16.08.2013 Views

IrO 2

IrO 2

IrO 2

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Conductive <strong>IrO</strong> 2 Nanocrystals<br />

Department of Electronic Engineering,<br />

National Taiwan University of Science and<br />

Technology<br />

黃鶯聲<br />

黃鶯聲<br />

Ying-Sheng Huang<br />

E-mail: ysh@mail.ntust.edu.tw


ACKNOWLEDGMENTS<br />

NSC93,94,95-2120-M011-001<br />

Fred H Pollak, Physics Dept., Brooklyn College of<br />

NYCU<br />

Yun Chi, Dept. of Chemistry, NTHU<br />

Dah-Shyang Tsai, Dept. of Chemical Eng., NTUST<br />

Reui-San Chen, Alexandru Korotcov, Dept. of<br />

Electronic Eng., NTUST<br />

….


Outline<br />

Introduction and background<br />

Growth and characterization of 1D nanosized<br />

<strong>IrO</strong> 2 crystals<br />

Size effect of 1D nanocrystals studied by<br />

Micro-Raman spectroscopy<br />

Field emission: <strong>IrO</strong> 2 nanorods<br />

Gas sensing and electrocatalysis applications<br />

Summary


<strong>IrO</strong> 2 and RuO 2 Single Crystals: The<br />

bigger the better, 1982<br />

<strong>IrO</strong> 2<br />

RuO 2


Nanosized <strong>IrO</strong> 2 and RuO 2 :<br />

The smaller the better, 2007<br />

<strong>IrO</strong> 2 nanotubes<br />

RuO 2 nanorods


Our previous work in single crystal growth<br />

shows the strong 1D growth behavior of <strong>IrO</strong> 2<br />

Sizes:<br />

2∼30 μm<br />

Length:<br />

0.1∼30 mm


Rod-like <strong>IrO</strong> 2 crystals reveal clear<br />

prismatic facets


Introduction<br />

<strong>IrO</strong> 2 belong to the family of conductive transition metal oxides<br />

with rutile-type structure.<br />

The material possesses an interesting variety of electrical<br />

properties<br />

Corrosion-resistant conductive electrode material<br />

Fundamental properties of the conductive oxides, including RuO 2, <strong>IrO</strong> 2 and OsO 2<br />

Crystal structure<br />

Lattice constant<br />

Bulk resistivity<br />

(μΩ-cm) at 300 K<br />

RuO2<br />

Tetragonal rutile<br />

a = 4.499Å<br />

c = 3.107 Å<br />

20-40<br />

<strong>IrO</strong>2<br />

Tetragonal rutile<br />

a = 4.498 Å<br />

c = 3.15 4Å<br />

32-50<br />

OsO2<br />

Tetragonal rutile<br />

a = 4.50 Å<br />

c = 3.18 Å<br />

60


Applications of conductive oxides<br />

<strong>IrO</strong> 2<br />

Optical switching layers in electrochromic<br />

devices<br />

PH-sensing materials<br />

Electrocatalysis for water oxidation<br />

Electrode materials in ferroelectric capacitors<br />

for nonvolatile memories<br />

Emitter materials of field emission cathode<br />

arrays used in vacuum microelectronic<br />

devices and field emission flat panel displays


Advantages of nanosized <strong>IrO</strong> 2<br />

Low Electrical Resistivity<br />

High Thermal and Chemical Stability<br />

Enhance the material properties by<br />

controlling the microstructure


Growth and characterization<br />

of <strong>IrO</strong> 2 nanocrystals<br />

Growth techniques:<br />

1. Cold-wall and vertical flow MOCVD<br />

2. RF reactive magnetron sputtering<br />

Characterization:<br />

Morphology→ FESEM<br />

Structure and orientation→ XRD, TEM, SAD<br />

Composition→ XPS, EDS<br />

Microstructure→ Micro-Raman<br />

Possible applications:<br />

Field emitters, Sensors, Electrocatalysis


Schematic diagram of MOCVD system<br />

Precursors:<br />

(MeCp)(COD)Ir<br />

Conditions<br />

Growth<br />

Temp.<br />

( o C)<br />

Growth<br />

Pressure<br />

(Torr)<br />

O2 flow rate<br />

(sccm)<br />

<strong>IrO</strong>2<br />

350<br />

10-50<br />

100


Schematic diagram of home-made HV RF<br />

magnetron sputtering system<br />

Target<br />

Substrate [Al 2O 3 - sapphire (SA)]<br />

RF power<br />

Background pressure<br />

Sputtering pressure<br />

Substrate temperature<br />

O 2 / Ar flows<br />

1- inch Ir (99.95%)<br />

(001); (100); (012); (110)<br />

65 W<br />

3×10 -5 mBar<br />

~ 6.5×10 -2 mBar<br />

300-400°C<br />

2.5 / 5.0 sccm


Our CVD apparatus


Morphology of <strong>IrO</strong> 2 nanotubes grown on<br />

rhombohedral LiTaO 3(012) substrate


Morphology of <strong>IrO</strong> 2 nanorods grown on<br />

rhombohedral LiTaO 3(012) substrate


Morphology of <strong>IrO</strong> 2 nanorods grown on<br />

rhombohedral LiTaO 3(012) substrate<br />

Size: 50-100 nm


XRD patterns show the growth of <strong>IrO</strong> 2 on LiTaO 3 (012)<br />

having single orientation of (101)<br />

Intensity<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

LTO(012)<br />

<strong>IrO</strong> 2 (101)<br />

20 25 30 35 40 45 50 55 60 65<br />


Corss-sectional TEM image and SAD patterns<br />

indicate the epitaxially growth of<br />

<strong>IrO</strong> 2 nanotubes on LiTaO 3(012) substrate<br />

<strong>IrO</strong> 2[001]<br />

35 o<br />

<strong>IrO</strong> 2[101]


<strong>IrO</strong> 2 nanotubes on various oxide substrates (I)<br />

The growth with vertical alignment can be achieved using these oxide substrates<br />

On YSZ(110) On LiNbO3 (100) On Sapphire(100)


Single variant<br />

alignment<br />

Six variants<br />

alignment<br />

<strong>IrO</strong> 2 nanotubes on various oxide substrates (II)<br />

On LiTaO 3 (012) On Sapphire(110)<br />

On YSZ(111) On YSZ(100)<br />

Double<br />

variants<br />

alignment<br />

Remark: YSZ is<br />

yttrium stabilized ZrO 2<br />

Eight variants<br />

alignment


<strong>IrO</strong> 2 nanotubes on YSZ(110) substrate


<strong>IrO</strong> 2 nanotubes on YSZ(110) substrate


<strong>IrO</strong> 2 nanotubes on YSZ(110) substrate<br />

Intensity<br />

10000<br />

5000<br />

0<br />

<strong>IrO</strong> 2 (110)<br />

<strong>IrO</strong> 2 (101)<br />

YSZ(110)<br />

<strong>IrO</strong> 2 (211)<br />

<strong>IrO</strong> 2 (002)<br />

20 25 30 35 40 45 50 55 60 65<br />


<strong>IrO</strong> 2 nanotubes on LiNbO 3 (100) substrate


<strong>IrO</strong> 2 nanotubes on LiNbO 3 (100) substrate


<strong>IrO</strong> 2 nanotubes on LiNbO 3 (100) substrate<br />

Intensity<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

<strong>IrO</strong> 2 (002)<br />

LNO(300)<br />

20 25 30 35 40 45 50 55 60 65<br />


<strong>IrO</strong> 2 nanotubes on sapphire(100) substrate


<strong>IrO</strong> 2 nanotubes on sapphire(100) substrate


<strong>IrO</strong> 2 nanotubes on sapphire(100) substrate


The TEM images and SAD pattern reveal<br />

the 1D <strong>IrO</strong> 2 crystals with tubular morphology<br />

and have long axes toward [001] direction<br />

[001]


<strong>IrO</strong> 2 nanotubes on sapphire(100) substrate


<strong>IrO</strong> 2 nanotubes on sapphire(100) substrate<br />

Intensity<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

<strong>IrO</strong> 2 (002)<br />

20 25 30 35 40 45 50 55 60 65<br />


<strong>IrO</strong> 2 nanotubes on LiTaO 3 (012) substrate<br />

Single<br />

variant<br />

alignment<br />

Intensity<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

LTO(012)<br />

<strong>IrO</strong> 2 (101)<br />

20 25 30 35 40 45 50 55 60 65<br />


<strong>IrO</strong> 2 nanotubes on sapphire(110) substrate<br />

Two variants<br />

alignment


<strong>IrO</strong> 2 nanotubes on sapphire(110) substrate<br />

Two variants<br />

alignment


<strong>IrO</strong> 2 nanotubes on sapphire(110) substrate<br />

Two variants<br />

alignment<br />

Intensity<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

<strong>IrO</strong> 2 (101)<br />

SA(110)<br />

20 25 30 35 40 45 50 55 60 65<br />


<strong>IrO</strong> 2 nanotubes on YSZ(111) substrate<br />

Six variants<br />

alignment


<strong>IrO</strong> 2 nanotubes on YSZ(111) substrate<br />

Six variants<br />

alignment


Six variants<br />

alignment<br />

<strong>IrO</strong> 2 nanotubes on YSZ(111) substrate


<strong>IrO</strong> 2 nanotubes on YSZ(111) substrate<br />

Six variants<br />

alignment<br />

Intensity<br />

30000<br />

20000<br />

10000<br />

0<br />

YSZ(111)<br />

<strong>IrO</strong> 2 (101)<br />

20 25 30 35 40 45 50 55 60 65<br />


<strong>IrO</strong> 2 nanotubes on YSZ(100) substrate<br />

Eight variants<br />

alignment


<strong>IrO</strong> 2 nanotubes on YSZ(100) substrate<br />

Eight variants<br />

alignment<br />

Intensity<br />

100000<br />

50000<br />

0<br />

<strong>IrO</strong> 2 (101)+YSZ(100)<br />

20 25 30 35 40 45 50 55 60 65<br />


The FESEM images of the vertically aligned <strong>IrO</strong> 2 nanorods<br />

grown by RFMS on (a) SA(100), (b) LiNbO 3 (100) substrates<br />

and their (c) X-ray diffraction patterns.


<strong>IrO</strong> 2 (001) on SA (100)<br />

Heteroepitaxy of <strong>IrO</strong> 2<br />

(001) and SA (100)<br />

produced directional<br />

mismatch of :<br />

- 5.46 % along <strong>IrO</strong> 2<br />

[100];<br />

+ 3.69 % along <strong>IrO</strong> 2<br />

[010]


The schematic plots of the lattice relationships between<br />

<strong>IrO</strong> 2 and sapphire(100) and LiNbO 3(100) substrates:


The FESEM images of the tilted <strong>IrO</strong> 2 nanocrystals grown by<br />

RFMS on (a) SA(012), (b) SA(110) substrates and their (c)<br />

X-ray diffraction patterns.


<strong>IrO</strong> 2 (101) on SA (012)<br />

Heteroepitaxy of <strong>IrO</strong> 2<br />

(101) and SA (012)<br />

produced directional<br />

mismatch of :<br />

-5.46 % along<br />

<strong>IrO</strong> 2 [010];<br />

+7.02 % along<br />

<strong>IrO</strong>2 [10 1]


<strong>IrO</strong> 2 (101) on SA (110)<br />

Heteroepitaxy of <strong>IrO</strong> 2 (101)<br />

and SA (110) produced<br />

directional mismatch of :<br />

+ 3.69 % // - 4.36% along<br />

<strong>IrO</strong>2 [010];<br />

+ 2.23 % along <strong>IrO</strong>2 [ 101]


The FESEM images of the mosaic <strong>IrO</strong> 2 nanocrystals grown<br />

by RFMS on (a) SA(001) substrates and their (b) X-ray<br />

diffraction patterns.


The top and 30° perspective view FESEM micrographs<br />

and the corresponding schematic plots for (a)−(c) the<br />

nearly triangular nanorods and (d)−(f) the wedge-like<br />

nanorods of <strong>IrO</strong> 2.


The top and 30° perspective view FESEM micrographs and<br />

the corresponding schematic plots for (a)−(c) the<br />

incomplete nanotubes and (d)−(f) the scrolled nanotubes<br />

of <strong>IrO</strong> 2.


The top and 30° perspective view FESEM micrographs and<br />

the corresponding schematic plots for (a)−(c) the square<br />

nanotubes, (d)−(f) the intermediate 1D nanocrystals and<br />

(g)−(i) the square nanorods of <strong>IrO</strong> 2 .


The 30° perspective view FESEM micrographs and the<br />

corresponding schematic plots for (a) and (b) the mixture<br />

comprised of continuous grains and partial short rods, and<br />

(c) and (d) the thin film of <strong>IrO</strong> 2.


Variation of the surface area being covered, the number<br />

density (inset), and the average size (inset) of <strong>IrO</strong> 2<br />

nuclei with growth time in the initial growth stage. The<br />

growth temperature is 450 °C.


Arranged <strong>IrO</strong> 2 nuclei on a SA(012) surface at a growth<br />

temperature of 450 °C and growth times of (a) 30 s and (b)<br />

60 s.


<strong>IrO</strong> 2 nanorods on SA(012) selectively<br />

grown at 450°C and patterned by the<br />

photolithographic method<br />

(a) a stripe pattern<br />

(b) a corner of square<br />

patch<br />

(c) a border of<br />

populated nanorods<br />

(d) a border of less<br />

populated nanorods


<strong>IrO</strong> 2 nanorods on SA(100) selectively<br />

grown at 450°C and patterned by the<br />

photolithographic method<br />

(a) a pattern of four<br />

square nongrowth<br />

patches<br />

(b) a corner of square<br />

patch<br />

(c) a corner line of<br />

nanorods<br />

(d) a border line of<br />

nanorods


Nanosized<br />

Single Crystal<br />

XPS of <strong>IrO</strong> 2


Symmetry for the Raman-active<br />

modes<br />

<strong>IrO</strong> 2 structure and q=0 displacements, viewed along<br />

the c – axis, for three Raman-active modes.


α y y<br />

Relative Raman intensities for<br />

the E g, B 2g and A 1g modes<br />

Polarization<br />

configuration<br />

α x 'x'<br />

α x 'y'<br />

α y' y'<br />

α z z<br />

α z y<br />

α y y<br />

α x x<br />

α x y<br />

E g<br />

e 2<br />

½ e 2<br />

0<br />

0<br />

e 2<br />

0<br />

0<br />

0<br />

0<br />

Phonon mode<br />

B 2g<br />

(101) face<br />

0<br />

½ d 2<br />

0<br />

(100) face<br />

0<br />

0<br />

0<br />

(001) face<br />

0<br />

d 2<br />

0<br />

A 1g<br />

¼ (a + b) 2<br />

0<br />

a 2<br />

b 2<br />

0<br />

a 2<br />

a 2<br />

0<br />

a 2<br />

x' = 1<br />

2(10<br />

1)<br />

y' = (010)<br />

z' = 1 2 (001)<br />

x = (100)<br />

y = (010)<br />

z = (001)


Spatial correlation model<br />

The phonons in nanometric-sized systems can be confined in space by<br />

crystallite boundaries or surface disorders. That cause an uncertainty in<br />

the wave vector of the phonons and results in downshift and broadening<br />

of the Raman features.<br />

I(<br />

ω)<br />

C<br />

( 0,<br />

3<br />

d q C(<br />

0,<br />

q)<br />

∫ 2<br />

[ ω − ω(<br />

q)]<br />

+ ( Γ / 2)<br />

≅ 2<br />

q<br />

1<br />

, q<br />

2<br />

)<br />

2<br />

≅<br />

e<br />

−q<br />

2<br />

1<br />

L<br />

2<br />

1<br />

/ 16π<br />

2<br />

2<br />

( q) = A + { A − B[<br />

1 cos( πq<br />

ω −<br />

2<br />

2<br />

/ 16π<br />

iq 2 L2<br />

⎞<br />

⎟<br />

32π<br />

⎠<br />

Richter H et al 1981 Solid State Commun. V39 p625; Campbell I H and Fauchet P M 1986 Solid State Commun. V58 p739<br />

e<br />

−q<br />

2<br />

2<br />

)]}<br />

L<br />

2 2<br />

I(ω) - intensity of the firstorder<br />

Raman spectrum<br />

2<br />

1 − erf<br />

⎛<br />

⎜<br />

⎝<br />

1/<br />

2<br />

- one dimensional linear chain model<br />

ω (q) - phonon dispersion curve, Γ - FWHM of the intrinsic Raman line<br />

shape, C (0, q) - the Fourier coefficient of the phonon confinement function<br />

for column shape, L 1 and L 2 are the diameter and length of nanocrystals.<br />

2


Raman spectra show RuO 2 and <strong>IrO</strong> 2 NCs exhibit apparent<br />

peak red-shift and broadening, which are attributed to the<br />

phonon confinement effect and residual stress


E g mode Raman scattering results of <strong>IrO</strong> 2<br />

1-D nanostructures – an example of fitting<br />

We will focus our SC analysis<br />

on the E g mode. In order to<br />

have a good agreement<br />

between SC model results<br />

and experimental data we<br />

have to add an additional red<br />

shift in the SC model. We<br />

have tentatively assigned this<br />

shift to the residual stress<br />

effect.<br />

Using our proposed MSC<br />

model, which includes the<br />

effect of the residual stress,<br />

we are able to correlate the<br />

measured red-shift of the<br />

Raman active modes as due<br />

to nanometric size and<br />

residual stress effect.


Sample<br />

<strong>IrO</strong> 2 (101) on SA (012)<br />

<strong>IrO</strong> 2 (101) on SA (012)<br />

<strong>IrO</strong> 2 single crystal<br />

E g (cm -1 )<br />

551.6<br />

561.0<br />

FWHM (cm -1 )<br />

31<br />

12<br />

Δω size (cm -1 )<br />

6.4<br />

diameter L 1 = 40 ± 5 nm; length L 2 ~ 400 nm<br />

L 1 = 39 nm<br />

-<br />

Δω stress (cm -1 )<br />

3<br />

-


Sample<br />

<strong>IrO</strong> 2 (101) on SA (110)<br />

<strong>IrO</strong> 2 (101) on SA (110)<br />

<strong>IrO</strong> 2 single crystal<br />

E g (cm -1 )<br />

551.9<br />

561.0<br />

FWHM (cm -1 )<br />

30<br />

12<br />

Δω size (cm -1 )<br />

6.1<br />

diameter L 1 = 40 ± 5 nm; length L 2 ~ 400 nm<br />

L 1 = 40 nm<br />

-<br />

Δω stress (cm -1 )<br />

3<br />

-


Sample<br />

<strong>IrO</strong> 2 (100) on SA (001)<br />

<strong>IrO</strong> 2 (100) on SA (001)<br />

<strong>IrO</strong> 2 single crystal<br />

E g (cm -1 )<br />

552.6<br />

561.0<br />

FWHM (cm -1 )<br />

33<br />

12<br />

Δω size (cm -1 )<br />

5.4<br />

-<br />

Δω stress (cm -1 )<br />

thicknesses of the NWs L 1 ~ 20 - 45 nm; height L 2 ~ 200 nm; longwise ~ 100 - 200 nm<br />

L 1 = 44 nm<br />

3<br />

-


Sample<br />

<strong>IrO</strong> 2 (001) on SA (100)<br />

<strong>IrO</strong> 2 (100) on SA (001)<br />

<strong>IrO</strong> 2 single crystal<br />

E g (cm -1 )<br />

552.7<br />

561.0<br />

FWHM (cm -1 )<br />

36<br />

12<br />

diameter L 1 = 40 ± 5 nm; length L 2 ~ 400 nm<br />

L 1 = 45 nm<br />

Δω size (cm -1 )<br />

5.3<br />

-<br />

Δω stress (cm -1 )<br />

3<br />

-


Field emission properties of <strong>IrO</strong> 2 nanorods with<br />

self-assembled sharp-tips


Morphology of the <strong>IrO</strong> 2 nanorods grown on<br />

titanium(Ti)-coated-Si(100) substrate


The tip size (r) is<br />

around 2-4 nm<br />

Aspect ratio (α)<br />

= h/d = 2.1±0.1<br />

TEM images of <strong>IrO</strong> 2 nanorods


Field emission J-E curve of <strong>IrO</strong> 2 nanorods (I)<br />

For <strong>IrO</strong> 2 nanorods<br />

Turn-on field<br />

(E to ) at 5.6 V/μm<br />

The best values of<br />

carbon nanotube<br />

E to = 0.6 ~ 2.8 V/μm,<br />

N-doped diamond film<br />

E to ~ 1.5 V/μm<br />

amorphous carbon film<br />

E to = 6.0 V/μm


Field emission J-E curve of <strong>IrO</strong> 2 nanorods (II)<br />

For <strong>IrO</strong> 2 nanorods,<br />

the lowest field<br />

to drive the emission<br />

(E thr ) at 0.7 V/μm<br />

The best values of<br />

carbon nanotube<br />

E thr = 0.6 ~ 0.8 V/μm,<br />

N-doped diamond film<br />

E thr ~ 0.5 V/μm<br />

amorphous carbon film<br />

E thr = 3 ~ 5 V/μm


Field emission long-term stability of <strong>IrO</strong> 2 nanorods<br />

From the slope<br />

of FN plot,<br />

the calculated field<br />

enhancement factor<br />

β = 40000 ± 8000,<br />

which is compatible<br />

with the carbon<br />

nanotubes<br />

β = 1000 ~ 50000<br />

Long-term test shows the durable and<br />

robust ability of field emission of <strong>IrO</strong> 2<br />

nanorods


Typical gas response curves for the <strong>IrO</strong>2 sensor. (a)<br />

Upon exposure to 1000 ppm propionic acid and (b)<br />

1000 ppm n-hexylamine. <strong>IrO</strong> 2 was deposited at Ts =<br />

350 ºC, Tpr = 95 ºC.


Summary(I)<br />

Using the techniques of MOCVD and RF reactive<br />

sputtering, 1D nanosized conductive oxide<br />

crystals have been successfully grown on various<br />

substrates with different orientations.<br />

A strong substrate effect on the alignment of the<br />

<strong>IrO</strong> 2 nanocrystalline growth has been observed.<br />

XPS spectra show that Ir in <strong>IrO</strong> 2 nanorods also<br />

exist in a higher oxidation state.


Summary(II)<br />

The Raman scattering results reveal three Ramanactive<br />

modes, identified as E g, B 2g and A 1g. The<br />

intensity of certain modes depends on orientation of<br />

NCs and follows the selection rules. This indicates a<br />

possibility to determine the preferable growth<br />

direction of NCs under Raman investigations.<br />

The Raman peaks red shifts and the asymmetric<br />

broadening describe the trends due to phonon<br />

confined effect of the nanoscaled dimensions and<br />

residual stress.


Summary(III)<br />

The field emission results demonstrate the <strong>IrO</strong> 2<br />

nanorods are emitters of potential.<br />

Area-selective growth of <strong>IrO</strong> 2 nanorods have been<br />

carried out on silica patterned SA(012) and SA(100)<br />

substrates using MOCVD.


Future Work<br />

Basic physical properties study on the nanosized<br />

<strong>IrO</strong> 2/RuO 2 , TiO 2/RuO 2<br />

Interface properties between substrates and<br />

<strong>IrO</strong> 2/RuO 2, TiO 2/RuO 2 NCs<br />

Possible applications will be studied with the<br />

controlled growth of the <strong>IrO</strong> 2/RuO 2 , TiO 2/RuO 2<br />

nanocrystals<br />

Thanks very much for your attention!


Anatase-TiO 2 /SA(100)


Rutile-TiO 2 /SA(100)


RuO 2 on TiO 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!