16.08.2013 Views

Development and Application of SST-SAS Turbulence Model in the ...

Development and Application of SST-SAS Turbulence Model in the ...

Development and Application of SST-SAS Turbulence Model in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Development</strong> <strong>and</strong> <strong>Application</strong> <strong>of</strong> <strong>SST</strong>-<strong>SAS</strong><br />

<strong>Turbulence</strong> <strong>Model</strong> <strong>in</strong> <strong>the</strong> DESIDER Project<br />

Y. Egorov, F. Menter<br />

ANSYS Germany<br />

yury.egorov@ansys.com<br />

© 2007 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary


Outl<strong>in</strong>e<br />

• Scale-Adaptive Simulation (<strong>SAS</strong>) concept<br />

• <strong>SST</strong>-<strong>SAS</strong> turbulence model<br />

• Aerodynamic applications<br />

– NACA0021 airfoil beyond stall<br />

– Delta w<strong>in</strong>g<br />

– Full aircraft configuration<br />

– 3-D acoustic cavity<br />

© 2007 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept<br />

• URANS: unphysical s<strong>in</strong>gle mode<br />

unsteady behaviour<br />

• LES: too expensive<br />

• DES:<br />

– 1 st <strong>in</strong>dustrial model <strong>of</strong> high Re<br />

flows with LES content<br />

– Explicit mix <strong>of</strong> RANS & LES →<br />

grid sensitivity<br />

• <strong>SAS</strong>: provides URANS with LES<br />

content <strong>in</strong> unsteady regions<br />

URANS<br />

<strong>SAS</strong>-URANS<br />

© 2007 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept. <strong>Turbulence</strong> scales<br />

• Two scales required for statistical description<br />

L, T<br />

• Two equations<br />

→ two scales?<br />

E(k) spectrum<br />

© 2007 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept. 2-eq RANS models<br />

• k-ω model<br />

• One local scale: S<br />

• 2 nd scale:<br />

Dk<br />

Dt<br />

ω<br />

Dt<br />

– Shear layer thickness via diffusion: L = κ·y , L = δ<br />

– Too dissipative to resolve <strong>the</strong> energy cascade<br />

– Homogeneous turbulence,<br />

frozen LES velocity field:<br />

No diffusion → Contradiction:<br />

( 2 2<br />

S − c ω ) + Diff ( k)<br />

= νt<br />

µ<br />

D 2 2<br />

− βω<br />

( ω)<br />

© 2007 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary<br />

=<br />

α<br />

S<br />

S<br />

α S<br />

2<br />

2<br />

+<br />

Diff<br />

= cµ<br />

ω<br />

2<br />

= βω<br />

2


<strong>SAS</strong> concept. v.Karman length scale<br />

• Rotta’s transport eq. for spatial correlation-based L<br />

• 2 nd scale from ∂ 2 U/∂y 2 → von Karman length scale<br />

• New RANS model for k <strong>and</strong><br />

DΦ<br />

Dt<br />

=<br />

Φ<br />

k<br />

P<br />

⎡<br />

× ⎢ζ<br />

⎢⎣<br />

k L<br />

• Two natural local scales: S <strong>and</strong> L vK<br />

−<br />

ζ<br />

⎛<br />

⎜<br />

⎝<br />

L<br />

L<br />

© 2007 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary<br />

Φ<br />

⎞<br />

⎟<br />

⎠<br />

⎤<br />

⎥<br />

⎥⎦<br />

=<br />

−<br />

ζ<br />

k 1 2<br />

3<br />

vK<br />

Pk t<br />

vK<br />

2<br />

= ν S , L = κ S ∇<br />

2<br />

k<br />

2<br />

U<br />

+<br />

Diff<br />

( Φ)


<strong>SAS</strong> concept. <strong>SAS</strong> <strong>and</strong> RANS<br />

•<br />

⎛ 2 ⋅ ⎞<br />

U ( y)<br />

= U ⎜ ⎟ , λ - natural scale, ignored by<br />

0 s<strong>in</strong><br />

⎝ λ ⎠<br />

RANS<br />

• Two<br />

doma<strong>in</strong>s:<br />

δ = 4λ<br />

δ = 8λ<br />

• RANS:<br />

L ~ δ<br />

• <strong>SAS</strong>:<br />

L ~ λ<br />

π y<br />

<strong>SAS</strong><br />

RANS<br />

© 2007 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept. <strong>SAS</strong> <strong>and</strong> DES<br />

• DES enforces LES-behaviour via explicit grid <strong>in</strong>fluence<br />

• <strong>SAS</strong> detects resolved structures <strong>and</strong> adjusts accord<strong>in</strong>gly<br />

DES: RANS LES based on ∆<br />

<strong>SAS</strong>: RANS “LES” based on L vK<br />

© 2007 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept def<strong>in</strong>ition<br />

• <strong>SAS</strong>: 2 nd flow scale <strong>in</strong> <strong>the</strong> source terms<br />

typically via 2 nd velocity derivative<br />

• Requirements:<br />

– Proper RANS performance <strong>in</strong> stable<br />

flow region<br />

– Break-up <strong>of</strong> large unsteady structures<br />

<strong>in</strong>to a turbulent spectrum<br />

– Proper energy dissipation at small<br />

scale (high wave number damp<strong>in</strong>g)<br />

No grid &<br />

time step<br />

dependence<br />

Based on<br />

<strong>the</strong> grid<br />

spac<strong>in</strong>g ∆<br />

© 2007 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary


<strong>SST</strong>-<strong>SAS</strong> turbulence model<br />

Q<br />

• Experimental k-Φ model<br />

• Transformation to k-ω → <strong>SST</strong>-<strong>SAS</strong> model<br />

Dk<br />

Dt<br />

Dω<br />

Dt<br />

<strong>SAS</strong><br />

=<br />

( 2 2<br />

S − c ω ) + Diff ( k)<br />

= νt<br />

µ<br />

=<br />

α<br />

S<br />

2<br />

− βω<br />

2<br />

+<br />

Q<br />

<strong>SAS</strong><br />

+<br />

Diff<br />

( ω)<br />

2⋅<br />

σ<br />

( 1−<br />

F )<br />

∇k∇ω<br />

© 2007 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary<br />

+<br />

St<strong>and</strong>ard <strong>SST</strong><br />

2<br />

2<br />

⎡<br />

⎛<br />

2⎛<br />

L ⎞ 2k<br />

⎢<br />

⎜<br />

∇ω<br />

∇k<br />

max ζ κ − ⋅<br />

⎢<br />

⎜<br />

⎟<br />

2 S C max , 2 2<br />

σ ⎜<br />

⎣ ⎝ LvK<br />

⎠<br />

Φ ⎝<br />

ω k<br />

ω2<br />

ω<br />

2<br />

⎞ ⎤<br />

⎟ , 0⎥<br />

⎟<br />

⎠ ⎥<br />


<strong>SST</strong>-<strong>SAS</strong> turbulence model<br />

• Decay <strong>of</strong> isotropic turbulence<br />

High wave number<br />

damp<strong>in</strong>g <strong>in</strong> <strong>SAS</strong>:<br />

- <strong>of</strong>f<br />

- on<br />

- LES<br />

© 2007 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary


NACA0021 airfoil beyond stall<br />

• NACA0021 at 60°AoA, experiment by Swalwell at al., 2003<br />

• Re = 2.7·10 5 , low Mach number, doma<strong>in</strong> span-size 4 chords<br />

• O-grid: courtesy <strong>of</strong> NTS, Russia, 1.9 million elements, y + ≈ 1<br />

Contours <strong>of</strong> L / ∆ ∈ [0, 0.5]<br />

Isosurface <strong>of</strong><br />

Q = Ω 2 - S 2<br />

© 2007 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary


NACA0021 airfoil beyond stall<br />

• Mean values <strong>and</strong><br />

PSD spectra <strong>of</strong> forces<br />

<strong>SST</strong>-<strong>SAS</strong><br />

Experiment<br />

-Cp<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

Mean pressure<br />

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1<br />

x/c<br />

C L<br />

0.915<br />

0.931<br />

<strong>SST</strong>-<strong>SAS</strong><br />

Experiment<br />

C D<br />

1.484<br />

1.517<br />

© 2007 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary


Delta w<strong>in</strong>g<br />

• Sweep angle 76°,<br />

experiment by<br />

Laschka et al., 1995<br />

• AoA = 35°,<br />

Re = 1.07·10 6 ,<br />

low Mach number<br />

© 2007 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary


Delta w<strong>in</strong>g<br />

• Hybrid unstructured grid, 50 million elements, y + ≈ 0.5<br />

– Courtesy <strong>of</strong> EADS Deutschl<strong>and</strong> GmbH, Military Air Systems<br />

© 2007 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary


Delta w<strong>in</strong>g<br />

• Delayed burst<strong>in</strong>g <strong>of</strong> vortices predicted: numerical diffusion?<br />

L / ∆<br />

Exp. <strong>SST</strong>-<strong>SAS</strong><br />

Mean Cp<br />

© 2007 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary


Full aircraft configuration<br />

• Delta-canard FA-5, exp. by Laschka et al., 1995<br />

• AoA = 15°, Re = 2.78·10 6 , low Mach number<br />

• Hybrid unstructured grid, 36 million elements, y + ≈ 0.8<br />

– Courtesy <strong>of</strong> EADS<br />

Deutschl<strong>and</strong> GmbH,<br />

Military Air Systems<br />

– Half <strong>of</strong> <strong>the</strong> airplane,<br />

symmetry BC<br />

© 2007 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary


Full aircraft configuration<br />

• <strong>SAS</strong> vs. URANS<br />

© 2007 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary


Full aircraft configuration<br />

• Resolution details<br />

L / ∆<br />

© 2007 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary


Full aircraft configuration<br />

• Cross planes at x/c = 0.2, 0.4, 0.6, 0.8, 1<br />

U/U 0<br />

Experiment <strong>SST</strong>-<strong>SAS</strong><br />

Resolved+<strong>Model</strong>led TKE/U 0 2<br />

Experiment <strong>SST</strong>-<strong>SAS</strong><br />

© 2007 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary


3-D acoustic cavity<br />

• M219 test cavity, exp. by Q<strong>in</strong>etiQ, Henshaw, 2000<br />

• Shallow cavity: Length×Width×Depth = 5×1×1, 1=4"<br />

• Re D = 1.37·10 6 , M ∞=0.85 – local transonic zones<br />

• Coarse grid,<br />

1.1 million elements<br />

• 90 ∆t per convective unit<br />

• 100 units run<br />

for statistics<br />

© 2007 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary


3-D acoustic cavity<br />

• Resolved turbulent structures<br />

• Pressure spectrum at cavity bottom near <strong>the</strong><br />

downstream wall (K29)<br />

PSD <strong>of</strong> p<br />

1.E+07<br />

1.E+06<br />

1.E+05<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

0 200 400 600 800 1000<br />

© 2007 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary<br />

f, Hz<br />

Experiment<br />

<strong>SST</strong> <strong>SAS</strong>


O<strong>the</strong>r DESIDER tests simulated<br />

• Bump <strong>in</strong> a duct,<br />

experiment by ONERA<br />

• Generic car mirror,<br />

exp. by Höld et al., 1999<br />

© 2007 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!