16.08.2013 Views

Effect of surface radiation on RBC in cavities heated from below

Effect of surface radiation on RBC in cavities heated from below

Effect of surface radiation on RBC in cavities heated from below

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>RBC</strong> <strong>in</strong> <strong>cavities</strong> <strong>heated</strong> <strong>from</strong> <strong>below</strong>☆<br />

M. Ashish Gad 1 , C. Balaji ⁎<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Madras, Chennai, 600 036, India<br />

article <strong>in</strong>fo<br />

Available <strong>on</strong>l<strong>in</strong>e 26 August 2010<br />

Keywords:<br />

Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong><br />

Natural c<strong>on</strong>vecti<strong>on</strong><br />

Surface <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g><br />

Bottom <strong>heated</strong> enclosure<br />

Onset <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong><br />

1. Introducti<strong>on</strong><br />

abstract<br />

Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> occurs <strong>in</strong> a fluid layer which is<br />

c<strong>on</strong>f<strong>in</strong>ed between two thermally c<strong>on</strong>duct<strong>in</strong>g plates, and is <strong>heated</strong><br />

<strong>from</strong> <strong>below</strong> to produce a fixed temperature difference. Rayleigh–<br />

Benard c<strong>on</strong>vecti<strong>on</strong> (<strong>RBC</strong>) was first studied analytically by Lord<br />

Rayleigh <strong>in</strong> 1916 <strong>in</strong> relati<strong>on</strong> to the experiments made by Benard <strong>in</strong><br />

1900. Though Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> has been widely studied <strong>in</strong><br />

the literature, studies <strong>on</strong> c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a cavity <strong>heated</strong> <strong>from</strong> <strong>below</strong><br />

that simultaneously take <strong>in</strong>to account effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> are<br />

scarce. The study <str<strong>on</strong>g>of</str<strong>on</strong>g> bottom <strong>heated</strong> <strong>cavities</strong> is important for a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eng<strong>in</strong>eer<strong>in</strong>g applicati<strong>on</strong>s such as solar collector design, passive<br />

energy storage and micro-manufactur<strong>in</strong>g techniques such as<br />

lithography.<br />

2. Review <str<strong>on</strong>g>of</str<strong>on</strong>g> literature<br />

Gille and Goody [5] c<strong>on</strong>ducted experimental studies <strong>on</strong> the effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radiative transfer <strong>on</strong> the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> by<br />

compar<strong>in</strong>g data for dry air and NH 3 between parallel alum<strong>in</strong>um plates<br />

ma<strong>in</strong>ta<strong>in</strong>ed at different temperatures. Their experiments <strong>in</strong>dicated<br />

that the critical Rayleigh number <strong>in</strong> NH 3 is greatly <strong>in</strong>creased<br />

compared to that for air. Lan et al. [6], experimentally, determ<strong>in</strong>ed<br />

the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> horiz<strong>on</strong>tal layers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vary<strong>in</strong>g mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> air and CO2. They found out a maximum <strong>in</strong>crease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 20% <strong>in</strong> the critical Rayleigh number. Lan et al. [7] used l<strong>in</strong>ear<br />

stability analysis and weakly n<strong>on</strong>-l<strong>in</strong>ear analysis to determ<strong>in</strong>e the<br />

critical Rayleigh number for the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> three-dimensi<strong>on</strong>al enclosure us<strong>in</strong>g spectral methods.<br />

☆ Communicated by A.R. Balakrishnan.<br />

⁎ Corresp<strong>on</strong>d<strong>in</strong>g author.<br />

E-mail address: balaji@iitm.ac.<strong>in</strong> (C. Balaji).<br />

1 Graduate student.<br />

0735-1933/$ – see fr<strong>on</strong>t matter © 2010 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.icheatmasstransfer.2010.08.003<br />

Internati<strong>on</strong>al Communicati<strong>on</strong>s <strong>in</strong> Heat and Mass Transfer 37 (2010) 1459–1464<br />

C<strong>on</strong>tents lists available at ScienceDirect<br />

Internati<strong>on</strong>al Communicati<strong>on</strong>s <strong>in</strong> Heat and Mass Transfer<br />

journal homepage: www.elsevier.com/locate/ichmt<br />

Numerical <strong>in</strong>vestigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> comb<strong>in</strong>ed free c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> enclosures for Rayleigh–<br />

Benard c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air are carried out us<strong>in</strong>g FLUENT 6.3, with a view to determ<strong>in</strong>e the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>vecti<strong>on</strong> and to propose correlati<strong>on</strong>s for c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt numbers based <strong>on</strong> a detailed<br />

parametric study. The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> is delayed with an <strong>in</strong>crease <strong>in</strong> the emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sidewalls. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> however dim<strong>in</strong>ishes with aspect ratio<br />

(AR) and for AR=8, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> ceases. Post-<strong>on</strong>set, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the<br />

c<strong>on</strong>vecti<strong>on</strong> heat transfer becomes <strong>in</strong>significant bey<strong>on</strong>d an aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.<br />

© 2010 Elsevier Ltd. All rights reserved.<br />

Chunmei and Jayathi [3] carried out a numerical <strong>in</strong>vestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flow<br />

transiti<strong>on</strong>s <strong>in</strong> deep three-dimensi<strong>on</strong>al <strong>cavities</strong> <strong>heated</strong> <strong>from</strong> <strong>below</strong> to<br />

obta<strong>in</strong> the critical Rayleigh number for the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> and the<br />

transiti<strong>on</strong> to turbulence <strong>in</strong> tall <strong>cavities</strong> with aspect ratio vary<strong>in</strong>g <strong>from</strong><br />

1 to 5. To determ<strong>in</strong>e the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong>, steady simulati<strong>on</strong>s were<br />

d<strong>on</strong>e start<strong>in</strong>g with a Rayleigh number range across which the<br />

transiti<strong>on</strong> occurs. T<strong>on</strong>g et al. [12] carried out numerical simulati<strong>on</strong>s<br />

to determ<strong>in</strong>e the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> tall and shallow<br />

rectangular enclosures for both bottom <strong>heated</strong> and differentially<br />

<strong>heated</strong> c<strong>on</strong>figurati<strong>on</strong>s. The critical Rayleigh number was <strong>in</strong>sensitive to<br />

the aspect ratio for flat, wide enclosures but, <strong>on</strong> the c<strong>on</strong>trary, the<br />

critical value <strong>in</strong>creased markedly with <strong>in</strong>creas<strong>in</strong>g aspect ratio for tall,<br />

narrow enclosures.<br />

Though the literature <strong>on</strong> free c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> enclosures is vast,<br />

<strong>in</strong>vestigati<strong>on</strong>s which explore the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> c<strong>on</strong>vecti<strong>on</strong> are<br />

scarce. Balaji and Venkateshan [1,2] carried out numerical <strong>in</strong>vestigati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> free c<strong>on</strong>vecti<strong>on</strong> coupled with <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> a<br />

differentially <strong>heated</strong> square cavity. They showed that <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> leads to a drop <strong>in</strong> the c<strong>on</strong>vective comp<strong>on</strong>ent but this<br />

reducti<strong>on</strong> tends to be compensated by the radiative transfer between<br />

active walls. Ridouane et al. [10] discussed the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> an air filled square cavity <strong>heated</strong> <strong>from</strong><br />

<strong>below</strong> cooled <strong>from</strong> above us<strong>in</strong>g a numerical model based <strong>on</strong> f<strong>in</strong>ite<br />

differences. Ridouane and Hasnaoui [11], numerically, <strong>in</strong>vestigated<br />

the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the flow and temperature<br />

patterns. The oscillatory behavior, characteriz<strong>in</strong>g the unsteady-state<br />

soluti<strong>on</strong>s dur<strong>in</strong>g the transiti<strong>on</strong>s <strong>from</strong> bicellular flows to the unicellular<br />

flow were observed and discussed. Laboratory experiments explor<strong>in</strong>g<br />

the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> c<strong>on</strong>vecti<strong>on</strong> are scarce. Am<strong>on</strong>g the few<br />

studies are the <strong>on</strong>e by Ramesh and Venkateshan [8] who c<strong>on</strong>ducted<br />

<strong>in</strong>terferometric studies <strong>on</strong> the problem undertaken numerically by<br />

Balaji and Venkateshan. Later, Ramesh et al. [9] analyzed the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a square enclosure with<br />

<str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g>.


1460 M.A. Gad, C. Balaji / Internati<strong>on</strong>al Communicati<strong>on</strong>s <strong>in</strong> Heat and Mass Transfer 37 (2010) 1459–1464<br />

Nomenclature<br />

English symbols<br />

AR aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> cavity, L/H<br />

Cp specific heat <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid, kJ/kg K<br />

g gravitati<strong>on</strong>al accelerati<strong>on</strong>, 9.81 m/s 2<br />

Gr Grash<str<strong>on</strong>g>of</str<strong>on</strong>g> number, gβΔTH 3 /ν 2<br />

H characteristic height <str<strong>on</strong>g>of</str<strong>on</strong>g> the doma<strong>in</strong>, m<br />

L characteristic length <str<strong>on</strong>g>of</str<strong>on</strong>g> the doma<strong>in</strong>, m<br />

NRC <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> <strong>in</strong>teracti<strong>on</strong> parameter, σ TH 4 d/<br />

k(TH−T c)<br />

Nu Nusselt number<br />

NuC c<strong>on</strong>vecti<strong>on</strong> Nusselt number, q″ C L/kf ΔT<br />

NuR <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt number, q″R L/kf ΔT<br />

Pr Prandtl number<br />

Ra Rayleigh number, gβΔTH 3 /αν<br />

T temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid, K<br />

T∞ ambient temperature, K<br />

TC temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> cold plate, K<br />

TH temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> hot plate, K<br />

To reference temperature, K<br />

TR temperature ratio, TC/TH<br />

U velocity <strong>in</strong> x directi<strong>on</strong>, m/s<br />

V velocity <strong>in</strong> y directi<strong>on</strong>, m/s<br />

x, y coord<strong>in</strong>ate directi<strong>on</strong>s<br />

Greek symbols<br />

α thermal diffusivity, k<br />

,m<br />

ρCp 2 /s<br />

β coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal expansi<strong>on</strong>, K −1<br />

ΔT (TH−TC), K<br />

ε emissivity<br />

εH emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the hot wall<br />

εC emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the cold wall<br />

εB emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the bottom wall<br />

εT emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the top wall<br />

εR emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the right wall<br />

εL emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the left wall<br />

ρ density <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid, kg/m 3<br />

ρo density <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid at reference temperature, kg/m 3<br />

μ dynamic viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid, Ns/m 2<br />

ν k<strong>in</strong>ematic viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid, m 2 /s<br />

Though the preced<strong>in</strong>g literature review shows that c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a<br />

cavity has received c<strong>on</strong>siderable attenti<strong>on</strong>, the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong><br />

<strong>in</strong> a cavity <strong>heated</strong> <strong>from</strong> <strong>below</strong> where <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong>fluences the<br />

heat transfer has not received much attenti<strong>on</strong>. In c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this,<br />

the objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study are to determ<strong>in</strong>e the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> for<br />

various aspect ratios and to study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the<br />

fluid flow and heat transfer characteristics for bottom <strong>heated</strong> <strong>cavities</strong>.<br />

3. Methodology<br />

3.1. Govern<strong>in</strong>g equati<strong>on</strong>s<br />

All the problems c<strong>on</strong>sidered for the present study <strong>in</strong>volve twodimensi<strong>on</strong>al,<br />

lam<strong>in</strong>ar steady c<strong>on</strong>vecti<strong>on</strong> with <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g>. The<br />

medium under c<strong>on</strong>siderati<strong>on</strong> is air which is c<strong>on</strong>sidered to be <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>stant thermo-physical properties except for density. The density<br />

changes are modeled via the Bouss<strong>in</strong>esq approximati<strong>on</strong>. Viscous heat<br />

dissipati<strong>on</strong> and compressibility effects are c<strong>on</strong>sidered to be negligible.<br />

Based <strong>on</strong> the above assumpti<strong>on</strong>s, the govern<strong>in</strong>g equati<strong>on</strong>s for mass,<br />

momentum and energy for a steady two-dimensi<strong>on</strong>al flow <strong>in</strong> the fluid<br />

doma<strong>in</strong> are given <strong>below</strong> <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> primitive variables.<br />

C<strong>on</strong>t<strong>in</strong>uity equati<strong>on</strong><br />

∂U ∂V<br />

þ ¼ 0 ð1Þ<br />

∂X ∂Y<br />

X momentum equati<strong>on</strong><br />

U ∂U ∂U<br />

þ V ¼<br />

∂X ∂Y<br />

1 ∂P<br />

ρ ∂X þ ν ∂2U ∂X2 þ ∂2U ∂Y2 !<br />

Y momentum equati<strong>on</strong><br />

U ∂V ∂V<br />

þ V ¼<br />

∂X ∂Y<br />

1 ∂P<br />

ρ ∂Y þ ν ∂2V ∂X2 þ ∂2V ∂Y2 !<br />

þ gβðT T∞Þ ð3Þ<br />

Energy equati<strong>on</strong><br />

U ∂T ∂T<br />

þ V<br />

∂X ∂Y ¼ α ∂2T ∂X2 þ ∂2T ∂Y2 !<br />

For the problem under c<strong>on</strong>siderati<strong>on</strong>, the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete<br />

ord<strong>in</strong>ates (DO) <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> heat transfer model <strong>in</strong> FLUENT was found to<br />

be better than the <str<strong>on</strong>g>surface</str<strong>on</strong>g>-to-<str<strong>on</strong>g>surface</str<strong>on</strong>g> (S2S) <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> heat transfer<br />

model for the range <str<strong>on</strong>g>of</str<strong>on</strong>g> emissivity under c<strong>on</strong>siderati<strong>on</strong>. In the present<br />

study, the optical thickness is set to 0, signify<strong>in</strong>g a transparent<br />

medium.<br />

3.2. Physical model and boundary c<strong>on</strong>diti<strong>on</strong>s<br />

The geometry under c<strong>on</strong>siderati<strong>on</strong> is shown <strong>in</strong> Fig. 1. The fluid<br />

z<strong>on</strong>e is <strong>in</strong>itialized as be<strong>in</strong>g at rest. The bottom and top plates are<br />

isothermal, with the bottom plate at a higher temperature and the<br />

horiz<strong>on</strong>tal sidewalls are adiabatic. The emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the top and<br />

bottom walls is kept 0.85 throughout the study. The emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

horiz<strong>on</strong>tal sidewalls is a variable (ε L=ε R). These boundary c<strong>on</strong>diti<strong>on</strong>s<br />

are expressed mathematically <strong>in</strong> Eqs. (5)–(9) and are shown <strong>in</strong> Fig. 1.<br />

The important n<strong>on</strong>-dimensi<strong>on</strong>al numbers for the problem are:<br />

aspect ratio—AR, temperature ratio—TR, Grash<str<strong>on</strong>g>of</str<strong>on</strong>g> number—Gr and the<br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> <strong>in</strong>teracti<strong>on</strong> parameter, N RC.<br />

For the horiz<strong>on</strong>tal sidewalls,<br />

∑q =0 ð5Þ<br />

ε R = ε L = ε ð6Þ<br />

For the bottom wall,<br />

T = T H; ε H =0:85 ð7Þ<br />

Fig. 1. Geometry and boundary c<strong>on</strong>diti<strong>on</strong>s.<br />

ð2Þ<br />

ð4Þ


For the top wall,<br />

T = T C = 303; ε C =0:85 ð8Þ<br />

For all the walls,<br />

U = V =0 ð9Þ<br />

3.3. Soluti<strong>on</strong> procedure<br />

The govern<strong>in</strong>g Eqs. (1)–(4) and the radiative transfer equati<strong>on</strong> are<br />

discretized us<strong>in</strong>g the f<strong>in</strong>ite volume method and the result<strong>in</strong>g<br />

equati<strong>on</strong>s are solved <strong>in</strong> an iterative procedure us<strong>in</strong>g the standard<br />

implicit, sec<strong>on</strong>d order upw<strong>in</strong>d solver with velocity and pressure<br />

coupl<strong>in</strong>g achieved by the SIMPLE algorithm. Computati<strong>on</strong>s have been<br />

carried out us<strong>in</strong>g FLUENT 6.3 [4]. Segregated, implicit, 2-D, lam<strong>in</strong>ar<br />

steady <strong>in</strong>compressible flow solver has been employed for the<br />

numerical study. The c<strong>on</strong>vergence criteri<strong>on</strong> for the c<strong>on</strong>t<strong>in</strong>uity, X and<br />

Y momentum quantities and discrete ord<strong>in</strong>ate <strong>in</strong>tensity residuals is<br />

set as 10 −6 and for the energy equati<strong>on</strong> it is 10 −12 .<br />

3.4. Procedure to determ<strong>in</strong>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong><br />

In the present study, steady state simulati<strong>on</strong>s, start<strong>in</strong>g with a<br />

Rayleigh number range across which the transiti<strong>on</strong> occurs, are carried<br />

out and a bisecti<strong>on</strong> algorithm is applied to detect the critical Rayleigh<br />

number. The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> is obta<strong>in</strong>ed by observ<strong>in</strong>g the Nusselt<br />

number. The po<strong>in</strong>t at which a sudden change <strong>in</strong> ∂Nu<br />

occurs, is deemed<br />

∂Ra<br />

to herald to the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong>. It is necessary to menti<strong>on</strong> that<br />

there will be negligible yet n<strong>on</strong>-zero c<strong>on</strong>vecti<strong>on</strong> currents al<strong>on</strong>g the<br />

horiz<strong>on</strong>tal sidewalls due to c<strong>on</strong>ductive heat transfer <strong>from</strong> these walls<br />

and so a l<strong>in</strong>ear stability analysis will not be useful <strong>in</strong> this case.<br />

Furthermore, we are look<strong>in</strong>g at the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh–Benard<br />

c<strong>on</strong>vecti<strong>on</strong> which occurs due to unstable stratificati<strong>on</strong>.<br />

3.5. Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical procedure<br />

The numerical procedure is validated with the correlati<strong>on</strong>s for<br />

c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt numbers generated numerically for<br />

differentially <strong>heated</strong> square cavity by Balaji and Venkateshan [2].<br />

Table 1 provides a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> results with the correlati<strong>on</strong>s for<br />

Ra=50,000. The numerical procedure is found to be satisfactory over<br />

the entire range <str<strong>on</strong>g>of</str<strong>on</strong>g> emissivity and Rayleigh number.<br />

3.6. Grid <strong>in</strong>dependence study<br />

The computati<strong>on</strong>al mesh is generated us<strong>in</strong>g GAMBIT 2.3. For the<br />

present study, n<strong>on</strong>-uniform mesh and boundary layer meshes are<br />

c<strong>on</strong>sidered Table 2 shows the results <str<strong>on</strong>g>of</str<strong>on</strong>g> a grid <strong>in</strong>dependence study for<br />

a square cavity for Ra=3×10 4 and ε=0.85 with n<strong>on</strong>-uniform mesh.<br />

When the change <strong>in</strong> both the c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt<br />

numbers are found to be less than 0.5% between two successive grids,<br />

the grid is accepted and the former is chosen for subsequent<br />

computati<strong>on</strong>s. A sudden change <strong>in</strong> the c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g><br />

Nusselt numbers is observed for the grid with 3600 cells as courser<br />

meshes are not able to resolve the bicellular flow structure.<br />

Table 1<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nu C and Nu R obta<strong>in</strong>ed <strong>from</strong> simulati<strong>on</strong>s and correlati<strong>on</strong>s.<br />

Case Nuc Nuc<br />

(Balaji and Venkateshan)<br />

M.A. Gad, C. Balaji / Internati<strong>on</strong>al Communicati<strong>on</strong>s <strong>in</strong> Heat and Mass Transfer 37 (2010) 1459–1464<br />

Table 2<br />

Grid <strong>in</strong>dependence test for the square cavity (Ra=3×10 4 , ε=0.85).<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cells<br />

C<strong>on</strong>vecti<strong>on</strong> Nusselt<br />

number, NuC<br />

Accord<strong>in</strong>gly, a grid c<strong>on</strong>sist<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> 5625 cells is selected, as highlighted<br />

<strong>in</strong> Table 2.<br />

4. Results and discussi<strong>on</strong><br />

%<br />

difference<br />

4.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong><br />

Numerical simulati<strong>on</strong>s are carried out for lam<strong>in</strong>ar Rayleigh–<br />

Benard c<strong>on</strong>vecti<strong>on</strong> with <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> spann<strong>in</strong>g 6 different aspect<br />

ratios (1, 2, 3, 5, 8, and 10) to determ<strong>in</strong>e the critical Rayleigh number<br />

for the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> for different emissivities <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls.<br />

The procedure employed to determ<strong>in</strong>e the <strong>on</strong>set can be clearly seen <strong>in</strong><br />

Fig. 2.<br />

The problem under c<strong>on</strong>siderati<strong>on</strong> <strong>in</strong>volves two parameters namely<br />

aspect ratio and emissivity and hence the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> is<br />

obta<strong>in</strong>ed for 3 different emissivities <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls varied simultaneously<br />

for both the sidewalls for every aspect ratio. The results are<br />

shown <strong>in</strong> Fig. 3. The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> is obta<strong>in</strong>ed<br />

by runn<strong>in</strong>g steady state simulati<strong>on</strong>s start<strong>in</strong>g with the Rayleigh<br />

number range across which transiti<strong>on</strong> occurs and apply<strong>in</strong>g the<br />

bisecti<strong>on</strong> algorithm to detect the critical Rayleigh numbers by<br />

observ<strong>in</strong>g the changes <strong>in</strong> the Nusselt number.<br />

In general, the horiz<strong>on</strong>tal side wall creates a resistance to the<br />

c<strong>on</strong>vecti<strong>on</strong> flow as boundary layers are formed near the horiz<strong>on</strong>tal<br />

side walls. The no-slip c<strong>on</strong>diti<strong>on</strong> near the side wall causes a h<strong>in</strong>drance<br />

to the flow and the viscous forces <strong>in</strong>crease, result<strong>in</strong>g <strong>in</strong> a higher<br />

critical Rayleigh number for the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong>. Surface <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g><br />

results <strong>in</strong> heat transfer <strong>from</strong> the horiz<strong>on</strong>tal sidewalls <strong>in</strong>to the fluid<br />

doma<strong>in</strong>. This results <strong>in</strong> a reducti<strong>on</strong> <strong>in</strong> the temperature gradient <strong>in</strong>side<br />

the cavity which drives the Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong>. Thus, the<br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> is delayed due to <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g>. It is clear <strong>from</strong><br />

the study, as the aspect ratio <strong>in</strong>creases, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g><br />

reduces and it becomes negligible as the aspect ratio approaches 8. For<br />

an aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 or more, the critical Rayleigh number approaches<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1708 which matches with the critical Rayleigh number for<br />

the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a fluid layer which is c<strong>on</strong>f<strong>in</strong>ed between two<br />

horiz<strong>on</strong>tal plates and is <strong>heated</strong> <strong>from</strong> <strong>below</strong> and cooled <strong>from</strong> top<br />

isothermally. Thus, for an aspect ratio 10 or more, the cavity mimics<br />

an <strong>in</strong>f<strong>in</strong>itely l<strong>on</strong>g cavity, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissivity.<br />

4.2. Fluid flow and heat transfer characteristics<br />

Radiati<strong>on</strong> Nusselt<br />

number, NuR<br />

4.2.1. Heat transfer <strong>in</strong> a square cavity (AR=1)<br />

The present study addresses the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transfer <strong>in</strong><br />

<strong>cavities</strong> when the fluid is <strong>in</strong>itially at rest and this leads to unique<br />

soluti<strong>on</strong>s. The study does not address the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soluti<strong>on</strong> reported by Ridouane et al. [10,11]. Fig. 4 (a) shows the<br />

% error NuR NuR<br />

(Balaji and Venkateshan)<br />

1 3.425 3.645 6.0 4.308 4.208 2.4<br />

2 3.577 3.834 6.7 0.395 0.359 9.9<br />

3 3.602 3.683 2.2 4.250 3.872 9.8<br />

%<br />

difference<br />

900 2.621 – 4.073 –<br />

2025 2.653 1.22 4.071 −0.05<br />

3600 2.899 9.27 3.781 −7.12<br />

5625 2.898 −0.03 3.781 0<br />

8100 2.898 0.00 3.782 0.03<br />

1461<br />

% error


1462 M.A. Gad, C. Balaji / Internati<strong>on</strong>al Communicati<strong>on</strong>s <strong>in</strong> Heat and Mass Transfer 37 (2010) 1459–1464<br />

Fig. 2. Change <strong>in</strong> Nusselt number with respect to Rayleigh number for a square cavity.<br />

variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt numbers with Rayleigh<br />

number for different values <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> side wall. Fig. 4 (a)<br />

shows that <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> results <strong>in</strong> a reducti<strong>on</strong> <strong>in</strong> the c<strong>on</strong>vecti<strong>on</strong><br />

comp<strong>on</strong>ent. With an <strong>in</strong>crease <strong>in</strong> the emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls, the<br />

c<strong>on</strong>vecti<strong>on</strong> comp<strong>on</strong>ent decreases except for Rayleigh number <strong>in</strong> the<br />

range 10,000–50,000. However, <strong>in</strong> general <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> leads to<br />

an overall <strong>in</strong>crease <strong>in</strong> the heat transfer across the cavity. Three<br />

different regimes are observed <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rayleigh number<br />

(Ra) <strong>from</strong> 5×10 3 to 10 5 . The emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the side walls has a<br />

negligible effect <strong>on</strong> the c<strong>on</strong>vective heat transfer <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rayleigh number 4000bRab10,000. It is observed that flow structure<br />

changes <strong>from</strong> unicellular to bicellular for 10,000bRab50,000 and a<br />

corresp<strong>on</strong>d<strong>in</strong>g <strong>in</strong>crease <strong>in</strong> the c<strong>on</strong>vective heat transfer occurs for a<br />

higher emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>tal sidewall. For RaN50,000, the<br />

c<strong>on</strong>vecti<strong>on</strong> is suppressed significantly with an <strong>in</strong>crease <strong>in</strong> the<br />

emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the side walls. For the case where <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> is<br />

not c<strong>on</strong>sidered, unicellular soluti<strong>on</strong>s are found to exist. So, Rayleigh–<br />

Benard c<strong>on</strong>vecti<strong>on</strong> has a tendency to produce unicellular flow<br />

structure. When <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> is c<strong>on</strong>sidered, for Rayleigh number<br />

10,000 to 50,000 a bicellular flow structure is obta<strong>in</strong>ed. Figs. 5 and 6<br />

show the streaml<strong>in</strong>es and isotherms for Rayleigh number 30,000 and<br />

90,000 when ε=0.85 (the maximum value <str<strong>on</strong>g>of</str<strong>on</strong>g> the stream functi<strong>on</strong> is<br />

menti<strong>on</strong>ed at the appropriate streaml<strong>in</strong>e <strong>in</strong> the figure).<br />

4.2.2. Heat transfer for higher aspect ratio <strong>cavities</strong><br />

Fig. 7 (a) and (b) show the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>vecti<strong>on</strong> and<br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt numbers for a cavity <str<strong>on</strong>g>of</str<strong>on</strong>g> aspect ratio 2, for different<br />

Rayleigh number, Ra<br />

4400<br />

4100<br />

3800<br />

3500<br />

3200<br />

2900<br />

2600<br />

2300<br />

2000<br />

1700 1 2 3 4 5 6 7 8 9 10<br />

Aspect ratio<br />

= 0<br />

= 0.1<br />

= 0.5<br />

= 0.85<br />

Fig. 3. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls <strong>on</strong> the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> for <strong>cavities</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different aspect ratios.<br />

C<strong>on</strong>vecti<strong>on</strong> Nusselt number, NuC<br />

b<br />

Radiati<strong>on</strong> Nusselt number, NuR<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5<br />

Rayleigh Number, Ra x10-4 5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5<br />

Rayleigh Number, Ra x10-4 Rayleigh numbers and emissivities <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls. For the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

cavity with AR=2, <strong>on</strong>ly bicellular soluti<strong>on</strong> is found to exist<br />

irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls. The observati<strong>on</strong>s<br />

made <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> bicellular flow structure for a square cavity are<br />

also valid for this case i.e. an <strong>in</strong>crease <strong>in</strong> the c<strong>on</strong>vective heat transfer<br />

and a decrease <strong>in</strong> the radiative heat transfer with an <strong>in</strong>crease <strong>in</strong> the<br />

emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls. Fig. 8 (a) and (b) show the stream functi<strong>on</strong><br />

and isotherms respectively when the emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewall is 0.85<br />

and the Rayleigh number is 75,000. For the case <str<strong>on</strong>g>of</str<strong>on</strong>g> aspect ratio 3, for<br />

the pure c<strong>on</strong>vecti<strong>on</strong> case, tri-cellular flow structure is found to exist<br />

while for the case where <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> is c<strong>on</strong>sidered for Rayleigh<br />

number greater than 10,000, tetra-cellular flow structure is found to<br />

= 0<br />

= 0.10<br />

= 0.50<br />

= 0.85<br />

= 0.10<br />

= 0.50<br />

= 0.85<br />

Fig. 4. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) c<strong>on</strong>vecti<strong>on</strong> and (b) <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt number with Rayleigh<br />

number for different values <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>tal side walls (AR=1).<br />

1.5 x10 -4<br />

303 K<br />

315 K<br />

Fig. 5. (a) Streaml<strong>in</strong>es and (b) isotherms for Ra =30,000 and ε=0.85.


e present when the flow is at rest <strong>in</strong>itially. It is pert<strong>in</strong>ent to menti<strong>on</strong><br />

that both flow structures exist <strong>in</strong> the entire range <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh numbers<br />

c<strong>on</strong>sidered. With an <strong>in</strong>crease <strong>in</strong> the aspect ratio, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the c<strong>on</strong>vecti<strong>on</strong> heat transfer keeps reduc<strong>in</strong>g.<br />

4.3. Correlati<strong>on</strong>s<br />

Parameters identified by Balaji and Venkateshan [2] are used to<br />

obta<strong>in</strong> useful correlati<strong>on</strong>s for the c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt<br />

numbers for the post-<strong>on</strong>set regi<strong>on</strong> by us<strong>in</strong>g n<strong>on</strong>-l<strong>in</strong>ear regressi<strong>on</strong>.<br />

C<strong>on</strong>vecti<strong>on</strong> Nusselt number, NuC<br />

5.97 x10 -4<br />

303 K<br />

Fig. 6. (a) Streaml<strong>in</strong>es and (b) isotherms for Ra=90,000 and ε=0.85.<br />

b<br />

Radiati<strong>on</strong> Nusselt number, NuR<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

Rayleigh number, Ra x10-4 0 2 4 6 8 10<br />

5.5<br />

5<br />

4.5<br />

M.A. Gad, C. Balaji / Internati<strong>on</strong>al Communicati<strong>on</strong>s <strong>in</strong> Heat and Mass Transfer 37 (2010) 1459–1464<br />

= 0<br />

= 0.1<br />

= 0.85<br />

= 0.1<br />

= 0.85<br />

Rayleigh number, Ra x10-4 4<br />

0 2 4 6 8 10<br />

339 K<br />

Fig. 7. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) c<strong>on</strong>vecti<strong>on</strong> and (b) <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt number with Rayleigh<br />

number (AR=2).<br />

b<br />

These are<br />

6.5x10-4<br />

Nuc =0:103 Ra 0:333 ð1+ εHÞ −0:023 −0:169 + 0:153 AR−0:024AR2<br />

ð1+εÞ ð Þ<br />

ð10Þ<br />

ðNRC = ðNRC +1ÞÞ<br />

4:401 AR 0:134<br />

NuR =0:039 Ra 0:25 1:304 −0:258 + 0:175 AR−0:026AR<br />

εH ð1+εÞ 2<br />

ð Þ 0:882<br />

NRC 1−T 4<br />

R<br />

0:618<br />

AR 0:131<br />

ð11Þ<br />

The above correlati<strong>on</strong>s are valid for the follow<strong>in</strong>g range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters:<br />

5×10 3 ≤Ra≤105, 1≤AR≤5, 0.1≤ε H≤0.85, 0.1≤ε≤0.85. A quadratic <strong>in</strong><br />

the aspect ratio, AR is proposed for accommodat<strong>in</strong>g the n<strong>on</strong>-l<strong>in</strong>ear effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the emissivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls <strong>on</strong> the c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt<br />

numbers for different aspect ratios. The correlati<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

Eqs. (10) and (11) is 0.99.<br />

5. C<strong>on</strong>clusi<strong>on</strong>s<br />

303 K<br />

333 K<br />

Fig. 8. (a) Streaml<strong>in</strong>es and (b) isotherms for Ra=75,000 and ε=0.85 (AR=2).<br />

1463<br />

Two-dimensi<strong>on</strong>al steady Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> with <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> <strong>cavities</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different aspect ratios was <strong>in</strong>vestigated<br />

numerically us<strong>in</strong>g FLUENT 6.3. The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh–Benard<br />

c<strong>on</strong>vecti<strong>on</strong> is seen to be delayed with an <strong>in</strong>crease <strong>in</strong> the emissivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sidewalls. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>vecti<strong>on</strong> however dim<strong>in</strong>ishes with an <strong>in</strong>crease <strong>in</strong> the aspect ratio<br />

and at an aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 8, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> ceases. For an<br />

aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 or more, the critical Rayleigh number approaches<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1708 which matches with the critical Rayleigh number for<br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> for Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> between two<br />

<strong>in</strong>f<strong>in</strong>itely l<strong>on</strong>g horiz<strong>on</strong>tal plates. Thus, for an aspect ratio 10 or more,<br />

the cavity mimics an <strong>in</strong>f<strong>in</strong>itely l<strong>on</strong>g cavity. Due to heat transfer<br />

between the horiz<strong>on</strong>tal sidewalls and fluid z<strong>on</strong>e, the flow characteristics<br />

change significantly which lead to subsequent changes <strong>in</strong> the<br />

heat transfer across the cavity. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the<br />

c<strong>on</strong>vecti<strong>on</strong> heat transfer becomes <strong>in</strong>significant and thus c<strong>on</strong>vecti<strong>on</strong>–


1464 M.A. Gad, C. Balaji / Internati<strong>on</strong>al Communicati<strong>on</strong>s <strong>in</strong> Heat and Mass Transfer 37 (2010) 1459–1464<br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> can be decoupled for <strong>cavities</strong> bey<strong>on</strong>d an aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.<br />

Based <strong>on</strong> numerical data, useful correlati<strong>on</strong>s have been developed for<br />

the c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> Nusselt numbers.<br />

References<br />

[1] C. Balaji, S.P. Venkateshan, Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> with free c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong><br />

a square cavity, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat and Fluid Flow 14 (1993) 260–267.<br />

[2] C. Balaji, S.P. Venkateshan, Correlati<strong>on</strong>s for free c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g><br />

<strong>in</strong> a square cavity, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat and Fluid Flow 15 (1994)<br />

249–251.<br />

[3] Chunmei Xia, Jayathi Y. Murthy, Buoyancy-driven flow transiti<strong>on</strong>s <strong>in</strong> deep <strong>cavities</strong><br />

<strong>heated</strong> <strong>from</strong> <strong>below</strong>, ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat Transfer 124 (2000) 650–659.<br />

[4] Fluent User's Guide, Fluent Inc., USA, 2005.<br />

[5] J. Gille, R. Goody, C<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a radiat<strong>in</strong>g gas, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluid Mechanics 20<br />

(1964) 47–79.<br />

[6] J.E. Hutchis<strong>on</strong>, R.F. Richards, <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>gray gas <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> thermal stability <strong>in</strong><br />

carb<strong>on</strong> dioxide, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermophysics and Heat Transfer 13 (1999) 25–32.<br />

[7] C.H. Lan, O.A. Ezekoye, J.R. Howell, K.S. Ball, Stability analysis for threedimensi<strong>on</strong>al<br />

Rayleigh–Benard c<strong>on</strong>vecti<strong>on</strong> with radiatively participat<strong>in</strong>g medium<br />

us<strong>in</strong>g spectral methods, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat and Mass Transfer 46 (2003)<br />

1371–1383.<br />

[8] N. Ramesh, S.P. Venkateshan, <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g> <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a<br />

square enclosure, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermophysics and Heat Transfer 13 (1999) 299–301.<br />

[9] N. Ramesh, C. Balaji, S.P. Venkateshan, <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> natural<br />

c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> an enclosure, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Transport Phenomena 1<br />

(1999) 205–214.<br />

[10] E.H. Ridouane, M. Hasnaoui, A. Amahmid, A. Raji, Interacti<strong>on</strong> between natural<br />

c<strong>on</strong>vecti<strong>on</strong> and <str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> a square cavity <strong>heated</strong> <strong>from</strong> <strong>below</strong>, Numerical Heat<br />

Transfer. Part A 45 (2004) 289–311.<br />

[11] El. Hassan Ridouane, Mohammed Hasnaoui, Ant<strong>on</strong>io Campo, <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>surface</str<strong>on</strong>g><br />

<str<strong>on</strong>g>radiati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a Rayleigh–Benard square enclosure: steady<br />

and unsteady c<strong>on</strong>diti<strong>on</strong>s, Heat and Mass Transfer 42 (2006) 214–225.<br />

[12] Jimmy C.K. T<strong>on</strong>g, Ephraim M. Sparrow, John P. Abraham, Unified treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> tall narrow and flat wide rectangular enclosures, Numerical<br />

Heat Transfer Part A 54 (2008) 763–776.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!