3z2) −2 (1 − z3z1) 2 (1 − z2z1) −2 (1 − z2z3) 2 (1 − z1z3) −2<br />

We obtain in particular<br />

<br />

1 −<br />

<br />

z1z2 2<br />

1 −<br />

<br />

z3z1 2<br />

1 − z2z3<br />

=<br />

1 − z2z1 1 − z1z3 1 − z3z2<br />

<br />

1 − z1z2<br />

dG(z1, z2, 0) =<br />

1 − z2z1<br />

For the curve<br />

2<br />

2<br />

.<br />

<br />

1 −<br />

<br />

z3 2<br />

1 + z3<br />

and dG(1, −1, z3) =<br />

1 − z3 1 + z3<br />

α1: [0, 1] → C 3 ⊤ , t ↦→ (t, −t, 0)<br />

2<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!