16.08.2013 Views

Development and Application of SST-SAS Turbulence Model in the ...

Development and Application of SST-SAS Turbulence Model in the ...

Development and Application of SST-SAS Turbulence Model in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Development</strong> <strong>and</strong> <strong>Application</strong> <strong>of</strong> <strong>SST</strong>-<strong>SAS</strong><br />

<strong>Turbulence</strong> <strong>Model</strong> <strong>in</strong> <strong>the</strong> DESIDER Project<br />

Y. Egorov, F. Menter<br />

ANSYS Germany<br />

yury.egorov@ansys.com<br />

© 2007 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary


Outl<strong>in</strong>e<br />

• Scale-Adaptive Simulation (<strong>SAS</strong>) concept<br />

• <strong>SST</strong>-<strong>SAS</strong> turbulence model<br />

• Aerodynamic applications<br />

– NACA0021 airfoil beyond stall<br />

– Delta w<strong>in</strong>g<br />

– Full aircraft configuration<br />

– 3-D acoustic cavity<br />

© 2007 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept<br />

• URANS: unphysical s<strong>in</strong>gle mode<br />

unsteady behaviour<br />

• LES: too expensive<br />

• DES:<br />

– 1 st <strong>in</strong>dustrial model <strong>of</strong> high Re<br />

flows with LES content<br />

– Explicit mix <strong>of</strong> RANS & LES →<br />

grid sensitivity<br />

• <strong>SAS</strong>: provides URANS with LES<br />

content <strong>in</strong> unsteady regions<br />

URANS<br />

<strong>SAS</strong>-URANS<br />

© 2007 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept. <strong>Turbulence</strong> scales<br />

• Two scales required for statistical description<br />

L, T<br />

• Two equations<br />

→ two scales?<br />

E(k) spectrum<br />

© 2007 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept. 2-eq RANS models<br />

• k-ω model<br />

• One local scale: S<br />

• 2 nd scale:<br />

Dk<br />

Dt<br />

ω<br />

Dt<br />

– Shear layer thickness via diffusion: L = κ·y , L = δ<br />

– Too dissipative to resolve <strong>the</strong> energy cascade<br />

– Homogeneous turbulence,<br />

frozen LES velocity field:<br />

No diffusion → Contradiction:<br />

( 2 2<br />

S − c ω ) + Diff ( k)<br />

= νt<br />

µ<br />

D 2 2<br />

− βω<br />

( ω)<br />

© 2007 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary<br />

=<br />

α<br />

S<br />

S<br />

α S<br />

2<br />

2<br />

+<br />

Diff<br />

= cµ<br />

ω<br />

2<br />

= βω<br />

2


<strong>SAS</strong> concept. v.Karman length scale<br />

• Rotta’s transport eq. for spatial correlation-based L<br />

• 2 nd scale from ∂ 2 U/∂y 2 → von Karman length scale<br />

• New RANS model for k <strong>and</strong><br />

DΦ<br />

Dt<br />

=<br />

Φ<br />

k<br />

P<br />

⎡<br />

× ⎢ζ<br />

⎢⎣<br />

k L<br />

• Two natural local scales: S <strong>and</strong> L vK<br />

−<br />

ζ<br />

⎛<br />

⎜<br />

⎝<br />

L<br />

L<br />

© 2007 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary<br />

Φ<br />

⎞<br />

⎟<br />

⎠<br />

⎤<br />

⎥<br />

⎥⎦<br />

=<br />

−<br />

ζ<br />

k 1 2<br />

3<br />

vK<br />

Pk t<br />

vK<br />

2<br />

= ν S , L = κ S ∇<br />

2<br />

k<br />

2<br />

U<br />

+<br />

Diff<br />

( Φ)


<strong>SAS</strong> concept. <strong>SAS</strong> <strong>and</strong> RANS<br />

•<br />

⎛ 2 ⋅ ⎞<br />

U ( y)<br />

= U ⎜ ⎟ , λ - natural scale, ignored by<br />

0 s<strong>in</strong><br />

⎝ λ ⎠<br />

RANS<br />

• Two<br />

doma<strong>in</strong>s:<br />

δ = 4λ<br />

δ = 8λ<br />

• RANS:<br />

L ~ δ<br />

• <strong>SAS</strong>:<br />

L ~ λ<br />

π y<br />

<strong>SAS</strong><br />

RANS<br />

© 2007 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept. <strong>SAS</strong> <strong>and</strong> DES<br />

• DES enforces LES-behaviour via explicit grid <strong>in</strong>fluence<br />

• <strong>SAS</strong> detects resolved structures <strong>and</strong> adjusts accord<strong>in</strong>gly<br />

DES: RANS LES based on ∆<br />

<strong>SAS</strong>: RANS “LES” based on L vK<br />

© 2007 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary


<strong>SAS</strong> concept def<strong>in</strong>ition<br />

• <strong>SAS</strong>: 2 nd flow scale <strong>in</strong> <strong>the</strong> source terms<br />

typically via 2 nd velocity derivative<br />

• Requirements:<br />

– Proper RANS performance <strong>in</strong> stable<br />

flow region<br />

– Break-up <strong>of</strong> large unsteady structures<br />

<strong>in</strong>to a turbulent spectrum<br />

– Proper energy dissipation at small<br />

scale (high wave number damp<strong>in</strong>g)<br />

No grid &<br />

time step<br />

dependence<br />

Based on<br />

<strong>the</strong> grid<br />

spac<strong>in</strong>g ∆<br />

© 2007 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary


<strong>SST</strong>-<strong>SAS</strong> turbulence model<br />

Q<br />

• Experimental k-Φ model<br />

• Transformation to k-ω → <strong>SST</strong>-<strong>SAS</strong> model<br />

Dk<br />

Dt<br />

Dω<br />

Dt<br />

<strong>SAS</strong><br />

=<br />

( 2 2<br />

S − c ω ) + Diff ( k)<br />

= νt<br />

µ<br />

=<br />

α<br />

S<br />

2<br />

− βω<br />

2<br />

+<br />

Q<br />

<strong>SAS</strong><br />

+<br />

Diff<br />

( ω)<br />

2⋅<br />

σ<br />

( 1−<br />

F )<br />

∇k∇ω<br />

© 2007 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary<br />

+<br />

St<strong>and</strong>ard <strong>SST</strong><br />

2<br />

2<br />

⎡<br />

⎛<br />

2⎛<br />

L ⎞ 2k<br />

⎢<br />

⎜<br />

∇ω<br />

∇k<br />

max ζ κ − ⋅<br />

⎢<br />

⎜<br />

⎟<br />

2 S C max , 2 2<br />

σ ⎜<br />

⎣ ⎝ LvK<br />

⎠<br />

Φ ⎝<br />

ω k<br />

ω2<br />

ω<br />

2<br />

⎞ ⎤<br />

⎟ , 0⎥<br />

⎟<br />

⎠ ⎥<br />


<strong>SST</strong>-<strong>SAS</strong> turbulence model<br />

• Decay <strong>of</strong> isotropic turbulence<br />

High wave number<br />

damp<strong>in</strong>g <strong>in</strong> <strong>SAS</strong>:<br />

- <strong>of</strong>f<br />

- on<br />

- LES<br />

© 2007 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary


NACA0021 airfoil beyond stall<br />

• NACA0021 at 60°AoA, experiment by Swalwell at al., 2003<br />

• Re = 2.7·10 5 , low Mach number, doma<strong>in</strong> span-size 4 chords<br />

• O-grid: courtesy <strong>of</strong> NTS, Russia, 1.9 million elements, y + ≈ 1<br />

Contours <strong>of</strong> L / ∆ ∈ [0, 0.5]<br />

Isosurface <strong>of</strong><br />

Q = Ω 2 - S 2<br />

© 2007 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary


NACA0021 airfoil beyond stall<br />

• Mean values <strong>and</strong><br />

PSD spectra <strong>of</strong> forces<br />

<strong>SST</strong>-<strong>SAS</strong><br />

Experiment<br />

-Cp<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

Mean pressure<br />

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1<br />

x/c<br />

C L<br />

0.915<br />

0.931<br />

<strong>SST</strong>-<strong>SAS</strong><br />

Experiment<br />

C D<br />

1.484<br />

1.517<br />

© 2007 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary


Delta w<strong>in</strong>g<br />

• Sweep angle 76°,<br />

experiment by<br />

Laschka et al., 1995<br />

• AoA = 35°,<br />

Re = 1.07·10 6 ,<br />

low Mach number<br />

© 2007 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary


Delta w<strong>in</strong>g<br />

• Hybrid unstructured grid, 50 million elements, y + ≈ 0.5<br />

– Courtesy <strong>of</strong> EADS Deutschl<strong>and</strong> GmbH, Military Air Systems<br />

© 2007 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary


Delta w<strong>in</strong>g<br />

• Delayed burst<strong>in</strong>g <strong>of</strong> vortices predicted: numerical diffusion?<br />

L / ∆<br />

Exp. <strong>SST</strong>-<strong>SAS</strong><br />

Mean Cp<br />

© 2007 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary


Full aircraft configuration<br />

• Delta-canard FA-5, exp. by Laschka et al., 1995<br />

• AoA = 15°, Re = 2.78·10 6 , low Mach number<br />

• Hybrid unstructured grid, 36 million elements, y + ≈ 0.8<br />

– Courtesy <strong>of</strong> EADS<br />

Deutschl<strong>and</strong> GmbH,<br />

Military Air Systems<br />

– Half <strong>of</strong> <strong>the</strong> airplane,<br />

symmetry BC<br />

© 2007 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary


Full aircraft configuration<br />

• <strong>SAS</strong> vs. URANS<br />

© 2007 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary


Full aircraft configuration<br />

• Resolution details<br />

L / ∆<br />

© 2007 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary


Full aircraft configuration<br />

• Cross planes at x/c = 0.2, 0.4, 0.6, 0.8, 1<br />

U/U 0<br />

Experiment <strong>SST</strong>-<strong>SAS</strong><br />

Resolved+<strong>Model</strong>led TKE/U 0 2<br />

Experiment <strong>SST</strong>-<strong>SAS</strong><br />

© 2007 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary


3-D acoustic cavity<br />

• M219 test cavity, exp. by Q<strong>in</strong>etiQ, Henshaw, 2000<br />

• Shallow cavity: Length×Width×Depth = 5×1×1, 1=4"<br />

• Re D = 1.37·10 6 , M ∞=0.85 – local transonic zones<br />

• Coarse grid,<br />

1.1 million elements<br />

• 90 ∆t per convective unit<br />

• 100 units run<br />

for statistics<br />

© 2007 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary


3-D acoustic cavity<br />

• Resolved turbulent structures<br />

• Pressure spectrum at cavity bottom near <strong>the</strong><br />

downstream wall (K29)<br />

PSD <strong>of</strong> p<br />

1.E+07<br />

1.E+06<br />

1.E+05<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

0 200 400 600 800 1000<br />

© 2007 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary<br />

f, Hz<br />

Experiment<br />

<strong>SST</strong> <strong>SAS</strong>


O<strong>the</strong>r DESIDER tests simulated<br />

• Bump <strong>in</strong> a duct,<br />

experiment by ONERA<br />

• Generic car mirror,<br />

exp. by Höld et al., 1999<br />

© 2007 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!