11.08.2013 Views

Information Sharing in a Multi-Echelon Inventory System

Information Sharing in a Multi-Echelon Inventory System

Information Sharing in a Multi-Echelon Inventory System

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TSINGHUA SCIENCE AND TECHNOLOGY<br />

ISSN 1007-0214 16/20 pp466-474<br />

Volume 12, Number 4, August 2007<br />

<strong>Information</strong> <strong>Shar<strong>in</strong>g</strong> <strong>in</strong> a <strong>Multi</strong>-<strong>Echelon</strong> <strong>Inventory</strong> <strong>System</strong> *<br />

ZHAO Xiaobo (赵晓波) ** , QIU M<strong>in</strong>m<strong>in</strong> (裘民民)<br />

Department of Industrial Eng<strong>in</strong>eer<strong>in</strong>g, Ts<strong>in</strong>ghua University, Beij<strong>in</strong>g 100084, Ch<strong>in</strong>a<br />

Abstract: The <strong>in</strong>fluence of different <strong>in</strong>formation shar<strong>in</strong>g scenarios <strong>in</strong> a s<strong>in</strong>gle supplier-s<strong>in</strong>gle retailer supply<br />

cha<strong>in</strong> is analyzed. The five <strong>in</strong>formation shar<strong>in</strong>g scenarios are centralized <strong>in</strong>formation shar<strong>in</strong>g, full <strong>in</strong>formation<br />

shar<strong>in</strong>g, supplier-dom<strong>in</strong>ated <strong>in</strong>formation shar<strong>in</strong>g, retailer-dom<strong>in</strong>ated <strong>in</strong>formation shar<strong>in</strong>g, and non<strong>in</strong>formation<br />

shar<strong>in</strong>g. Iterative procedures are developed to obta<strong>in</strong> the <strong>in</strong>ventory policies and the system costs<br />

at equilibrium po<strong>in</strong>ts. Numerical examples show that the cost of a centralized <strong>in</strong>ventory system is about<br />

20% - 40% lower than that of a decentralized system with non-<strong>in</strong>formation shar<strong>in</strong>g. Furthermore, a higher <strong>in</strong>formation<br />

shar<strong>in</strong>g level does not always lead to a lower system cost <strong>in</strong> a decentralized supply cha<strong>in</strong> due to<br />

<strong>in</strong>ventory competition.<br />

Key words: <strong>in</strong>formation shar<strong>in</strong>g; <strong>in</strong>ventory order<strong>in</strong>g policy; Markov decision process<br />

Introduction<br />

In the past decade, a number of papers have discussed<br />

optimal policies for two-stage serial <strong>in</strong>ventory systems.<br />

Most works have focused on supply cha<strong>in</strong>s with centralized<br />

control. A central decision maker determ<strong>in</strong>es<br />

<strong>in</strong>ventory policies for every stage so as to obta<strong>in</strong> optimal<br />

system performance <strong>in</strong> the entire supply cha<strong>in</strong>.<br />

Clark and Scarf [1] first <strong>in</strong>troduced the echelon <strong>in</strong>ventory<br />

concept. <strong>Echelon</strong> <strong>in</strong>ventory policies are optimal<br />

for serial systems with stochastic customer demands<br />

under periodic review with set-up costs only at the<br />

highest echelon. Federgruen and Zipk<strong>in</strong> [2] extended the<br />

work to the <strong>in</strong>f<strong>in</strong>ite-horizon case for both discounted<br />

and average cost criteria. Chen [3] <strong>in</strong>troduced a simple<br />

heuristic policy which is 94% effective if set-up costs<br />

are charged <strong>in</strong> both stages.<br />

However <strong>in</strong> real supply cha<strong>in</strong> systems, the members<br />

<strong>in</strong> the supply cha<strong>in</strong> may be <strong>in</strong>dependent and even<br />

*<br />

**<br />

Received: 2006-01-20; revised: 2006-03-22<br />

Supported by the National Natural Science Foundation of Ch<strong>in</strong>a<br />

(Nos. 70325004 and 70532004)<br />

To whom correspondence should be addressed.<br />

E-mail: xbzhao@mail.ts<strong>in</strong>ghua.edu.cn; Tel: 86-10-62784898<br />

compet<strong>in</strong>g. Hence, centralized control of the supply<br />

cha<strong>in</strong> may be impossible and the supply cha<strong>in</strong> has to<br />

be decentralized. Therefore, the objective of each stage<br />

is to optimize its own performance <strong>in</strong>stead of the total<br />

supply cha<strong>in</strong> performance. However, to achieve the<br />

best performance, the members of the supply cha<strong>in</strong><br />

might also be will<strong>in</strong>g to cooperate. Many studies have<br />

focused on the design of the coord<strong>in</strong>ation mechanisms<br />

(e.g., price discount<strong>in</strong>g, additional cost, contracts, etc.)<br />

to achieve the system equilibrium [4,5] . Cachon and<br />

Zipk<strong>in</strong> [6] analyzed the non-cooperative game behavior<br />

and the jo<strong>in</strong>t optimum of a two-echelon serial supply<br />

cha<strong>in</strong> given that all supply cha<strong>in</strong> members have full <strong>in</strong>formation.<br />

Wang et al. [7] extended their model to a one<br />

supplier-multiple retailers configuration. Chen et al. [8]<br />

showed that with proper coord<strong>in</strong>ation the same optimal<br />

profits can be achieved <strong>in</strong> a decentralized system as <strong>in</strong><br />

a centralized system.<br />

Studies of both centralized and decentralized serial<br />

supply cha<strong>in</strong>s normally assume complete <strong>in</strong>formation<br />

shar<strong>in</strong>g <strong>in</strong> the system. At each decision epoch, the supply<br />

cha<strong>in</strong> system states are fully known to each stage<br />

<strong>in</strong> the supply cha<strong>in</strong>. However, <strong>in</strong> a real decentralized<br />

system, each stage plays the role of a player <strong>in</strong> a game<br />

and each player may not know the states of the other


ZHAO Xiaobo (赵晓波) et al:<strong>Information</strong> <strong>Shar<strong>in</strong>g</strong> <strong>in</strong> a <strong>Multi</strong>-<strong>Echelon</strong>… 467<br />

players due to technical reasons or bus<strong>in</strong>ess confidentiality.<br />

They then make decisions based only on their local<br />

states and historical data. In addition, some supply<br />

cha<strong>in</strong> systems seek to partially share <strong>in</strong>formation between<br />

different stages. Therefore, four typical <strong>in</strong>formation<br />

shar<strong>in</strong>g scenarios can be identified <strong>in</strong> a two-stage<br />

decentralized supply cha<strong>in</strong>.<br />

(1) Full <strong>in</strong>formation shar<strong>in</strong>g (FIS). The supplier has<br />

<strong>in</strong>formation about the retailer’s state and customer demands<br />

at each decision po<strong>in</strong>t and the retailer also<br />

knows the supplier’s state.<br />

(2) Supplier-dom<strong>in</strong>ated <strong>in</strong>formation shar<strong>in</strong>g (SDIS).<br />

The supplier has <strong>in</strong>formation concern<strong>in</strong>g the retailer,<br />

but the retailer does not know the state of the supplier.<br />

Therefore, the retailer makes decisions based only on<br />

its local states.<br />

(3) Retailer-dom<strong>in</strong>ated <strong>in</strong>formation shar<strong>in</strong>g (RDIS).<br />

The retailer has <strong>in</strong>formation about the state of the supplier,<br />

but the supplier does not know about the retailer.<br />

(4) Non-<strong>in</strong>formation shar<strong>in</strong>g (NIS). The retailer and<br />

the supplier do not share <strong>in</strong>formation with each other.<br />

This paper considers these different <strong>in</strong>formation<br />

shar<strong>in</strong>g scenarios <strong>in</strong> a two-stage supply cha<strong>in</strong> composed<br />

of a supplier and a retailer. Unlike many prior<br />

studies that assume each stage has a structural <strong>in</strong>ventory<br />

policy like (s, S) or (r, Q) [9,10] , this study <strong>in</strong>vestigates<br />

the equilibrium policies of the supply cha<strong>in</strong> for<br />

general <strong>in</strong>ventory conditions. The analysis considers<br />

decentralized supply cha<strong>in</strong>s with these <strong>in</strong>formation<br />

shar<strong>in</strong>g scenarios as well as a centralized supply cha<strong>in</strong>.<br />

In a decentralized supply cha<strong>in</strong>, each stage <strong>in</strong>dependently<br />

chooses its order<strong>in</strong>g policy to m<strong>in</strong>imize the expected<br />

long-run average operat<strong>in</strong>g cost. Each stage has<br />

<strong>in</strong>ventory hold<strong>in</strong>g costs, lost-sale penalty costs, and<br />

fixed and variable order<strong>in</strong>g costs. Iterative algorithms<br />

are developed to calculate the equilibrium policies and<br />

the total system costs for each <strong>in</strong>formation shar<strong>in</strong>g<br />

scenario. The system costs for the various <strong>in</strong>formation<br />

shar<strong>in</strong>g scenarios are analyzed to show their impact on<br />

the supply cha<strong>in</strong> performance. The results provide <strong>in</strong>sights<br />

<strong>in</strong>to plann<strong>in</strong>g <strong>in</strong>formation shar<strong>in</strong>g scenarios.<br />

1 Model Formulation<br />

The supply cha<strong>in</strong> consists of one supplier and one retailer.<br />

<strong>Inventory</strong> is reviewed periodically and the customers’<br />

demands only occur at the retailer. The <strong>in</strong>ventory<br />

is <strong>in</strong> units. Customers’ demand D at the retailer <strong>in</strong><br />

one period is a stochastic variable, with a probability<br />

mass function f ( x) = P{ D = x}<br />

. An outside supplier<br />

with <strong>in</strong>f<strong>in</strong>ite capacity replenishes goods to the supplier.<br />

The sequence of events is as follows: (1) At the end of<br />

each period, the supplier reviews its <strong>in</strong>ventory quantity<br />

and places an order to the outside supplier. (2) The retailer<br />

reviews its <strong>in</strong>ventory and places an order to the<br />

supplier. (3) At the beg<strong>in</strong>n<strong>in</strong>g of the next period, a<br />

shipment arrives at the supplier. (4) If the on-hand <strong>in</strong>ventory<br />

of the supplier is larger than the order<strong>in</strong>g quantity<br />

from the retailer, the supplier completely satisfies<br />

the retailer; otherwise, the supplier delivers the entire<br />

on-hand <strong>in</strong>ventory to the retailer. (5) The retailer receives<br />

the shipment and the consumers express demands.<br />

There is no backlogg<strong>in</strong>g at either the supplier<br />

or the retailer, so unsatisfied consumer demands and<br />

retailer orders are lost <strong>in</strong> each period.<br />

The costs are charged as follows. At the end of each<br />

period, a hold<strong>in</strong>g cost is charged proportional to the local<br />

on-hand <strong>in</strong>ventory, where h0 is the hold<strong>in</strong>g cost per<br />

unit of goods held per period at the supplier and h 1 is<br />

the hold<strong>in</strong>g cost per unit of goods held per period at the<br />

retailer. The penalty cost at the retailer is proportional<br />

to the number of lost sales, with p 1 be<strong>in</strong>g the cost per<br />

customer lost per period. The penalty cost at the supplier<br />

is proportional to the unsatisfied order quantity<br />

for the retailer, with p 0 be<strong>in</strong>g the cost per unsatisfied<br />

unit per period. The fixed order<strong>in</strong>g costs of the supplier<br />

and the retailer are K0 and K1, respectively. The unit<br />

purchas<strong>in</strong>g costs of the supplier and the retailer are 0 q<br />

and q 1 , respectively.<br />

The on-hand <strong>in</strong>ventory at the supplier at the obser-<br />

vation epoch (i.e., at the end of each period) is denoted<br />

x . The on-hand <strong>in</strong>ventory at the retailer at the ob-<br />

by 0<br />

servation epoch is denoted by x 1 . Assume that the<br />

state space at the supplier is limited to U0 and that at<br />

the retailer is limited to U1. Therefore, the maximum<br />

<strong>in</strong>ventory quantity is U0 at the supplier and U1 at the<br />

retailer.<br />

2 Centralized <strong>Information</strong> <strong>Shar<strong>in</strong>g</strong><br />

(CIS)<br />

A centralized system was discussed by Clark and<br />

Scarf [1] . The major difference between the present<br />

model and Clark and Scarf’s model is that fixed


468<br />

order<strong>in</strong>g costs are charged at both the supplier and the<br />

retailer, whereas fixed order<strong>in</strong>g costs only occur at the<br />

highest echelon <strong>in</strong> Clark and Scarf’s model. The assumption<br />

of fixed order<strong>in</strong>g costs is realistic, but results<br />

<strong>in</strong> analysis difficulties. The assumption causes the<br />

model to no longer possess structural properties for optimal<br />

<strong>in</strong>ventory policies.<br />

The system was modeled as a discrete time Markov<br />

decision process (DTMDP) to obta<strong>in</strong> the optimal <strong>in</strong>ventory<br />

policies. The state space of the centralized system<br />

is<br />

S = { ( x0, x1) | 0≤xi ≤ Ui, i = 01 , } (1)<br />

The action space of the system at state ( x0, x1)<br />

is<br />

{ }<br />

Ax ( 0, x1) = ( a0, a1)|0 ≤ai ≤ Ui − xi, i=<br />

0,1 (2)<br />

The one-step transition probability from state ( x0, x1)<br />

to state ( x′ 0, x′<br />

1)<br />

with action ( a0, a1)<br />

is<br />

P{ ( x′ 0, x′ 1) | ( x0, x1) ; ( a0, a1)<br />

} =<br />

P{ ( x′ 0, x′ 1) | ( x0, x1)<br />

} =<br />

P{ x′ 0 | x0} ⋅ P{ x′ 1| x<br />

1}<br />

(3)<br />

where x i ( i = 01) , is the state of stage i after the<br />

shipment from the supplier to the retailer and before<br />

the customer receives his order. S<strong>in</strong>ce x1≤x1≤ x1 + a1,<br />

then<br />

⎧1,<br />

Px { ′ 0 | x<br />

0}<br />

=⎨<br />

⎩0,<br />

For the retailer,<br />

if x′ 0 = x<br />

0;<br />

else<br />

(4)<br />

⎧P{<br />

D = x1 − x′ 1} ,<br />

⎪<br />

P{ x′ 1| x1} = ⎨P{<br />

D≥ x1} ,<br />

⎪<br />

⎩0,<br />

if 0 < x′ 1≤x1; if x′<br />

1 = 0;<br />

if x′ 1 > x1<br />

(5)<br />

The transition probability only depends on the current<br />

state for a given policy.<br />

Denote function 1{} ⋅ as an <strong>in</strong>dicator function. The<br />

one-step cost is<br />

c(( x′ 0, x′ 1) | ( x0, x1) ; ( a0, a1))<br />

=<br />

c0(( x′ 0, x′ 1) | ( x0, x1) ; ( a0, a1))<br />

+<br />

c1(( x′ 0, x′ 1) | ( x0, x1) ; ( a0, a1))<br />

(6)<br />

where<br />

c0(( x′ 0, x′ 1) | ( x0, x1) ; ( a0, a1))<br />

=<br />

hx′ 0 0 + p0( a1 − x1 + x1)<br />

+<br />

qa + K ⋅ 1 a > 0<br />

(7)<br />

0 0 0 0<br />

{ }<br />

Ts<strong>in</strong>ghua Science and Technology, August 2007, 12(4): 466-474<br />

c1(( x′ 0, x′ 1) | ( x0, x1) ; ( a0, a1))<br />

=<br />

hx′ 1 1+ q1( x1− x1) + K1⋅1 x1− x1><br />

0 +<br />

p max 0, d x 1 x 0<br />

{ }<br />

{ − } ⋅ { ′ = }<br />

1 1 1<br />

(8)<br />

The long-run average cost of the system, given policy<br />

ϕ = { a0( x0, x1) , a1( x0, x1) ∈ A( x0, x1) , ( x0, x1) ∈ S}<br />

, is<br />

then given by<br />

C( ϕ) = ∑ π(<br />

x0, x1) ⋅ EC(( x0, x1) ; ( a0, a1))<br />

(9)<br />

where ( x0 ( x0, x1) ∈S<br />

x1)<br />

( x0, x1)<br />

for policy ϕ and x0 x1 a0 a1<br />

π , is the stationary distribution of state<br />

EC(( , ) ; ( , )) is the<br />

expected one-step cost at state ( x0, x1)<br />

.<br />

EC(( x0, x1) ; ( a0, a1))<br />

=<br />

P ( x′ , x′ ) | ( x , x ) ; ( a , a ) i<br />

∑<br />

( x0′ , x1′ ) ∈S<br />

{ }<br />

0 1 0 1 0 1<br />

c(( x′ , x′ ) | ( x , x ) ; ( a , a ))<br />

0 1 0 1 0 1<br />

(10)<br />

Thus the optimal policy of the centralized system is the<br />

policy that m<strong>in</strong>imizes the cost <strong>in</strong> Eq. (10). Accord<strong>in</strong>g to<br />

Putterman [11] , the policy can be obta<strong>in</strong>ed us<strong>in</strong>g a standard<br />

value iteration algorithm or a policy iteration algorithm.<br />

3 Decentralized <strong>System</strong><br />

In a decentralized system, the supplier and the retailer<br />

make their decisions <strong>in</strong>dependently. The decision objective<br />

of both stages is to m<strong>in</strong>imize their own expected<br />

long-run-average costs.<br />

3.1 Full <strong>in</strong>formation shar<strong>in</strong>g<br />

If full <strong>in</strong>formation shar<strong>in</strong>g is available <strong>in</strong> the system,<br />

the supplier’s order<strong>in</strong>g policies and state are known to<br />

the retailer, and vice versa. Therefore, the state spaces<br />

of the supplier and the retailer are the same.<br />

S = S = ( x , x ) | 0≤x ≤ U , i = 01 , (11)<br />

{ i i }<br />

{ ≤ ≤ }<br />

0 1 0 1<br />

A ( x , x ) = a ( x , x ) | 0 a ( x , x ) U −x<br />

0 0 1 0 0 1 0 0 1 0 0<br />

{ ≤ ≤ }<br />

A ( x , x ) = a ( x , x ) | 0 a ( x , x ) U −x<br />

1 0 1 1 0 1 1 0 1 1 1<br />

(12)<br />

(13)<br />

Assume that the supplier adopts a stationary policy<br />

ϕ 0 = { a0( x0, x1) ∈ A0( x0, x1) , ( x0, x1) ∈ S0}<br />

, which is<br />

known to the retailer. At state ( x0, x1)<br />

, the retailer orders<br />

a1( x0, x1)<br />

and the retailer knows that the supplier<br />

ϕ0<br />

will order a0 ( x0, x1)<br />

. Therefore, the one-step transition<br />

probability of the retailer from state ( x0, x1)<br />

to<br />

( x′ x′<br />

)<br />

a ( x , x ) is determ<strong>in</strong>ed by<br />

state 0, 1 with action 1 0 1


ZHAO Xiaobo (赵晓波) et al:<strong>Information</strong> <strong>Shar<strong>in</strong>g</strong> <strong>in</strong> a <strong>Multi</strong>-<strong>Echelon</strong>… 469<br />

{ ( ′ ′ ) ( ) ( ) }<br />

P x0, x1 | x0, x1 , a1 x0, x1<br />

=<br />

ϕ0<br />

+<br />

⎧ 1 { x′ 0 = ( x0 + a0 ( x0) − a1( x0, x1)) } ⋅ P{ D = x1 + m1 − x′ 1} ,<br />

⎪<br />

ϕ0<br />

+<br />

⎨1<br />

{ x′ 0 = ( x0 + a0 ( x0) − a1( x0, x1)) } ⋅ P{ D≥x1 + m1} ,<br />

⎪<br />

⎪⎩<br />

0, if 0 < x′ 1≤x1 + m1;<br />

if x′<br />

1 = 0;<br />

if x′ 1 > x1 + m1<br />

(14)<br />

m = m<strong>in</strong> a ( x , x ) , x<br />

ϕ0<br />

+ a ( x ) . The transi- retailer’s policy ϕ 1 = { a1( x0, x1) ∈ A1( x0, x1) , ( x0, x1)<br />

∈<br />

where 1 { 1 0 1 0 0 0 }<br />

tion probability of the retailer only depends on the current<br />

state and action.<br />

From the def<strong>in</strong>ition of the DTMDP, with a given policy<br />

ϕ 0 of the supplier, { ( x0, x1) , a1( x0, x1)<br />

} is a DTMDP.<br />

The one-step transition cost can be calculated as discussed<br />

<strong>in</strong> Section 2. The DTMDP solution gives the<br />

P ( x′ , x′ ) | ( x , x ) , a ( x , x ) =<br />

{ }<br />

0 1 0 1 0 0 1<br />

{ ϕ1<br />

+ } { }<br />

{ ϕ1<br />

+ } { ≥ }<br />

1 } S . S<strong>in</strong>ce full <strong>in</strong>formation shar<strong>in</strong>g is available, this<br />

policy ϕ 1 is also known to the supplier. The one-step<br />

transition probability of the supplier from state<br />

( x0, x1)<br />

to state ( x′ 0, x′<br />

1)<br />

with action a0( x0, x1)<br />

is<br />

given by<br />

⎧ 1 x′ 0 = ( x0 + a0( x0) − a1 ( x0, x1)) ⋅ P D = x1 + m0 − x′ 1 , if 0 < x′ 1≤x1 + m0;<br />

⎪<br />

⎨1<br />

x′ 0 = ( x0 + a0( x0) − a1 ( x0, x1)) ⋅ P D x1 + m0 , if x′<br />

1 = 0;<br />

⎪<br />

⎪⎩<br />

0, if x′ 1 > x1 + m0<br />

With a given policy ϕ 1 of the retailer,<br />

{ ( x x ) a ( x x ) }<br />

0, 1 , 0 0, 1 is also a DTMDP, with the solution<br />

giv<strong>in</strong>g a supplier’s policy ϕ′ 0 . If { ϕ0, ϕ1}<br />

is the<br />

equilibrium system policy, then<br />

ϕ ϕ′ = (16)<br />

0<br />

An iterative algorithm can be developed to search<br />

for the equilibrium policy { ϕ0, ϕ1}<br />

. The algorithm is<br />

as follows.<br />

Algorithm 1<br />

Step 1: Set an <strong>in</strong>itial supplier’s policy ϕ 0 .<br />

Step 2: Solve the DTMDP for the retailer given ϕ 0<br />

to get the retailer’s policy ϕ 1 .<br />

Step 3: Solve the DTMDP for the supplier given ϕ 1<br />

to get the supplier’s policy ϕ′ 0 .<br />

Step 4: If ϕ0 = ϕ′ 0 , stop; otherwise let ϕ′ 0 be the<br />

new supplier’s policy and go to Step 2.<br />

3.2 Non-<strong>in</strong>formation shar<strong>in</strong>g<br />

This model has no <strong>in</strong>formation shar<strong>in</strong>g <strong>in</strong> the system<br />

due to technical reasons or bus<strong>in</strong>ess confidentiality.<br />

The supplier cannot know the states and demands of<br />

the retailer, and the retailer cannot know the states and<br />

orders of the supplier. Therefore, both the supplier and<br />

0<br />

(15)<br />

the retailer can only observe their own <strong>in</strong>ventory states.<br />

The state spaces and the action spaces are<br />

S = 012 , , , , U<br />

(17)<br />

{ }<br />

0 0<br />

{ }<br />

A ( x ) = 01 , , 2,<br />

, U −x<br />

(18)<br />

0 0 0 0<br />

{ 012 }<br />

S = ,, , , U<br />

(19)<br />

1 1<br />

{ }<br />

A1( x1) = 0,1,2, , U1 −x1<br />

(20)<br />

If the retailer orders a1( x 1)<br />

from the supplier, he<br />

may receive less than a1( x 1)<br />

from the supplier. An<br />

order-delivery rate matrix, M, is used to describe the<br />

relationship between the order and the delivery to the<br />

retailer,<br />

⎡ m(0,<br />

0)<br />

⎤<br />

⎢<br />

m(1,0) m(1,1)<br />

⎥<br />

M = ⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎣mU ( 1, 0) mU ( 1,1) mU ( 1, U1)<br />

⎦ (21)<br />

where 0 ≤mab ( , ) ≤ 1 is the probability that the delivery<br />

to the retailer is b if he orders a , and<br />

a<br />

( , ) 1<br />

b 0<br />

mab ∑ = , i.e., the summation of any row <strong>in</strong> the<br />

=<br />

matrix is equal to 1.<br />

With matrix M, the one-step transition probability<br />

for the retailer from state x 1 to state x′ 1 with action<br />

a ( x ) ∈ A( x ) is given by<br />

1 1 1 1


470<br />

{ ( ) }<br />

P x′ 1| x1, a1 x1<br />

=<br />

a1<br />

⎧<br />

⎪∑<br />

P{ D= x1 + b− x′ 1} m( a1, b), ⎪b<br />

= 0<br />

⎨ a1<br />

⎪<br />

P{ D x1 + b} m( a1, b) ,<br />

⎪∑<br />

≥<br />

⎩b<br />

= 0<br />

if x′<br />

1 > 0;<br />

if x′<br />

1 = 0<br />

(22)<br />

With a given order-delivery rate matrix M, { x , a ( x ) }<br />

1 1 1<br />

is a DTMDP.<br />

The retailer’s policy ϕ 1 = { a1(0) , a1(1) , , a1( U1)<br />

} is<br />

obta<strong>in</strong>ed by solv<strong>in</strong>g the DTMDP to m<strong>in</strong>imize the ex-<br />

ϕ1<br />

ϕ1<br />

pected long-run average cost. Denote Φ 1 = { π 1 (0) ,<br />

ϕ1 ϕ1<br />

π1 (1) , , π1<br />

( U1)}<br />

as the stationary distribution for policy<br />

ϕ 1 . Furthermore, denote the order distribution of the<br />

retailer for policy ϕ 1 by O1 = { o1(0) , o1(1) , , o1( U1)<br />

} .<br />

The order distribution can be calculated from<br />

1( ) =<br />

U1<br />

k = 0<br />

ϕ1 π1<br />

( ) ⋅ 1 { ϕ1<br />

1 ( ) = } , = 01 , , , 1<br />

o j ∑ k a k j j U (23)<br />

In the system, the retailer’s order distribution is<br />

known to the supplier. With the retailer’s order distribution,<br />

the one-step transition probability for the supplier<br />

from state 0 x to state x′ 0 with action<br />

a ( x ) ∈ A ( x ) is given by<br />

0 0 0 0<br />

U<br />

1<br />

+<br />

{ ′ } ∑ { ′<br />

}<br />

P x | x , a ( x ) = 1 x = ( x + a ( x ) − z) ⋅o<br />

( z)<br />

0 0 0 0 0 0 0 0 1<br />

z=<br />

0<br />

With a given retailer’s order distribution<br />

(24)<br />

1 , O<br />

{ x0 a0( x0)<br />

}<br />

icy ϕ = { a (0) , a (1) , , a ( U ) }<br />

, is a DTMDP. The supplier’s order<strong>in</strong>g pol-<br />

and the stationary<br />

0 0 0 0 0<br />

ϕ0 Φ0 =<br />

ϕ0 π0 ϕ0 , π0 ϕ0<br />

, , π0<br />

U0<br />

state distribution { (0) (1) ( ) }<br />

for this policy are obta<strong>in</strong>ed by solv<strong>in</strong>g the DTMDP.<br />

The order-delivery rate matrix is then updated as<br />

⎡ m′<br />

(0, 0)<br />

⎤<br />

⎢<br />

m′ (1, 0) m′<br />

(1, 1)<br />

⎥<br />

M ′ = ⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎣m′ ( U1, 0) m′ ( U1, 1) m′ ( U1, U1)<br />

⎦ (25)<br />

where<br />

m′ ( a , b)<br />

=<br />

1<br />

U0<br />

ϕ0 ϕ1<br />

1{ b m<strong>in</strong> a1 x0 a0 ( x0) } π 0( x0) o1 ( a1)<br />

x0<br />

0<br />

∗<br />

∑ = ⎡<br />

⎣ , + ⎤<br />

⎦ ⋅ ⋅ (26)<br />

=<br />

that satisfies<br />

a1<br />

∑<br />

0 ≤m′ ( a , b) ≤ 1 , m′ ( a , b)<br />

= 1.<br />

1 1<br />

b=<br />

0<br />

Ts<strong>in</strong>ghua Science and Technology, August 2007, 12(4): 466-474<br />

If the system reaches equilibrium, then for<br />

all a1 = 01 ,, , U1,<br />

b= 01 ,, , a1,<br />

m′ ( a1, b) = m( a1, b)<br />

,<br />

i.e., M = M ′ . Therefore, an iterative algorithm can be<br />

developed to search for the equilibrium order-delivery<br />

rate matrix which will then give the equilibrium policy<br />

ϕ , ϕ .<br />

{ }<br />

0 1<br />

Algorithm 2<br />

Step 1: Set <strong>in</strong>itial values of M and ε .<br />

Step 2: Solve the retailer’s DTMDP to obta<strong>in</strong> the op-<br />

ϕ1<br />

timal policy ϕ 1 , the stationary distribution Φ and<br />

the order distribution O1 of the retailer.<br />

Step 3: Solve the supplier’s DTMDP to obta<strong>in</strong> the<br />

optimal policy ϕ 0 and the stationary distribution<br />

ϕ0<br />

Φ of the supplier.<br />

Step 4: Update the order-delivery rate matrix M ′<br />

accord<strong>in</strong>g to Eq. (26).<br />

Step 5: If ∆( M − M ′ ) < ε , stop; otherwise let M ′<br />

be the new order-delivery rate matrix and return to<br />

Step 2.<br />

In Step 5, ∆( M − M′ ) =|| M − M ′ || , where || X ||<br />

max x − m<strong>in</strong> x .<br />

is the norm with { ij} { ij}<br />

i, j<br />

i, j<br />

3.3 Supplier-dom<strong>in</strong>ated <strong>in</strong>formation shar<strong>in</strong>g<br />

In this case, the supplier knows the retailer’s state at<br />

each decision epoch, but the retailer only knows its<br />

own state. Assume that the supplier also knows the<br />

consumer demands to the retailer. The retailer’s state<br />

space and action space are<br />

S = 012 ,, , , U<br />

(27)<br />

{ }<br />

1 1<br />

{ }<br />

A ( x ) = 01 , , 2,<br />

, U −x<br />

(28)<br />

1 1 1 1<br />

As mentioned <strong>in</strong> Section 3.2, the retailer policy can<br />

be obta<strong>in</strong>ed from the order-delivery rate matrix if the<br />

retailer only knows its own state. Hence, the solution is<br />

similar to that <strong>in</strong> Section 3.2. However, s<strong>in</strong>ce the supplier<br />

knows the retailer’s state, the probability that the<br />

retailer orders a1( x 1)<br />

at state x 1 and receives b <strong>in</strong><br />

the next period depends on the retailer’s current state<br />

x 1 . Therefore, the relationship between the order and<br />

the delivery to the retailer can be described with a vec-<br />

<br />

tor of matrices M = ⎡<br />

⎣<br />

M ⎤ x , x<br />

1 ⎦ 1∈S1, where


ZHAO Xiaobo (赵晓波) et al:<strong>Information</strong> <strong>Shar<strong>in</strong>g</strong> <strong>in</strong> a <strong>Multi</strong>-<strong>Echelon</strong>… 471<br />

M<br />

where mx( a, b ) is the probability that the retailer re-<br />

1<br />

ceives b <strong>in</strong> the next period if it orders a at state x 1 .<br />

Therefore,<br />

x1<br />

x1<br />

0 ≤m ( a, b)<br />

≤ 1 and<br />

⎡ mx<br />

(0,0)<br />

⎤<br />

1<br />

⎢ ⎥<br />

⎢ mx (1, 0) m (1,1)<br />

1 x1<br />

⎥<br />

=<br />

⎢<br />

<br />

⎥<br />

⎢ ⎥<br />

⎢m ( U −x ,0) m ( U −x ,1) m ( U −x , U −x<br />

) ⎥<br />

⎣ x1 1 1 x1 1 1 x1<br />

1 1 1 1 ⎦<br />

a<br />

∑ mx( a, b)<br />

= 1 for<br />

1<br />

b=<br />

0<br />

all a∈ A1( x1)<br />

. With a given M , { x1, a1( x1)<br />

} is a<br />

DTMDP with the same solution procedure as <strong>in</strong> Section<br />

3.2. The DTMDP solution gives the retailer’s order<strong>in</strong>g<br />

ϕ = a (0) , a (1) , , a ( U ) and stationary<br />

policy { }<br />

1 1 1 1 1<br />

ϕ1 ϕ1 ϕ1 ϕ1<br />

state distribution Φ1 = { π1 (0) , π1 (1) , , π1<br />

( U1)<br />

}<br />

.<br />

The state space of the supplier is two-dimensional.<br />

S = ( x , x ) | 0≤x ≤ U , i = 01 , (30)<br />

{ }<br />

0 0 1<br />

i i<br />

{ ≤ ≤ }<br />

A ( x , x ) = a ( x , x ) | 0 a ( x , x ) U − x<br />

0 0 1 0 0 1 0 0 1 0 0<br />

(31)<br />

For the SDIS scenario, the supplier knows the retailer’s<br />

order<strong>in</strong>g policy and the customer demands to<br />

the retailer. The supplier’s one-step transition probability<br />

from state ( x0, x1)<br />

to state ( x′ 0, x′<br />

1)<br />

with action<br />

a0( x0, x1)<br />

can be calculated us<strong>in</strong>g Eq. (15). Therefore,<br />

with a given order<strong>in</strong>g policy ϕ 1 , { ( x0, x1) , a0( x0, x1)<br />

}<br />

is a DTMDP. The supplier’s order<strong>in</strong>g policy<br />

ϕ = a ( x , x ) ∈ A ( x , x ) , ( x , x ) ∈ S and station-<br />

{ }<br />

0 0 0 1 0 0 1 0 1 0<br />

ϕ0 ary state distribution Φ0 ϕ0<br />

= { π0<br />

( x0, x1),( x0, x1) ∈ S0}<br />

are obta<strong>in</strong>ed by solv<strong>in</strong>g the DTMDP. With ϕ 0 and<br />

ϕ0<br />

Φ 0 , the series of order-delivery rate matrices are<br />

updated us<strong>in</strong>g<br />

⎧<br />

m ( a, b)<br />

=<br />

x1<br />

U0<br />

ϕ0 ϕ0<br />

⎪ ∑ π 0 ( x0, x1) ⋅ 1 { x0 + a0 ( x0, x1) = b}<br />

⎪ x0<br />

= 0<br />

U<br />

⎪<br />

0<br />

ϕ0<br />

⎪ ∑ π 0 ( x0, x1)<br />

⎪<br />

x0<br />

= 0<br />

⎨ U0<br />

⎪ ϕ0 ϕ0<br />

π 0 ( x0, x1) ⋅ 1 { x0 + a0 ( x0, x1) > b<br />

⎪ ∑<br />

}<br />

x0<br />

= 0<br />

⎪ , U0<br />

⎪<br />

ϕ0<br />

∑ π 0 ( x0, x1)<br />

x0<br />

= 0<br />

if<br />

<<br />

=<br />

⎪<br />

⎩<br />

, if b a;<br />

b a<br />

(32)<br />

The iterative algorithm based on this analysis to<br />

(29)<br />

search for the order-delivery rate matrices, where<br />

<br />

∆ M − M′ = || M − M ′ || , is as follows.<br />

( ) max x1 x<br />

x 1<br />

1∈S1 Algorithm 3<br />

Step 1: Set <strong>in</strong>itial values of M and ε .<br />

Step 2: Solve the retailer’s DTMDP to obta<strong>in</strong> the op-<br />

ϕ1<br />

timal policy ϕ 1 and the stationary distribution Φ 1 .<br />

Step 3: Solve the supplier’s DTMDP to obta<strong>in</strong> the<br />

ϕ0<br />

optimal policy ϕ 0 and the stationary distribution Φ 0 .<br />

<br />

Step 4: Update the order-delivery rate matrices, M ′ ,<br />

us<strong>in</strong>g Eq. (32).<br />

<br />

<br />

Step 5: If ∆( M − M ′ ) < ε , stop; otherwise let M ′<br />

be the new order-delivery rate matrices and return to<br />

Step 2.<br />

3.4 Retailer-dom<strong>in</strong>ated <strong>in</strong>formation shar<strong>in</strong>g<br />

In this case the retailer knows the supplier’s state at<br />

each decision time, but the supplier only knows its<br />

own state. Therefore, the state space and action space<br />

of the supplier are the same as <strong>in</strong> case NIS.<br />

S = 012 , , , , U<br />

(33)<br />

{ }<br />

0 0<br />

{ }<br />

A ( x ) = 01 , , 2,<br />

, U − x (34)<br />

0 0 0 0<br />

S<strong>in</strong>ce the retailer knows the supplier’s state, the order<br />

distribution depends on the supplier’s state. Therefore,<br />

the order distribution observed by the supplier is<br />

a two-dimensional matrix<br />

⎡ o (0,0) o (0,1) o (0, U ) ⎤<br />

1 1 1 1<br />

⎢<br />

o1(1, 0) o1(1,1) o1(1, U1)<br />

⎥<br />

⎢<br />

<br />

⎥<br />

O 1 =<br />

⎢ ⎥<br />

⎢ ⎥<br />

o ( U ,0) o ( U ,1) o ( U , U )<br />

⎣ 1 0 1 0 1 0 1 ⎦<br />

(35)<br />

where o1( x0, a 1)<br />

is the probability that the retailer or-<br />

x .<br />

ders 1 a if the <strong>in</strong>ventory state of the supplier is 0<br />

Hence, for all x0∈ S0,<br />

U1<br />

∑<br />

0 ≤o ( x , a ) ≤ 1 , o ( x , a ) = 1 (36)<br />

1 0 1 1 0 1<br />

a1<br />

= 0<br />

The supplier’s one-step transition probability from<br />

state 0 x to state 0 x′ with action a0( x 0)<br />

can be<br />

expressed as


472<br />

{ | , ( ) }<br />

Ts<strong>in</strong>ghua Science and Technology, August 2007, 12(4): 466-474<br />

P x′ 0 x0 a0 x0<br />

=<br />

ϕ0 ϕ0<br />

π0 (1) , , π0<br />

( U0)}<br />

for this policy are obta<strong>in</strong>ed by<br />

⎧ o0( x0, x0 + a0( x0) − x′ 0), ⎪ U1<br />

⎪<br />

⎨ ∑ o0( x0, b), ⎪b=<br />

x0+ a0( x0)<br />

⎪<br />

⎩ 0,<br />

if x0 + a0( x0) ≥ x′<br />

0 > 0;<br />

if x′<br />

0 = 0;<br />

if x′ 0 > x0 + a0( x0)<br />

solv<strong>in</strong>g the DTMDP.<br />

The retailer’s state space and action space are<br />

S1 = { ( x0, x1) | 0≤xi ≤ Ui, i = 01 , } (38)<br />

A1( x0, x1) = { 0,1, , U1 − x1}<br />

(39)<br />

(37) For the RDIS scenario, the retailer knows the sup-<br />

Therefore, with a given retailer’s order distribution<br />

matrix O 1 , { x0, a0( x0)<br />

} is a DTMDP. Analogously,<br />

the order<strong>in</strong>g policy ϕ 0 = { a0(0) , a0(1) , , a0( U0)<br />

} and<br />

plier’s order<strong>in</strong>g policy ϕ 0 and stationary state distri-<br />

ϕ0<br />

bution Φ 0 . Given policy ϕ 0 , the retailer’s one-step<br />

transition probability from state ( x0, x1)<br />

to ( x′ 0, x′<br />

1)<br />

the state stationary distribution<br />

ϕ0 Φ0 ϕ0<br />

= { π0<br />

(0) , with action a1( x0, x1)<br />

is<br />

P{ ( x′ 0, x′ 1) | ( x0, x1) , a1( x0, x1)<br />

} =<br />

ϕ0<br />

+<br />

⎧ 1 { x′ 0 = ( x0 + a0 ( x0) − a1( x0, x1)) } ⋅ P{ D = x1 + m− x′ 1} ,<br />

⎪<br />

ϕ0<br />

+<br />

⎨1<br />

{ x′ 0 = ( x0 + a0 ( x0) − a1( x0, x1)) } ⋅ P{ D≥x1 + m} ,<br />

⎪<br />

⎪⎩<br />

0,<br />

if 0 < x′ 1≤x1 + m;<br />

if x′<br />

1 = 0;<br />

if x′ 1 > x1 + m<br />

(40)<br />

ϕ0<br />

where m m<strong>in</strong> { a1( x0 x1) x0 a0 ( x0)<br />

}<br />

= , , + .<br />

ϕ 0 1<br />

For a given supplier’s order<strong>in</strong>g policy 0 , {( x , x ) ,<br />

a1( x0, x 1)}<br />

is a DTMDP. The DTMDP solution gives<br />

the order<strong>in</strong>g policy ϕ 1 = { a1( x0, x1) ∈ A1( x0, x1) , ( x0, x1)<br />

∈<br />

S and the stationary state distribution ϕ1<br />

Φ =<br />

1 }<br />

ϕ1<br />

{ π1 ( x0, x1),( x0, x1) ∈ S1}<br />

of the retailer. If { ϕ0, ϕ 1}<br />

is<br />

an equilibrium po<strong>in</strong>t policy, then the def<strong>in</strong>ition of the<br />

order<strong>in</strong>g distribution matrix, O 1 , leads to<br />

o (, i j)<br />

=<br />

1<br />

U1<br />

∑<br />

b=<br />

0<br />

ϕ1 ϕ1<br />

1 1<br />

U1<br />

b=<br />

0<br />

ϕ1<br />

1<br />

{ }<br />

π ( ib , ) ⋅ 1 a ( ib , ) = j<br />

∑<br />

π ( ib , )<br />

for all i∈S0, j∈ A1<br />

(41)<br />

Therefore, the iterative algorithm to search for the<br />

order<strong>in</strong>g distribution matrix O 1 is as follows.<br />

Algorithm 4<br />

Step 1: Set <strong>in</strong>itial values of O 1 andε .<br />

Step 2: Solve the supplier’s DTMDP to obta<strong>in</strong> the<br />

supplier’s order<strong>in</strong>g policy ϕ 0 .<br />

Step 3: Solve the retailer’s DTMDP to obta<strong>in</strong> the<br />

retailer’s order<strong>in</strong>g policy ϕ 1 and the stationary<br />

ϕ1<br />

distribution Φ 1 .<br />

,<br />

1<br />

Step 4: Update the order<strong>in</strong>g distribution matrix 1 ′<br />

O<br />

us<strong>in</strong>g Eq. (41).<br />

Step 5: If ∆( O1 − O ′ 1)<br />

< ε , stop; otherwise let O ′ 1<br />

be the new order<strong>in</strong>g distribution matrix and return to<br />

Step 2, where ∆( O1 − O′ 1) =|| O ′ 1 − O 1||<br />

.<br />

4 Numerical Comparisons and<br />

Analyses<br />

The algorithms for the s<strong>in</strong>gle supplier-s<strong>in</strong>gle retailer<br />

supply cha<strong>in</strong>s with various <strong>in</strong>formation shar<strong>in</strong>g scenarios<br />

were developed to determ<strong>in</strong>e their <strong>in</strong>ventory policies.<br />

The different <strong>in</strong>formation shar<strong>in</strong>g scenarios will<br />

result <strong>in</strong> different total expected long-run-average costs<br />

of the supply cha<strong>in</strong>s. The algorithms were studied numerically<br />

to show the valuation of the total cost with<br />

respect to the <strong>in</strong>formation shar<strong>in</strong>g scenarios.<br />

The analyses calculated the equilibrium po<strong>in</strong>ts us<strong>in</strong>g<br />

randomly generated groups of system parameters. The<br />

demand process at the retailer was assumed to follow a<br />

Poisson process with parameter λ . The parameters<br />

were generated with<strong>in</strong> the ranges listed <strong>in</strong> Table 1.<br />

Table 1 Parameters’ range<br />

h0 h1 p0 p1 K0 K1 λ<br />

[0.1, 3.0] [h 0, h 0+3.0] [h 0,15h 0] [h 1,15h 1] [0, 60h 0] [0, 20h 1] [0.5, 6.5]


ZHAO Xiaobo (赵晓波) et al:<strong>Information</strong> <strong>Shar<strong>in</strong>g</strong> <strong>in</strong> a <strong>Multi</strong>-<strong>Echelon</strong>… 473<br />

The other parameters were fixed for all the numerical<br />

tests.<br />

The calculations showed that the iterative algorithms<br />

converge for most parameter groups. When the algorithms<br />

failed to converge, the results varied cyclically<br />

over a fixed set of state-action spaces. The analysis<br />

Table 2 Parameters for numerical example I<br />

objective is the system long-run-average cost, which<br />

may reach its limit for a regular cyclic policy. None of<br />

the calculations gave divergent results.<br />

Table 2 presents one group of parameters used <strong>in</strong> the<br />

numerical studies to calculate the total supply cha<strong>in</strong><br />

costs for each scenario. The results are listed <strong>in</strong> Table 3.<br />

h 0 h 1 p 0 p 1 K 0 K 1 q 0 Q 1 U 0 U 1 λ ε<br />

2.5 3.6 8.6 16.5 36.0 2.5 1.0 1.0 19 9 4.5 1×10 −7<br />

Table 3 Cost comparison for numerical example I<br />

Supplier’s cost Retailer’s cost Total cost<br />

CIS 23.43 16.33 39.76<br />

FIS 27.07 15.03 42.10<br />

SDIS 27.55 14.74 42.29<br />

RDIS 27.24 15.83 43.07<br />

NIS 39.38 16.71 56.09<br />

The numerical results show that the total cost <strong>in</strong> the<br />

centralized system is 5.9% lower than the FIS<br />

cost, 6.4% lower than the SDIS cost, 8.3% lower than<br />

the RDIS cost, and 41.1% lower than the NIS cost. Although<br />

the CIS system cost is the lowest, the CIS retailer’s<br />

cost is not the lowest, but is greater than the retailer’s<br />

costs with the FIS, SDIS, and RDIS scenarios<br />

Table 4 Parameters for numerical example Ⅱ<br />

<strong>in</strong> this example.<br />

This example shows that the total system cost decreases<br />

with <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>formation shar<strong>in</strong>g. However,<br />

a higher <strong>in</strong>formation shar<strong>in</strong>g level does not necessarily<br />

result <strong>in</strong> a lower system cost <strong>in</strong> a decentralized system.<br />

Table 4 shows the parameters for such an example.<br />

h 0 h 1 p 0 p 1 K 0 K 1 q 0 q 1 U 0 U 1 λ ε<br />

0.6 2.9 5.4 37.7 30.0 23.2 1.0 1.0 19 9 6.3 1×10 −7<br />

In exampleⅡthe FIS system cost is higher than the<br />

SDIS system cost, as shown <strong>in</strong> Table 5. This result illustrates<br />

that <strong>in</strong>formation shar<strong>in</strong>g does not always reduce<br />

the system cost <strong>in</strong> a decentralized system due to<br />

Table 5 Cost comparison for numerical example Ⅱ<br />

competition.<br />

The various <strong>in</strong>formation shar<strong>in</strong>g levels may also result<br />

<strong>in</strong> the same equilibrium po<strong>in</strong>ts and the same costs.<br />

Table 6 lists the parameters for such an example.<br />

Supplier’s cost Retailer’s cost Total cost<br />

CIS 20.12 38.46 58.58<br />

FIS 21.01 38.46 59.47<br />

SDIS 21.05 38.16 59.21<br />

RDIS 23.39 37.28 61.67<br />

NIS 35.41 39.70 75.11<br />

Table 6 Parameters for numerical example Ⅲ<br />

h 0 h 1 p 0 p 1 K 0 K 1 q 0 q 1 U 0 U 1 λ ε<br />

2.6 3.3 31.2 16.5 30.6 25.4 1.0 1.0 19 9 5.5 1×10 −7


474<br />

In example Ⅲ, the SDIS and FIS supply cha<strong>in</strong>s<br />

have the same equilibrium po<strong>in</strong>t, as shown <strong>in</strong> Table 7,<br />

which means that the retailer will follow the same <strong>in</strong>ventory<br />

policies with the FIS and SDIS scenarios.<br />

S<strong>in</strong>ce the retailer’s <strong>in</strong>ventory policy with the SDIS<br />

scenario is a local policy (the policy only depends on<br />

the local <strong>in</strong>ventory state), the retailer also follows a local<br />

<strong>in</strong>ventory policy with the FIS scenario.<br />

Table 7 Cost comparison for numerical example Ⅲ<br />

Supplier’s cost Retailer’s cost Total cost<br />

CIS 22.09 35.67 57.76<br />

FIS 24.54 34.78 59.32<br />

SDIS 24.54 34.78 59.32<br />

RDIS 30.66 35.42 66.08<br />

NIS 35.60 39.45 75.05<br />

5 Conclusions<br />

A two-stage supply cha<strong>in</strong> system with a s<strong>in</strong>gle supplier<br />

and a s<strong>in</strong>gle retailer was analyzed for various <strong>in</strong>formation<br />

shar<strong>in</strong>g scenarios: centralized <strong>in</strong>formation shar<strong>in</strong>g,<br />

full <strong>in</strong>formation shar<strong>in</strong>g, suppliers dom<strong>in</strong>ated <strong>in</strong>formation<br />

shar<strong>in</strong>g, retailer-dom<strong>in</strong>ated <strong>in</strong>formation shar<strong>in</strong>g,<br />

and non <strong>in</strong>formation shar<strong>in</strong>g. Numerical examples<br />

show that the system cost with the NIS scenario is<br />

much higher than that with the CIS scenario. Furthermore,<br />

higher <strong>in</strong>formation shar<strong>in</strong>g levels do not always<br />

generate a lower system cost <strong>in</strong> a decentralized supply<br />

cha<strong>in</strong> due to <strong>in</strong>ventory competition. Depend<strong>in</strong>g on the<br />

system, the total cost of the FIS scenario can be larger<br />

than, equal to, or smaller than the cost of the SDIS<br />

scenario.<br />

Ts<strong>in</strong>ghua Science and Technology, August 2007, 12(4): 466-474<br />

References<br />

[1] Clark A, Scarf H. Optimal policies for a multi-echelon <strong>in</strong>ventory<br />

problem. Management Science, 1960, 6(4): 475-490.<br />

[2] Federgruen A, Zipk<strong>in</strong> P H. Computational issues <strong>in</strong> an <strong>in</strong>f<strong>in</strong>ite-horizon,<br />

multiechelon <strong>in</strong>ventory model. Operations<br />

Research, 1984, 32(4): 818-836.<br />

[3] Chen F. 94%-effective policies for a two-stage serial <strong>in</strong>ventory<br />

system with stochastic demand. Management Science,<br />

1999, 45(12): 1679-1696.<br />

[4] Axsater S. A framework for decentralized multi-echelon<br />

<strong>in</strong>ventory control. IIE Transactions, 2001, 33: 91-97.<br />

[5] Cachon G P. Stock wars: <strong>Inventory</strong> competition <strong>in</strong> a twoechelon<br />

supply cha<strong>in</strong> with multiple retailers. Operations<br />

Research, 2001, 49(5): 658-674.<br />

[6] Cachon G P, Zipk<strong>in</strong> P H. Competitive and cooperative <strong>in</strong>ventory<br />

policies <strong>in</strong> a two-stage supply cha<strong>in</strong>. Management<br />

Science, 1999, 45(7): 936-953.<br />

[7] Wang H W, Guo M, Efstathiou J. A game-theoretical cooperative<br />

mechanism design for a two-echelon decentralized<br />

supply cha<strong>in</strong>. European Journal of Operational Research,<br />

2004, 157: 372-388.<br />

[8] Chen F, Federgruen A, Zheng Y S. Coord<strong>in</strong>ation mechanisms<br />

for a distribution system with one supplier and multiple<br />

retailers. Management Science, 2001, 47(5): 693-708.<br />

[9] Lau J S K, Huang G Q, Mak K L. Impact of <strong>in</strong>formation<br />

shar<strong>in</strong>g on <strong>in</strong>ventory replenishment <strong>in</strong> divergent supply<br />

cha<strong>in</strong>s. International Journal of Production Research,<br />

2004, 42(5): 919-941.<br />

[10] Feng Y, Xiao B. A new algorithm for comput<strong>in</strong>g optimal<br />

(s, S) policies <strong>in</strong> a stochastic s<strong>in</strong>gle item/location <strong>in</strong>ventory<br />

system. IIE Transactions, 2000, 32(11): 1081-1090.<br />

[11] Putterman M L. Markov Decision Process. New York:<br />

John Wiley & Sons, 1984.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!