11.08.2013 Views

Differential Geometry I: Worksheet 1 - Freie Universität Berlin

Differential Geometry I: Worksheet 1 - Freie Universität Berlin

Differential Geometry I: Worksheet 1 - Freie Universität Berlin

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Freie</strong> <strong>Universität</strong> <strong>Berlin</strong><br />

Institut für Mathematik WS 09/10<br />

Prof. Dr. K. Polthier / K. Hildebrandt / Dr. C. Lange Due: 30.10.09<br />

http://geom.mi.fu-berlin.de/teaching/ws0910/di¤geo1/index.html<br />

Di¤erential <strong>Geometry</strong> I: <strong>Worksheet</strong> 1<br />

(Curves in R n )<br />

Exercise 1. (2 Points)<br />

An epicycloid is the path traced out by a point on the edge of a circle of<br />

radius r rolling on the outside of a circle of radius R. Find a parametrization<br />

of the epicycloid and plot the curve for r = 1 and R = 3.<br />

Exercise 2. (2 Points)<br />

The trace of the parametrized curve<br />

c : [0; 1) ! R 2<br />

t 7! e t (cos t; sin t)<br />

lies in a logarithmic spiral. Show that the arc length of the trace of c is …nite.<br />

Exercise 3. (2 Points)<br />

The map<br />

helixr;a : R ! R 3 ;<br />

t 7! (r cos t; r sin t; a t)<br />

parametrizes a helix with radius r and slant a. For …xed r and a …nd an<br />

arc length parametrization of the helix and compute the curvature and the<br />

torsion.<br />

Exercise 4. (3 Points)<br />

Let c : I ! R 2 be an arc length parametrized C 2 -curve, and let s0; s 2 I<br />

satisfy s0 < s. Show that the limit<br />

](c<br />

lim<br />

s!s0<br />

0 (s0); c0 (s))<br />

s s0<br />

exists and equals the curvature of c at the point s0.<br />

Exercise 5. (3 Points)<br />

Let c(t) = (x(t); y(t)) be a regular parametrized curve.


1. Show that for the curvature the following formula holds<br />

(t) =<br />

_x(t)y(t) x(t) _y(t)<br />

:<br />

( _x(t) 2 + _y(t) 2 ) 3<br />

2<br />

2. Let R be an orientation preserving rigid motion of R 2 ; i.e.<br />

R(x; y) = M x<br />

y<br />

+ a<br />

b<br />

where M 2 SO(2) and a; b 2 R. Show that R c has the same curvature<br />

as c.<br />

;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!